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Although recent studies have found that the long-term correlations relating to the fat-tailed distribu-
tion of inter-event times exist in human activity and that these correlations indicate the presence of
fractality, the property of fractality and its origin have not been analyzed. We use both detrended
fluctuation analysis and multifractal detrended fluctuation analysis to analyze the time series in
online viewing activity separating from Movielens and Netflix. We find long-term correlations at
both the individual and communal levels and that the extent of correlation at the individual level is
determined by the activity level. These long-term correlations also indicate that there is fractality
in the pattern of online viewing. We first find a multifractality that results from the combined effect
of the fat-tailed distribution of inter-event times (i.e., the times between successive viewing actions
of individuals) and the long-term correlations in online viewing activity and verify this finding
using three synthesized series. Therefore, it can be concluded that the multifractality in online
viewing activity is caused by both the fat-tailed distribution of inter-event times and the long-term
correlations and that this enlarges the generic property of human activity to include not just physi-
cal space but also cyberspace. Published by AIP Publishing. https://doi.org/10.1063/1.5003100

To better understand the long-term correlations and mul-
tifractality in human activity, we analyze the time series
in online viewing activity at both the individual and com-
munal levels via famous detrended fluctuation analysis
(DFA) and multifractal detrended fluctuation analysis
(MFDFA) methods. We find that the long-term correla-
tions at both the individual and communal levels are
generic to human activity, and at the individual level, the
extent of correlation is determined by the activity level.
These long-term correlations suggest the fractal pattern
in online viewing activity. We further find a multifractal-
ity that results from the combined effect of the fat-tailed
distribution of inter-event times (i.e., the times between
successive viewing actions of individuals) and the long-
term correlations, which is verified by using synthesized
series and surrogate methods. These empirical results
enlarge this generic property of human activity to include
not just physical space but also cyberspace.

I. INTRODUCTION

It is difficult to characterize and understand complex
systems because splitting a complex system into simpler sub-
systems changes its dynamical properties.1 Thus, researchers
focus on macroscopic properties, e.g., analyzing a time series
in which the behavioral evolution of a complex system is

characterized by output records restricted by time scale.
Output records from real-world complex systems, e.g., stock
price fluctuations,2 heart rate variations,3–7 and inter-spike
intervals,8–10 usually follow a non-Gaussian probability den-
sity function (PDF) and involve fractal dynamics.

Human activity is itself a complex system. Time series
analysis, e.g., detrended fluctuation analysis (DFA),11–13 has
recently discovered several macroscopic properties in human
activity. For example, a periodic pattern has been found in
such human activities as Internet surfing,14 online game log-
ins,15 task submissions to a Linux server,16 and e-commerce
purchases.17 Long-term correlations found in many physical,
biological, economic, and ecological systems3,18–26 have
also been found in human interactive patterns, and these
long-term correlations become strong as the human activity
level increases.27

Rybski et al.28,29 investigated human communication in
a social network, found a relationship between long-term
correlations and inter-event clustering, and provided a model
to explain these correlations. They show that at the individ-
ual level, the long-term correlations in a time series of events
are determined by the power-law distribution of the inter-
event times (the “Levy correlations” in Ref. 29) but that at
the communal level, they are a generic property of the sys-
tem caused by interdependencies among community activi-
ties. Zhao et al.30 analyzed the time series of inter-event
times in online viewing activity, found that the long-term
correlations (i.e., memory) are restricted by the activity level,
and showed an abnormal scaling behavior associated with
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long-term anticorrelations caused by the bimodal distribution
of inter-event times. Kivel€a and Porter31 systematically esti-
mated the inter-event time distribution from finite observa-
tion periods in communication networks.

Although these long-term correlations imply the exis-
tence of fractality in these time series of human activity, two
unanswered questions remain: (i) what category of fractality
applies in a time series of human activity and (ii) what is the
origin of the fractality? Using the Internet technology, we
examine the time series in the human activity of two movie
viewing websites, Movielens and Netflix, analyze the long-
term correlations, and find fractality. At the individual level,
we apply DFA to the time series of records composed by
users with the same activity level and to the corresponding
shuffled time series in which each user preserves the inter-
event times. Long-term correlations become strong as the
activity level increases. Because the distributions of inter-
event times at different activity levels do not follow a power
law, there is a trivial difference between the Hurst expo-
nents32,33 of the original and the shuffled time series. The
empirical result differs somewhat from that found in human
communication activity.29 At the communal level, we simi-
larly analyze the time series of records aggregated from all
user activities and find a stronger long-term correlation with
Hurst exponents, approximately 0.9 and 1.0 for Movielens
and Netflix, respectively.

