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Statistical mechanics of a coevolving spin system
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We propose a statistical mechanics approach to a coevolving spin system with an adaptive network of
interactions. The dynamics of node states and network connections is driven by both spin configuration and
network topology. We consider a Hamiltonian that merges the classical Ising model and the statistical theory
of correlated random networks. As a result, we obtain rich phase diagrams with different phase transitions both
in the state of nodes and in the graph topology. We argue that the coupling between the spin dynamics and the
structure of the network is crucial in understanding the complex behavior of real-world systems and omitting
one of the approaches renders the description incomplete.
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During the past few decades, there has been rapid devel-
opment in the interdisciplinary area of network science. This
may be because of the availability of vast amounts of data,
much of it from such complex systems as financial markets,
social and biological structures, and transportation networks.
Studies of the network structure of such real-world systems
as the World Wide Web [1] indicate that their topology has
numerous nontrivial properties that the classical random graph
model cannot explain [2]. This has produced new network
models able to recreate some of these observed phenomena
[3.4]. Initially, most of these models focused on the graph
evolution, often the growth in the number of nodes and edges
[5]. On the other hand, a different approach has been devel-
oped that considers a statistical ensemble of graphs [6] called
“exponential random graphs” [7]. This formalism, borrowed
from statistical physics, has proven successful and has led to a
phenomenological theory of the topological phase transitions
in evolving networks [8—10].

This newly discovered concept of networks with a complex
structure moved rapidly through the spin models commu-
nity. Important critical properties were observed for both
scalefree and small-world network versions of the canonical
Ising model of ferromagnetism [11-13]. The use of complex
networks became popular because they more closely resem-
ble real-world structures than regular lattices or Poissonian
graphs. This has been particularly important when modeling
social and financial phenomena for which spin models are
the simplest and the most common [14,15]. Although the
topology of many systems can be described using complex
networks, the evolution of the model is limited to changes in
the spin configuration. This implies that connection dynamics
evolve more slowly than node state dynamics. Unfortunately,
this assumption is not valid in most complex adaptive systems,
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which are describable using network tools. An Ising model
with slowly evolving interactions was used as a model of
a neural network [16] and as a possible tool for simulating
magnetostriction in nanoscale magnetic structures [17]. A
particularly interesting case involved models in which the
connections and state dynamics coevolve with each other, one
evolution depending on the other and resulting in nontrivial
feedback. Most of these models focus on socioeconomic sys-
tems and describe their dynamics [18,19] rather than their sta-
tistical mechanics [20,21]. Some of them produce intriguing
topological properties, mainly when the dynamics is driven by
the structural characteristics of the network [22].

We here use the Hamiltonian formalism to describe Ising-
like models with coevolution of spins and connections, and
we want the connection dynamics to depend on both the spin
configuration and network topology. Following the approach
taken in Ref. [9], we use the degree as a topological variable
and focus on nearest neighbor interactions. We consider undi-
rected graphs with a fixed number N of vertices and a fixed
number M of edges. The partition function Z for our ensemble
we define to be

7 = Z e_ﬁH({C[/}a{Sx}), (1)
{cij). si}

where {-} is all possible configurations with respect to a fixed
number of links and nodes. Parameter 8 is the strength of
fluctuations and is the inverse temperature. A general form
of the Hamiltonian that lies within the scope of this paper is

H({cijh (i) =Y cijfkiskjisivs)+ Y gkivsi), (2)

i<j i
where ¢;; is the adjacency matrix, k; = ) . ¢;; and s; are
respectively the degree and the spin of node i, and f(-) and

g(-) are functions to be determined. More specifically, we
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assume that the functions are such that

¢
H({ci;}, {sih) — ZCU (%) 5isj — Zk,y —h Zst, 3)
i<j i i
where ¢ and y are model parameters, (k) =2M /N, and h
is the external field acting on spins set to zero. This simple
concrete form shows (i) that parameters ¢ and y allow us
to continuously switch from complicated topological inter-
actions to the classical Ising model and (ii) that the mul-
tiplication of degrees is the simplest interaction expression.
In an Ising framework, we treat it as a weight J;; assigned

to an edge (i, j). In addition, J;; = (%) is in accordance

with real-world weighted network characteristics [23]. The
second sum term is an external field that interacts with each
local node degree and drives the preference for high- or low-
degree nodes. In addition to the classical ferromagnetic inter-
pretation, if we use a socioeconomic model to examine the
proposed Hamiltonian, we find an accurate interpretation of
its terms. Using an opinion model, we determine the influence
of a given agent by examining its connectivity. The external
field term forces each agent to reach as many people as
possible. In contrast, the interaction term allows the energy of
the system to be strongly affected by the connections among
influential high-degree nodes. This works in two ways. High-
degree agents with opposite spins are energetically unstable
and agents with the same spins lower the energy level.

