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a b s t r a c t

In this paper we study a model of synchronization process on scale free networks with
degree–degree correlations. This model was already studied on this kind of networks
without correlations by Pastore y Piontti et al. [A.L. Pastore y Piontti, P.A. Macri,
L.A. Braunstein, Phys. Rev. E 76 (2007) 046117]. Here, we study the effects of the
degree–degree correlation on the behavior of the load fluctuations Ws in the steady state.
We found that for assortative networks there exist a specific correlation where the system
is optimally synchronized. In addition, we found that close to this optimal value the
fluctuations does not depend on the system size and therefore the system becomes fully
scalable. This result could be very important for some technological applications. On the
other hand, far from the optimal correlation, Ws scales logarithmically with the system
size.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades the study of complex networks received much attention because many real processes work over
these kind of structures. Historically, the research was mainly focused on how the topology affects processes such as
epidemic spreadings [1], traffic flow [2,3], cascading failures [4] and synchronization problems [5,6]. Many real networks
have structures characterized by a degree distribution P(k) ⇠ k�� known as scale free (SF), where k is the degree or number
of connections that a node can have and kmax � k � kmin, where kmax is the maximum degree, kmin the minimum degree
and � measure the broadness of the distribution [7]. In synchronization process it is customary to study the fluctuations
W = {1/N PN

i=1(hi � hhi)2}1/2 of some scalar field h, where hi with i = 1,N represent the scalar field on node i, hhi is the
mean value, N is the system size and {.} denotes an average over network configurations. These kind of problems are very
important in many real situations such as supply-chain networks based on electronic transactions [8], brain networks [9]
and networks of coupled populations in correlated epidemic outbreaks [10]. Pastore y Piontti et al. [11] studied a model of
surface relaxation with non-conservative noise that allows to balance the load and reduce the fluctuations (synchronize) of
the scalar fields on SFnetworkswithout degree correlation. However real networks are correlated in nature, and there should
be a reason for this feature. One reason could be to enhance some process such as the transport and the synchronization
through them. The degree–degree correlation of a network can be measured using the Pearson’s coefficient given by [12]
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Fig. 1. Ws as a function of N in log-linear scale for � = 2.5 and kmin = 2 for r = �0.237 (�), �0.05 (⇤), 0.103 (⇧), rmin = 0.335 (4) and 0.386 (?). The
dashed lines represent a logarithmic fitting and the dotted lines a linear fitting.

where M is the number of edges of the network and ji and ki are the degree of the nodes of the edge i. This coefficient only
can takes values in the interval [�1, 1]: if r < 0 the network is called disassortative (nodes with low degree tend to connect
with highly connected nodes) while for r > 0 the network is called assortative (nodes tend to connect with others with the
similar degrees). When r = 0 the network is uncorrelated. As observed in many other works the degree–degree correlation
affects considerably the processes that occur on top of them [13–15].

In this paper we study the effects of the degree–degree correlation on the behavior of the fluctuations in the steady
state Ws of SF correlated networks with � < 3 for the model of surface relaxation to the minimum (SRM) [16] used by
Pastore y Piontti et al. [11] in uncorrelated networks. To study the fluctuations we map the process with a problem of a
non-equilibrium surface growth [17], where the scalar field hi ⌘ hi(t) represents the interface height at each node i at time
t . We found that for every � < 3 there exist a value of the correlation for which the fluctuations are minimized, i.e, that
optimizes the synchronization. Close to and at the ‘‘optimal’’ correlation the fluctuations does not depend onN , but for other
correlations the fluctuations diverges logarithmically with N .