To more accurately categorize the fractality and under-
stand its origin, we use multifractal detrended fluctuation
analysis (MFDFA) and probe the singularity spectrum. We
find a dependence between the generalized Hurst exponent
and q-order statistical moments which indicates multifractal-
ity in the time series of records at the communal level.
Although multifractality remains after the time series are
shuffled, changes occur in the value of the generalized Hurst
exponent. One result is obviously suggested by the singular-
ity spectrum. Reference 29 hypothesizes that multifractality
relates to the broad PDF of inter-event times and the long-
term correlations.34 Because this hypothesis is verified by
our empirical results and our synthesized series, we conclude
that multifractality exists in human viewing activity and that
the combined effect of the fat-tailed distribution of inter-
event times and long-term correlations causes such
multifractality.

II. DATA

The experimental datasets, released by Movielens and
Netflix, record views and ratings to movies at a given time.
Each user’s account is anonymous with a hash tag done by
Movielens and Netflix. The total users are approximately
7000 for Movielens and 17 774 for Netflix, respectively. The
users’ activity levels are hierarchically distributed both in
Movielens and Netflix, as shown in Fig. 1. We filter datasets
according to user’s activity level, M ! 55 (see the definition
in Sec. III). Herein, we set M ! 55 to guarantee that there
are abundant records for converting into time series in a long
duration. We finally obtain 26 884 users (38.4% of the total
users) and 10 000 054 records for a duration of 4703 days
(nearly 13 years) for Movielens and 17 703 users (99.6% of
the total users) and 100 477 917 records for a duration of

2243 days (nearly 6 years) for Netflix. Although the
Movielens records begin at its creation date and are thus
noisy, the size of both filtered user datasets exceeds 105.

To convert these records into time series, we introduce
two variables: the records per day of a single user x(t) and
the records per day of the entire community xtotðtÞ. Note that
the number of records quantifies the number of movies
viewed by a single user x(t), which is constrained by the
number of hours in a day. We use these time series in our
subsequent analysis. Figures 2(a) and 2(b) show the viewing
actions of two typical users when they comment movies in
Movielens and Netflix, respectively. Figures 2(c) and 2(d)
show the corresponding time series at the individual level.
Figures 2(e) and 2(f) show the time series at the communal
level. In Fig. 2, we can also observe the clusters of activity
records that suggest the burstiness occurring in these online
viewing activities.

FIG. 1. The PDFs of user activity levels for Netflix and Movielens at a log-
log scale. They both show a fat-tailed distribution, suggesting the hierarchi-
cal user activities.

FIG. 2. A visual illustration of activity records of typical users and corre-
sponding time series at both individual and communal levels. (a) and (b)
The viewing actions of two typical users, user23172 (M¼ 1308) and
user12228 (M¼ 5606), when they comment movies in the websites. (c) and
(d) Corresponding time series for these two typical users. (e) and (f) Time
series for the whole community. The dark blue and red lines denote
Movielens and Netflix, respectively.
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III. METHOD

A. Detrended fluctuation analysis

The DFA is a proven method for measuring long-term
correlations of time series11–13 and is less sensitive to the addi-
tional detrending process,35,36 nonstationarities,37 noise,38 and
missing data.39,40 To keep our description self-contained, we
briefly introduce the steps of this method as follows:

(i) Calculate the profile Yðt0Þ of time series x(t)

Yðt0Þ ¼
Xt0

t¼1

xðtÞ % hxðtÞi; t0 ¼ 1;…;N: (1)