We perform Monte Carlo simulations of the model using
the METROPOLIS algorithm [24-26]. We start every simulation
with a random configuration. Every time step of the simula-
tion consists of two basic mechanisms. The first one is spin
switching and the second one is edge rewiring. For the spin
switching, we randomly select one node, and we compute
the energy difference between the system in a current state
and with the chosen spin in the opposite state. The decision
of whether to flip the spin or not is made according to the
standard METROPOLIS rule. Subsequently, in the same time
step, the edge rewiring is performed as follows. One link is
randomly selected from the network, with equal probability
for every link. Then two nodes are chosen randomly for possi-
ble ends of a new edge. Note that the new edge cannot overlap
with any of the existing ones. Next, the energy difference
between the new configuration and the old configuration is
calculated. Again, the decision of whether to rewire the edge
or not is made according to the METROPOLIS algorithm. More
details can be found in the Supplemental Material [27].

The topological portion of the Hamiltonian changes the
behavior of the Ising model. We find a variety of different
effects. Some are structural, others are associated with spin
configurations, and still others are a result of both. Figure 1
shows the simulation results for the phase diagram of y and
T with a fixed ¢ = 0. Here, no structural portion of the
Hamiltonian describes interactions; i.e., the network structure
is only locally important. Note that there are two separate
topological phases and also a continuous phase transition in
magnetization, with a small impact by parameter y.

Figure 2 shows the case ¢ = 0 and y = 1.6. Note that the
topological transition of the highest degree is discontinuous,
but also that the magnetization behaves in a way similar to
a standard Ising model on a coevolving network [20]. These
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FIG. 1. Absolute magnetization |m| (left) and the largest degree
kmax (right), as a function of the temperature 7 = 1/8 and y, for ¢ =
0. Solid line represents analytical approximation of the transition
according to the equation (5). Results averaged over 5 x 10° time
steps for a network with N = 1000 nodes and M = 3000 edges.

effects belong to different transition classes and occur at dif-
ferent temperatures, and we see a striking behavior in energy
E, ie., the value of the Hamiltonian. It exhibits multiple
jumps, one of which occurs at the same temperature as the
highest-degree topological phase transition. In addition, all
jumps are approximately equal. This energy behavior suggests
a multistar configuration in which the maximum number of
stars is restricted by a fraction % Figure 5(a) shows that
when M = 3N three vertices are connected to approximately
every network node. The number of stars decreases with the
temperature. Eventually, the system becomes more homoge-
neous, and we see a sharp transition in the largest degree.

FIG. 2. Absolute magnetization |m|, the largest degree k., and
energy E as a function of the temperature 7 = 1/8, for y = 1.6
and ¢ = 0. Lines represent analytical approximations according to
Eq. (5) and symbols correspond to numerical simulations averaged
over 10° time steps for a network with N = 500 (blue circles and
solid line), N = 750 (green squares and dotted line), N = 1000 (red
triangles and dashed line), with ¢ = M /N = 3. All quantities are
normalized to the range [0,1], except the energy, which is given in
arbitrary units.
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FIG. 3. Absolute magnetization |m| (left) and the largest degree
kmax (right), as a function of the temperature 7 = 1/8 and ¢, for
y = 1. Solid and dashed lines represent analytical approximations
of the transitions according to Eqs. (7) and (8) respectively. Results
are averaged over 5 x 103 time steps for a network with N = 1000
nodes and M = 3000 edges.

Here kmax << N, and the degree distribution is approximately
Poissonian.

When we remove the external field associated with the
degree of each node and turn on the combination of structural
terms in the interaction portion of the Hamiltonian, we find a
different behavior. Figure 3 shows this in the phase diagram
with respect to ¢ and T when there is a neutral value of
y = 1. Figure 4 shows the same when we fix ¢ = 0.6. When
we examine the largest degree and the magnetization, we see
four phases. Figure 4 shows that in the one-dimensional phase
diagram the topological transition is characterized by a sharp
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T=1/p
FIG. 4. Absolute magnetization |m|, the largest degree k., and
energy E as a function of the temperature 7 = 1/, for ¢ = 0.6
and y = 1. Lines represent analytical approximations according to
Eq. (7) and symbols correspond to numerical simulations averaged
over 10° time steps for a network with N = 500 (blue circles and
solid line), N = 750 (green squares and dotted line), and N = 1000
(red triangles and dashed line), with ¢ = M/N = 3. All quantities
are normalized to the range [0,1], except the energy, which is given
in arbitrary units.

FIG. 5. Exemplary networks obtained in the simulation. Green
nodes indicate +1 spin, and red nodes indicate —1 spin. (a) Model
¢ =0,y =2;(b)modelp =1,y = 1.

jump in the maximum degree. Thus there is an abrupt change
in the magnetization. Unlike the case with a varying y, there
is also a transition that is triggered by a change in parameter
¢ and that is unaffected by temperature. The critical value of
¢ in this transition is notated ¢,.