2. Model and simulation

To construct the networks we use the configurational model (CM) [18] with a degree cutoff kmax = N1/2 for � < 3 in
order to uncorrelate the original network [19]. Then, we choose two links at random and with probability p we connect
the nodes with higher degree between them and the two with smaller degree to each other to obtain r > 0. For r < 0,
we connect with probability p the node with highest degree with the one with lowest degree and the other two between
them. In both cases we do not allow self loops or multiple connections. It is known that algorithms that generate clustering
(the probability that two connected nodes have another neighbor in common) produce degree–degree correlation, but the
algorithm used here produce degree–degree correlation without introducing clustering [20]. In this way, we can study the
effects of the degree–degree correlation on SF networks isolating them from clustering effects. A side effect of this algorithm
is that for SF networks the range of Pearson’s coefficient that can be generated cannot span the total domain r 2 [�1, 1].
Nevertheless, the range that can be obtained is enough to observe how change the scaling of the fluctuationswith the system
size when correlations are introduced. For all the results in this work we use kmin = 2 in order to ensure that the network is
fully connected [21]. We present the results for � = 2.5 but we checked that for 2 < � < 3 they are qualitatively the same.
The reason to investigate only 2 < � < 3 is because almost all the real SF networks fall in this range of values of �.

In the SRMmodel [11,16], at each time step a node i is chosen to evolve with probability 1/N . Then, if we denote by vi the
nearest neighbor nodes of i, the growing rules are: (1) if hi  hj 8j 2 vi ) hi = hi + 1, else (2) if hj < hn 8n 6= j 2 vi )
hj = hj + 1. For the simulations we start with an initial configuration of {hi} randomly distributed in the interval [0, 1].

In Fig. 1 we show, in log-linear scale, Ws as a function of N for different values of r for � = 2.5. We can see that for
some values of r , Ws has a logarithmic divergence with N while for other values of r , Ws does not depend or has a weakly
dependence on N . This change of behavior means that the scaling of the fluctuations not only depends on � [11], it also
depends on the correlation of the network. These results are in agreement with Ref. [11], where for uncorrelated, or slightly
disassortative networks,Ws scales as lnN for � < 3 (r = �0.05 in Fig. 1). Notice that the relation between r and p has finite
size effects (see Fig. 2). For this reason if we want to fix r we must select different values of p for each system size.

In Fig. 3 we plotW 2
s as a function of r for N = 5000. Each data point was obtained from the linear fitting ofW 2(t) in the

saturated regime for each r value for 3000 realizations, a task of very time consuming. We can see that there is a positive
value r = rmin that minimizes (optimizes) the fluctuations. In the inset figure we show rmin as a function of N . We can see
that for large system size (N & 3000) the optimal correlation is independent of N . The dashed line represents the linear
fitting of rmin for large N , from where we found that rmin ⇡ 0.335 for � = 2.5. This means that for the optimal correlation
the fluctuations in the steady state do not depend on the system size. This is an important result because for r close to rmin
the whole system is scalable with N . As an example, suppose that we have a cluster of computers connected as a SF network
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Fig. 2. r as a function of p for � = 2.5 and kmin = 2 for N = 1000 (straight line), 3000 (dotted line), 5000 (dashed line) and 7000 (dot-dashed line). The
straight horizontal line with the arrow indicates the values of p used for r = 0.2.

Fig. 3. W 2
s as a function of r for � = 2.5 and N = 5000. The arrow indicates the position rmin . In the inset figures we plot rmin as a function of N in symbols.

The dashed line represents the linear fitting in the region where rmin is independent of N: rmin = 0.335 for � = 2.5. The averages were done over 3000
realizations.

with r ⇡ rmin, and that the excess of load of the cluster of computers is sent to the first neighbors in one time step as in our
model. In the optimal correlation, as we show, the fluctuations are independent of N , so we could increase the number of
computers in our system as much as we want without losing its synchronization.