(ii) Divide Yðt0Þ into Ns non-overlapping segments of
length s in increasing order. Because N is often not

equal to the product of s and Ns [i.e., (Ns ¼ bNsc)], sug-

gesting that the last segment of Yðt0Þ is overlooked,
we divide Yðt0Þ from the opposite direction in order to
incorporate the entire Yðt0Þ. Thus, there are 2Ns differ-
ent segments. We sample the value of s from the loga-

rithmic space, s ¼ N

2
intð logN

2
%2Þ ;…; N

23 ; N
22, which maintains

the smoothness of the curve between F(s) and s.
(iii) Given s, the profile Yðt0Þ in each segment is detrended

separately. The least-squares fit is used to determine
the v2-functions for each segment, such as for
v ¼ 1; 2;…;Ns,

F2ðv; sÞ ¼ 1

s

Xs

j¼1

Yððv% 1Þsþ jÞ % xn
vðjÞ

! "2
; (2)

and for v ¼ Ns þ 1;…; 2Ns,

F2ðv; sÞ ¼ 1

s

Xs

j¼1

YððN % v% NsÞsþ jÞ % xn
vðjÞ

! "2
; (3)

where wn
v is the n-order polynomial fitting of segment v.

(iv) Calculate the fluctuation function

FðsÞ ¼ 1

2Ns

X2Ns

v¼1

F2ðv; sÞ

" #1
2

' sH; (4)

where H is the Hurst exponent. The value of H mea-
sures the long-term correlation of time series. It indi-
cates a long-term anticorrelation for 0 < H < 0:5, no
correlation for H¼ 0.5, and a long-term correlation
for H> 0.5.

B. Multifractal detrended fluctuation analysis

DFA gives us the long-term correlations of time series,
which indicates its fractality. To further analyze this fractal-
ity and its origin, we modify DFA and introduce
MFDFA,5–7,34,41–43 where Eq. (4) is modified to become

FðsÞ ¼ 1

2Ns

X2Ns

v¼1

F2ðv; sÞ
! "q=2

" #1
q

' sHðqÞ: (5)

Here, H(q) is the generalized Hurst exponent. When a
time series is monofractal, H(q) is independent of q, and

when it is multifractal, H(q) is dependent on q. This multi-
fractality is caused by such key factors as long-term correla-
tions and PDF of inter-event times. To determine the origin
of the multifractality, we randomly shuffle the time series to
reduce long-term correlations but preserve the PDF and once
again apply MFDFA. If the PDF is the only source of the
multifractality, it will be reserved in the shuffled time series.
If the long-term correlations are the only source, it will dis-
appear. If both the long-term correlations and PDF affect the
time series, the multifractality will remain, but the value of
H(q) will change.

The singularity spectrum f ðaÞ provides a clearer way of
characterizing a multifractal time series. The horizontal span
of f ðaÞ quantifies multifractality. A narrow f ðaÞ indicates a
monofractal time series, and a wide f ðaÞ indicates a multi-
fractal time series. To determine its analytical relationship
with a, we introduce Renyi exponent sðqÞ44,45 using the
equation

sðqÞ ¼ qHðqÞ þ 1: (6)

Applying the Legendre transformation46 gives us the
relationship between f ðaÞ and a

a ¼ s0ðqÞ and f ðaÞ ¼ qa% sðqÞ; (7)

or equivalently [using Eq. (6)],

a ¼ HðqÞ þ qH0ðqÞ and f ðaÞ ¼ q a% HðqÞ½ ) þ 1: (8)

IV. RESULTS

A. Long-term correlation in individual activity

To sort users by the activity level, we define Mi to be the
total records of a single user i (Mi ¼

PN
i¼1 xiðtÞ, where N is

the length of the series) and convert Mi into a logarithmic
scale, Li ¼ bðlnMiÞc. Here, the range of L is from 4 to 8 in
Movielens and from 4 to 12 in Netflix.

According to logarithmic activity levels, we first present
the distributions of inter-event times in Fig. 3, where the left
and right panels indicate Movielens and Netflix, respectively.
As shown in Fig. 3, both of them show fat tails, which sug-
gests the burstiness occurring in online viewing activity.47

