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We address the question of how to precisely identify correlated behavior between different
firms in the economy by applying methods of random matrix theory (RMT). Specifically,
we use methods of random matrix theory to analyze the cross-correlation matrix C of
price changes of the largest 1000 US stocks for the 2-year period 1994–1995. We find that
the statistics of most of the eigenvalues in the spectrum of C agree with the predictions
of random matrix theory, but there are deviations for a few of the largest eigenvalues.
To prove that the rest of the eigenvalues are genuinely random, we test for universal
properties such as eigenvalue spacings and eigenvalue correlations. We demonstrate that
C shares universal properties with the Gaussian orthogonal ensemble of random matrices.
In addition, we quantify the number of significant participants, that is companies, of the
eigenvectors using the inverse participation ratio, and find eigenvectors with large inverse
participation ratios at both edges of the eigenvalue spectrum — a situation reminiscent
of results in localization theory.
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1. Introduction

Aside from scientific interest, the study of correlations between the returns of dif-

ferent stocks is also of practical relevance in quantifying the risk of a given stock

portfolio [1]. Recently, the problem of understanding the correlations among the

returns of different stocks has been addressed by applying methods of random ma-

trix theory to the cross correlation matrix [2, 3]. Consider, e.g., the equal-time

correlation of stock price changes for a given pair of companies. Since the market

conditions may not be stationary, and the historical records are finite, it is not clear

if a measured correlation of price changes of two stocks is just due to “noise” or

genuinely arises from the interactions among the two companies.

In some ways, the problem of interpreting the correlations between individual

stock-price changes is reminiscent of the difficulties experienced by physicists in the

fifties, in interpreting the spectra of complex nuclei. With the minimal assumption

of a random Hamiltonian, given by a real symmetric matrix with independent ran-

dom elements, a series of remarkable predictions were made and successfully tested

on the spectra of complex nuclei [4]. Deviations from the universal predictions of
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Fig. 1. (a) The probability density of the eigenvalues of the normalized cross-correlation matrix
C for the 1000 largest stocks in the TAQ database for the 2-year period 1994–1995 [7]. The
largest eigenvalue for the 2-year period (inset) is approximately 30 times larger than the maximum
eigenvalue λm = 1.94 predicted for uncorrelated time series. The inset also shows the largest
eigenvalue for the cross-correlation matrix for 4 half-year periods — denoted A, B, C, D. The arrow
in the inset corresponds to the largest eigenvalue for the entire 2-year period, λ1000 ≈ 50. The
largest eigenvalue describes correlations within the entire market [2] as all companies contribute
to it with equal weight. (b) Comparison of the RMT predictions for the spacing distributions with
results for empirical cross-correlation matrix, the solid line is the GOE prediction. At the 80%
confidence level, the Kolmogorov–Smirnov test cannot reject the hypothesis that the GOE is the
correct description.

Random Matrix Theory (RMT) identify system-specific, non-random properties of

the system under consideration, providing clues about the nature of the underlying

interactions [5].

We analyze here the cross-correlation matrix C ≡ Cij ≡ 〈GiGj〉−〈Gi〉〈Gj〉/σiσj
of the returns at 30-minute intervals of the largest 1000 US stocks for the 2-year

period 1994–1995. First, we diagonalize C and obtain its eigenvalues λk — with

k = 1, . . . , 1000 — which we rank-order from the smallest to the largest. Next, we

calculate the eigenvalue distribution [2] and compare it with recent analytical results

for a cross-correlation matrix generated from finite uncorrelated time series [6].

Figure 1 shows the eigenvalue distribution of C, which deviates from the predictions

of Sengupta and Mitra [6] for large eigenvalues λk ≥ 1.94 (see caption of Fig. 1).

This result is in agreement with the results of Laloux et al. [2] for the eigenvalue

distribution of C on a daily time scale.