In order to explain this behavior we compute the local contribution to the fluctuations due to all nodes with degree k in
the steady state, given by

W 2
k = 1

NP(k)

NX

i=1,ki=k

W 2
i ,

and therefore the total fluctuation can be computed as

W 2
s =

kmaxX

k=kmin

P(k)W 2
k . (2)

In Fig. 4(a) we show W 2
k as a function of k for � = 2.5, N = 5000 and different values of r . We can see that for nodes with

high degree, W 2
k decreases as r increases. This is due to the fact that when r increases nodes tend to connect with others

with similar connectivities and since the high degree nodes are few and tightly packed, the one step relaxation is enough for
even out all their heights, balancing better the load and enhancing the synchronization. On the other hand, for low degree
nodes we observe thatW 2

k has a minimum for the optimal correlation, as shown in Fig. 4(b). In SF networks the majority of
the nodes have low connectivities and if r > 0 the average distance between those nodes becomes bigger that one [13]. As
the relaxation is only to first neighbors, different parts of those chains will have very different heights. As a consequence,
for some values of r > 0 not all the low degree nodes will be completely synchronized between them. For this reason the
optimal correlation is positive and smaller than one since low degree nodes are connected to some nodes with high degree
allowing to speed up the relaxation and smoothing out the interface among them.
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a b

Fig. 4. W 2
k vs. k for � = 2.5, r = �0.255 (�), �7.10�03 (⇤), 0.335(rmin) (⇧) and 0.386 (4). (b) An amplification of (a) for low degree nodes. The dashed

lines are used as guides. All these results are for N = 5000 and 5000 realizations of the networks.

Fig. 5. Log-linear plot of W 2
c (k) as a function of k for � = 2.5, r = �0.255 (�), �7.10�03 (⇤) and 0.335(rmin) (⇧). We can see that for k > k⇤ , where

k⇤ ⇡ 10 the asymptotic behavior ofW 2
c (k) goes as ln k for r < rmin and r > rmin and goes as a const. for r ' rmin .

In order to prove this, in Fig. 5 we plot the cumulative

W 2
c (k) =

kX

k0=kmin

W 2
k0P(k0). (3)

Aswe can see from the plot, as r increases the contribution toWs of high degree nodes decreases, being themain contribution
to the fluctuations due to low degree nodes for positive r and the smaller for rmin. This is why the global fluctuations is
minimal in the optimal correlation. Also from the same plot we can understand why close to the optimal correlation the
system does not depend on N . For k > k⇤, Eq. (3) can be rewritten as

W 2
c (k) = W 2

c (k⇤) +
kX

k0=k⇤+1

W 2
k0P(k0),

where k⇤ is the upper value of k that separate two different regimes for W 2
c (k). The second term can be replaced by A(k),

where

A(k) ⇠
⇢
ln k, r < rmin and r > rmin;
const., r ' rmin.

(4)

Then Eq. (2) is given by
W 2

s = W 2
c (kmax),

where kmax =
p
N . Using Eq. (4)

W 2
s ⇠

⇢
ln kmax ⇠ ln

p
N ⇠ lnN, r < rmin and r > rmin;

const., r ⇡ rmin.
(5)

The logarithmic divergence far from the optimal correlation is a consequence of that the contribution of high degree
nodes cannot be disregarded. However in r = rmin only the low degree nodes contribute to the global fluctuations of the
system allowing the scalability with the system size.
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3. Summary

In this paper we study the effects of degree–degree correlations on the behavior of the fluctuations Ws for the SRM
model in SF networks with 2 < � < 3. We found that there exist an optimal value of the Pearson’s coefficient 0 <
rmin < 1 (assortative networks) where the system is optimally synchronized. We also found that for values close to rmin
the fluctuations does not depend on N , i.e, it is scalable. Moreover for r < rmin and r > rmin the fluctuations diverge as
a logarithmically with the system size N . Then the scaling behavior of Ws with the system size depend strongly on the
correlation of the network.

The optimal synchronization found for assortative networks is in our model a topological effect due to the correlations.
This is an unexpected result because in many researches it was found that disassortative networks (communication
networks) are better for transport [14] and to synchronize oscillators [15].
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