FIG. 3. Inter-event time distribution at different activity levels. The left and
right panels indicate Movielens and Netflix, respectively. The dashed lines
are the guide for power-law distributions. The fat tails are found in inter-
event time distributions for both Movielens and Netflix, which suggests the
burstiness of online viewing activity.
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More concretely, for these users with lower activity levels
(e.g., L< 6), their inter-event times are not exactly power
law distributed. For example, in Fig. 4, the inter-event times
of users with activity levels L¼ 4 and L¼ 5 in Movielens
apparently follow exponential cut-off power-law distribu-
tions via the least squares estimating method, while for these
users with larger activity levels (e.g., L> 7), their distribu-
tions of inter-event times are the approximate power law.
Thus, the power-law distribution is not the only type to char-
acterize the fat tail of inter-event clustering (i.e., burstiness),
and this differs somewhat from the empirical data in human
communication29 and stock trading.48,49

Because the burstiness of online reviewing activity (or
fat tailed inter-event time distribution) potentially suggests
that the time series of records have long-term correlations,29

we use DFA to calculate the Hurst exponent in each time
series of a single user. Note that the least squares estimating
method is applied for the fitting trend, and the F-statistic test
confirms the significance of fitting results (see more in
Appendix B). These Hurst exponents are then scaled accord-
ing to the user activity level and averaged. Figure 5 shows
that the average Hurst exponents as a function of activity
levels are greater than 0.5, and they are not strictly restricted

by the order of DFA. Thus, it can be claimed that the long-
term correlations exist in these time series of records at the
individual level. It is also worthy to be noted that there is an
approximately positive relationship between the Hurst expo-
nent and the activity level both for Movielens and Netflix,
similar to that in the traded stock market and communication
activity.29,50,51 In addition, there is also a trivially different
extent of the long-term correlation between Movielens and
Netflix. We assume that this difference is to some extent
caused by diverse individual activity patterns in Movielens
and Netflix. The commercial website, Netflix, more easily
urges users to form the cluster of consecutively occurred
viewing actions and enhance long-term correlations.

We have found that both the long-term correlations and
fat-tailed inter-event time distribution exist in online viewing
activity from Netfilx and Movielens. To further analyze the
relationship between the long-term correlation and inter-
event time distribution, we shuffle the time series of records
but preserve the distribution of inter-event times for each
user. The procedure is shown as follows: (i) extract inter-
event times of each user; (ii) shuffle the extracted data; and
(iii) keep the first time stamp constant and rebuild the time
series of records using the shuffled data.

We reuse the DFA to obtain the Hurst exponents of the
new time series. Figure 5 shows that they differ only trivially
from those of original data, indicating that at the individual
level, the long-term correlations of time series of records are
associated with the fat-tailed distribution of the inter-event
times. Because the inter-event times are not strictly power-
law distributed, we cannot infer the long-term correlations
from a Levy correlation.29

B. Long-term correlation in community activity

The inter-event time distributions with respect to activ-
ity levels have a fat tail, but we still must determine whether
this property is maintained throughout the community (i.e.,
the entire system). Figure 6 shows the inter-event time distri-
butions of Movielens and Netflix at the communal level. It
can be seen that it is fitted by an exponential cut-off power
law distribution for Movielens and the approximate power
law one for Netflix, which suggests that the fat tail is generic
to the system. Furthermore, we aggregate the records from
all users in the community, and investigate the resulting time
series to quantify the long-term correlations. Figure 7 shows
that although the fluctuation functions are somewhat affected
by the oscillations associated with periodic patterns of

FIG. 4. Inter-event time distributions of users in Movielens whose activity
levels are L¼ 4 and L¼ 5, respectively. Compared with exact power-law
distributions, they can be fitted by exponential cut-off power-law distribu-
tions via the least squares estimating method.

FIG. 5. Average Hurst exponents as a function of the activity level for
Movielens and Netflix. The results obtained from the original time series of
records and shuffled ones are plotted with green circles and blue squares,
respectively. With the increase in activity levels, the long-term correlations
become stronger. Moreover, the trivial difference between them reveals the
long-term correlations having a potential relation with fat-tailed inter-event
time distribution. The error bar is the deviation of Hurst exponents from
users at the same activity level.

FIG. 6. Inter-event time distribution at the communal level. The power-law
with an exponential cut-off relation behaves in Movielens, while the power-
law relation behaves in Netflix. This result shows that the burstiness is
generic to the system.
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activity, the Hurst exponents we obtain from 1-order and 2-
order DFA are robust and approximately 0.9 and 1 for
Movielens and Netflix, respectively. They exhibit strong long-
term correlations and are also associated with a time series
spectrum with 1

f scaling, suggesting that there is self-organized
criticality in the system. We shuffle these time series of the
entire community to preserve the distribution of inter-event
times and find that the Hurst exponents reduce to 0.5, which
suggests that the long-term systemic correlation is due to the
interdependence (which Ref. 29 calls “true correlation”).