2. Universal Properties: Eigenvalue Spacings

To test for universal properties, we first calculate the distribution of the nearest-

neighbor spacings s ≡ λk+1 − λk. The nearest-neighbor spacing is computed after

transforming the eigenvalues in such a way that their distribution becomes uni-

form — a procedure known as unfolding [5]. Figure 1(b) shows the distribution of

nearest-neighbor spacings for the empirical data, and compares it with the RMT
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predictions for real symmetric random matrices. This class of matrices shares uni-

versal properties with the ensemble of matrices whose elements are distributed

according to a Gaussian probability measure — the Gaussian orthogonal ensem-

ble (GOE). We find good agreement between the empirical data and the GOE

prediction, PGOE(s) = (πs/2) exp(−πs2/4).

3. Nonuniversal Properties: Eigenvector Statistics

Having demonstrated that the eigenvalue statistics of C satisfies the RMT predic-

tions, we proceed to analyze the eigenvectors of C. The component ` of a given

eigenvector relates to the contribution of company ` to that eigenvector. Hence, the

distribution of the components contains information about the number of companies

contributing to a specific eigenvector. In order to distinguish between one eigen-

vector with approximately equal components and another with a small number of

large components we define the inverse participation ratio Ik ≡
∑1000
`=1 [uk`]

4, where

uk`, ` = 1, . . . , 1000 are the components of eigenvector k. The physical meaning of

Ik can be illustrated by two limiting cases: (i) a vector with identical components

uk` ≡ 1/
√
N has Ik = 1/N , whereas (ii) a vector with one component uk1 = 1

and all the others zero has Ik = 1. Therefore, Ik is related to the reciprocal of the

number of vector components significantly different from zero [5].

Figure 2 shows Ik for eigenvectors of a matrix generated from uncorrelated time

series with a power law distribution of price changes [8]. The average value of Ik is

〈I〉 ≈ 3×10−3 ≈ 1/N indicating that the vectors are extended [5] — i.e., almost all

companies contribute to them. Fluctuations around this average value are confined

to a narrow range. On the other hand, the empirical data show deviations of Ik
from 〈I〉 for a few of the largest eigenvalues. These Ik values are approximately

4–5 times larger than 〈I〉 which suggests that there are groups of approximately
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Fig. 2. Inverse participation ratio Ik for each of the 1000 eigenvectors. As a control, we show
in the inset the values for the eigenvectors of a cross-correlation matrix computed from uncorre-
lated independent power-law distributed time series [8] of the same length as the data. Empirical
data show marked peaks at both edges of the spectrum, whereas the control shows only small
fluctuations around the average value 〈I〉 = 3× 10−3.
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50 companies contributing to these eigenvectors. The corresponding eigenvalues are

well outside the bulk, suggesting that these companies are correlated.

Surprisingly, we also find that there are Ik values as large as 0.35 for vectors

corresponding to the smallest eigenvalues λi ≈ 0.25.a The deviations from 〈I〉
for the smallest eigenvalues are about 102 to 103 times larger than the standard

deviation of the fluctuations for the control, which suggests that the vectors are

localized [5] — i.e., only a few companies contribute to them. The small size of the

corresponding eigenvalues suggests that these companies are uncorrelated with one

another. The appearance of localized states is a phenomenon well-known in RMT

and suggests that C may be a random band matrix.b

4. Conclusion

In summary, we find that the most eigenvalues in the spectrum of the cross-

correlation matrix of stock price changes agree surprisingly well with the universal

predictions of random matrix theory. In particular, we find that C satisfies the uni-

versal properties of the Gaussian orthogonal ensemble of real symmetric random

matrices. We find through the analysis of the inverse participation ratio of its eigen-

vectors that C may be a random band matrix, which may support the idea that a

metric can be defined on the space of companies and that a distance can be defined

between pairs of companies.c Hypothetically, the presence of localized states may

allow us to draw conclusions about the “spatial dimension” of the set of stocks

studied here and about the “range” of the correlations between the companies. On

the practical side, our findings imply that the random part of the cross-correlation

matrix must be removed before it can be used for designing financial instruments.
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