Examining the structural properties of the different phases
mentioned above, we find that when y =1 and ¢ < ¢,
in a low-temperature regime there are many disconnected
nodes and one big component with high-degree clustering
[see Fig. 5(b)]. At the critical temperature, the network re-
combines into one component, and the highest-degree kpax
reaches its maximum value at the transition point. Increasing
the temperature decreases the highest degree and the degree
distribution to become Poissonian. When we increase ¢ above
¢., the system transitions into a multistar configuration, a
phase similar to the one previously observed for high y values.

We next analytically describe the system to produce an
approximation of our numerical results. Because the structural
heterogeneity disallows a simple mean-field approach, we
use a semi-mean-field method and focus on the nonhomoge-
neous elements of the system that most strongly impact the
Hamiltonian.

Figures 1 and 2 show the results when ¢ = 0 and the
y value varies. We here assume that the most important
part of the Hamiltonian is the contribution from the largest
hubs, i.e., the stars connected to all other nodes. We assume
nonhubs to have a degree equal to the average degree. Thus
we approximate the Hamiltonian

H ~ —nyk?, — (N — ny)k?, (4)

where n, € {0, 1,2, ..., L%J = |c]} is the number of stars,
kn = N — 1 is the degree of each star, k, is the average
degree of the remaining nodes, and k, = k,(n,) = ny, +
LD where L(np) = kn +kn — 14+ +kn — (0 —
1) = nhm is the number of links required to create
ny, stars. Taking into account all possible configurations, the

partition function becomes

Le]
Z=2N§:(N)meJW%“N"W“, ®)
np

n/7=0
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where 2V is all spin configurations, ( ) is the number of
star combinations, and R(n) is the number of possible link
configurations with ny, stars in the network. We approximate
this as R(z,) &~ (V70 /2 Although this is a slight
overcounting when n; < ¢, the number of incorrect configu-
rations is negligible when compared to the number of all other
configurations.

Figures 1 and 2 show that the partition function allows us
to analytically determine the energy and the highest degree.
Although the estimated critical temperature diverges from the
observed temperature, using this simple approach allows us to
recreate the steplike behavior of the energy.

When y = 1 and the ¢ < ¢, value varies, there is a shat-
tering transition with a decreasing temperature. Some nodes
disconnect from other nodes and become inactive. In contrast,
when the temperature is high, and ¢ = 3, the graph becomes
random and highly connected. Thus we describe the state of
the system in terms of the number of active nodes, and we
assume that their degree can be approximated using the mean
field approach. We denote the number of these nodes n; and
write the Hamiltonian

(k);?

(kye’
where (k); = 2M /ng and [npin] < ny < N withng, = (1 +
V1 +8M)/2. We approx1mate the number of configurations

\‘(r

H~-M (6)

for a particular n; with ( )(
function

N N ne(n—1) b NO ol 28
7 = Z 2N7nx+l (n ) ( ]‘24 )eﬂz N? M ng . (7)
s

ns=[Nmin|

) and derive the partition

We assume that the spin direction of all active nodes is the
same and that there are 2V~"*! possible spin configurations.
Figures 3 and 4 show the results when we analytically obtain
the energy and the highest degree level. As in the previous
case, we can use our estimation to approximate the system
behavior but not the critical temperature.

We approximate ¢, to fully describe the phase diagrams.
The critical value of ¢ separates the homogeneous active node

phase from the multistar configuration phase. We assume that
the energy of both phases is the same when ¢ = ¢, and define
the critical value

¢ 1 (nmin_1)2 +1 M
e In ——— +1In —
N -1 c

c—
=ln|:

where both ¢ and np;, retain the previous definitions. An
analysis of the order parameter behavior and variance shows
that our simple approximation is always overestimating the
transition point. Nevertheless, it provides a clear indication
of the border between the two phases. For the complete
calculation of all cases, see the Supplemental Material [27].

To statistically describe a coevolving spin system, we have
used a Hamiltonian that merges exponential random graphs
and Ising-like models. A Hamiltonian that simultaneously
depends on topological properties and node states has not been
previously analyzed, and we have found complex behavior
and have generated rich phase diagrams. The most striking
aspect of our results is the existence, at specific temperatures,
of topological phase transitions in which there are no node
state transitions. There are also transitions that influence order
parameters, but this suggests that we must take into account
both the topology and the state of the nodes to fully describe
the system, and if we do not we miss essential aspects of
systemic behavior.

Although the results presented here concern networks in
which ¢ = % =3, we did extend our simulations to other
cases and found the same qualitative results. These extended
results and a detailed analysis of the asymptotic and topolog-
ical properties of the transitions will be supplied in a future
publication [28].

! (N = 1% 4+ c¢“(N—c)i|, 8)
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