C. Multifractality in community activity

The long-term correlations in online viewing activity of
separate individuals and of the entire community indicate the
presence of fractality, but little research has analyzed the type
of fractality involved or its origin. The results of DFA at the
community level fluctuating at double logarithmic coordina-
tion indicate possible multifractality (see Fig. 7). Inspired by
Ref. 34, we introduce MFDFA and analyze the datasets to
determine whether the fractality is monofractal or multifractal.

Using 1-order MFDFA, we fix a certain value of q and
fit FqðsÞ and s at double logarithmic coordination with the
least squares estimating method to obtain the value of gener-
alized Hurts exponent H(q). Herein, we set q in an interval
ð0; 10) with a step length 0.1. Figures 8(a) and 8(b) show
H(q) as a function of q via 1-order MFDFA for Movielens
and Netflix, respectively. We found that both for Movielens
and Netflix, H(q) decreases as q increases, i.e., the depen-
dence between H(q) and q suggests multifractality in com-
munity activity.

To determine the origin of such multifractality, we ran-
domly shuffle the time series of records at the communal level
by preserving the inter-event time distribution and applying 1-
order MFDFA once again on the shuffled one. Figures 8(c)
and 8(d) show that although H(q) for both Movielens and
Netflix is clearly smaller than the original, the dependence
between H(q) and q remains and multifractality is still present.

Much more legible results describing the extent of mul-
tifractality in online viewing activity for Movielens and
Netflix are characterized by the singularity spectrum f ðaÞ, as
shown in Figs. 8(e) and 8(f). Note that the horizon span of
f ðaÞ both for the original and the shuffled time series is trivi-
ally different, which is suggested by the difference of the

asymptotical values of H(q), Da ¼ 1:38 (original) and Da
¼ 1:05 (shuffled) for Movielens and Da ¼ 0:78 (original)
and Da ¼ 0:64 (shuffled) for Netflix. The more large
changes happen to the values of a. We derive these results
using the relationship between H(q) and q described in Refs.
52 and 53. It confirms the dependence between H(q) and q
and also suggests that the multifractality in community activ-
ity is not solely induced by the long-term correlations (see in
Appendix C).

Our analysis leads us to assume that the multifractality
in online viewing activity from Netflix and Movielens is
induced by the combined effect of the long-term correlations
and the broad PDF of inter-event times. To verify our
hypothesis, we analyze the multifractality of three synthetic
time series that are analogous to real time series. The first is
a random series that obeys a power-law distribution
(y ' x%2), the second is a monofractal series with strong
long-term correlations (H¼ 0.9), and the third is a combina-
tion of the first two (see Appendix A). We also obtain the
corresponding shuffled time series and use MFDFA to derive
the multifractality (see Fig. 9).

Figures 9(a) and 9(d) show that in the random series that
obeys a power-law distribution, there is a remarkable depen-
dence between H(q) and q (there is a broad singularity spec-
trum), which indicates multifractality dominated by the
power-law distribution. They also show that the absence of
long-term correlations causes an overlap in results between
the original and shuffled time series. Figures 9(b) and 9(e)
show that H(q) and q are independent (there is a narrow sin-
gularity spectrum), which indicates the monofractility in the
monofractal series with strong long-term correlations. The
long-term correlations cause H(q) to change from 0.9 to 0.5.
Figures 9(c) and 9(f) show that in the time series that com-
bines the other two, the significant horizon span of the singu-
larity spectrum and the change in H(q) produce results that
are similar to empirical findings. Our analysis strongly indi-
cates that the multifractality in online viewing activity is

FIG. 7. The results of 1-order and 2-order DFA for Movielens and Netflix at
the communal level. The Hurst exponents of the original time series of
records obtained via the least squares estimating method are 0.9 and 1 in
Movielens and Netflix, respectively. When they are randomly shuffled, the
Hurst exponents approximately reduce to 0.5. This result demonstrates that
strongly long-term correlations exist in both Movielens and Netflix. Note
that solid and dashed lines indicate the original time series of records and
shuffled one, respectively.

FIG. 8. Relationship between H(q) and q deriving from 1-order MFDFA
(a)–(d) and the corresponding singularity spectrum (e) and (f), where (a) and
(b) are obtained from the original time series, while (c) and (d) are obtained
from the shuffled ones. Although the multifractality remains, there are sig-
nificant changes that happened to the values of H and a. This result reveals
the existence of multifractality for Netflix and Movielens and its formation
due to the combined effect of the long-term correlations and the broad PDF
of inter-event times.
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caused by the broad PDF of inter-event times and the pres-
ence of long-term correlations.

V. CONCLUSION

We have analyzed the datasets of online viewing activ-
ity from Movielens and Netflix at both the individual and
communal levels. At the individual level, we find fat-tailed
inter-event time distributions and the dependence on long-
term correlations. Our analytical results are not exact, as in
Ref. 29 because the inter-event time distributions are
restricted to the activity levels and not strictly the power law.
At the communal level, we find properties that are similar to
those at the individual level, but here the long-term correla-
tions are caused by the interdependence of community activ-
ity. Furthermore, the long-term correlations characterized by
the Hurst exponent derived from DFA imply the presence of
fractality in online viewing activity.

To determine the type of such fractality and its origin, we
apply MFDFA and find multifractality at the communal level.
We hypothesize that this is caused by the combined effect of
the broad PDF of inter-event times and the long-term correla-
tions. We verify this by analyzing three types of synthetic time
series that have at least properties in common with a real time
series. Thus, we can conclude that a dual-induced multifractal-
ity exists in online viewing activity, which enlarges this generic
property commonly found in human activity from physical
space to cyberspace. Nevertheless, it should not be ignored that
an appropriate model is lacking for explaining the mechanism
of reproducing such time series. According to Refs. 54–56, the
time series of online viewing activity can be decomposed into
magnitude and sign series, and by systematically analyzing
them, we may obtain more dynamical properties to explain the
mechanism of multifractality in online viewing activity. We
hope that future work will solve these problems.
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APPENDIX A: CONSTRUCTION OF SYNTHETIC TIME
SERIES

To construct the three synthetic time series, we first syn-
thesize a random time series x(t) that obeys a power-law dis-
tribution pðxÞ ¼ bx%ð1þbÞ. We use the central limit theorem
and generate it to be

xðtÞ ¼ ðrðtÞ=bÞ%
1

1þb; (A1)

where r(t) is a time series sampled from a uniform distribu-
tion U(0, 1). Here, we set b ¼ 1, which causes x(t) to obey a
power-law distribution pðxÞ ¼ x%2.

We then apply the Flourier filtering method proposed in
Ref. 57 to generate a monofractal time series with long-term
correlations. The procedure is as follows:

(i) Generate a 1-dimensional random time series Ui that
follows a Gaussian distribution and derive its Fourier
transform coefficients Uq.

(ii) Obtain Sq from the Fourier transformation of Cl,
where Cl ¼ hliliþli ¼ ð1þ l2Þ%c=2.

(iii) Calculate Nq ¼ ½Sq)1=2Uq.
(iv) Derive the time series Nr using the inverse Fourier

transformation of Nq. In this way, we transform Nr

using Nr ¼ Nr % minðNrÞ þ 1.

We combine these two time series and synthesize the
third time series

XðtÞ ¼ ðNrðtÞ=bÞ%
1

1þb; (A2)

where Nr is the time series with long-term correlations.

APPENDIX B: F-TEST FOR LINEAR REGRESSION

We first show the fluctuation functions of DFA at a log-
log scale from two users. Figure 10 shows the power-law rela-
tions of fluctuation functions across multiple scales for both
Movielens and Netflix. We estimate the scale exponents of
long-term correlations via a fitting linear relationship between
log ðFðsÞÞ and log ðsÞ. Then, we test the linear relationship to
determine whether the linear relationship between two varia-
bles x and y is significant (i.e., y ¼ b0 þ b1xþ !). We do this
by testing the following hypothesis and its alternative:

H0: b1 ¼ 0, the relationship between these two variables is
not significant.
H1: b1 6¼ 0, the relationship between these two variables is
significant.

In the F-test, we introduce F to measure the strength of
the connection between x and y, which is defined as

F ¼

X
ðŷi % "yÞ2

1

n% 2

X
ðyi % ŷiÞ2

' Fð1; n% 2Þ; (B1)

where ŷi is derived from the equation y ¼ b0 þ b1x; "y is the
mean value of yi, and xi, and yi are the real data.

FIG. 9. Relationship between H(q) and q obtained from 1-order MFDFA
(a)–(c) and the corresponding singularity spectrum (d)–(f) of three types of
synthetic time series, where the pink square and blue circle indicate the
results of original and shuffled time series, respectively. Note that the first
column shows a synthetic time series obeying a power law distribution
y ' x%2, the second one describes a synthetic time series whose Hurst expo-
nent is 0.9, and the third one represents a synthetic time series that combines
the properties of the former two time series. Through carefully analyzing
them, we can find that only the third time series gives similar results to
empirical findings.
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Using each F-value, we can derive the P-value for the dis-
tribution Fð1; n% 2Þ. At confidence level a (here, a ¼ 0:05),
when P < a, we accept H1 and thus accept the linear relation-
ship. When P > a, we reject H1 and thus reject the linear rela-
tionship. We compute the P value for each user to fit the
relationship between log ðFðsÞÞ and log ðsÞ derived from the
DFA. Figure 11 shows the P-value distribution that indicates a
strong linear correlation between log ðFðsÞÞ and log ðsÞ for
most users in both the original data and the shuffled data. This
confirms the reliability of the results shown in Fig. 5.

APPENDIX C: SURROGATE METHODS FOR
ANALYZING MULTIFRACTALITY

As mentioned above, there are two key factors that
affect the multifractality in a time series of records: (i) long-
term correlations in the fluctuations and (ii) a broad PDF of
inter-event times. When we analyze the contributions of

these two factors affecting multifractality separately, we gen-
erate many surrogate time series through shuffling and phase
randomization.58 The shuffling procedure preserves the PDF
of the time series of records but destroys any long-term cor-
relations. Thus, we randomly sort the entire time series at
least 10 times. Fourier phase randomization maintains the
long-term correlations but disrupts the broad PDF of inter-
event times.59,60

Figures 12 and 13 show multifractality generated by
shuffling and Fourier phase randomization. Figure 12 shows
that when using only Fourier phase randomization to destroy
the broad PDF of inter-event times, the long-term correla-
tions remain in the surrogate data, but the multifractality is

FIG. 10. The fluctuation functions of DFA at a log-log scale from two users.
They clearly show the power-law relation across multiple scales for both
Movielens and Netflix. For each user, the power-law relations obtained from
DFA-1 and DFA-2 show approximately the same trend across multiple
scales, which suggest that the scaling exponents of long-term correlations
are not sensitive to the order of DFA.

FIG. 11. The distribution of users’ P-values for original data and corre-
sponding shuffled one. It shows the strongly linear correlation between
log ðFðsÞÞ and log ðsÞ for most users, which demonstrates the reliability of
the results in Fig.4.

FIG. 12. Relationship between H(q) and q deriving from 1-order MFDFA
and the corresponding singularity spectrum. The pink circle indicates the
original data, while the blue square represents the surrogate data produced
by only Fourier phase randomization. When the broad PDF of inter-event
times is disrupted, the long-term correlations still lie in the surrogate data,
but the multifractality is dramatically weakened.

FIG. 13. Relationship between H(q) and q deriving from 1-order MFDFA
and the corresponding singularity spectrum. The pink circle indicates the
original data, while the blue square represents the surrogate data produced
by both shuffling and Fourier phase randomization. When the broad PDF of
both inter-event times and long-term correlations are missed, H(q) is close
to 0.5 and has a trivial relationship with q. Moreover, the singularity spec-
trum also has a very narrow horizon span.
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weakened. Figure 13 shows that when applying both shuf-
fling and Fourier phase randomization to reduce long-term
correlations and destroy the broad PDF of inter-event times,
the H(q) value is close to 0.5 and has a trivial relationship
with q, and the horizon of the singularity spectrum is nar-
rowed. These results verify the presence of dual-induced
multifractality in online viewing activity.
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