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Financial markets exhibit a complex hierarchy among different processes, e.g. a trading time
marks the initiation of a trade, and a trade triggers a price change. High-frequency trading
data arrive at random times. By combining stochastic and agent-based approaches, we
develop a model for trading time, trading volume, and price changes. We generate intertrade
time (time between successive trades) Ar;, and the number of shares traded ¢(Atr;) as two
independent but power-law autocorrelated processes, where At; is subordinated to ¢(At;), and
At; is more strongly correlated than ¢(At;). These two power-law autocorrelated processes are
responsible for the emergence of strong power-law correlations in (a) the total number of
shares traded N(AT) and (b) the share volume Qx7 calculated as the sum of the number of
shares ¢; traded in a fixed time interval A7. We find that even though ¢(At,) is weakly power-
law correlated, due to strong power-law correlations in A¢; the (integrated) share volume
O(AT) = Z,A:T] q(At;) exhibits strong long-range power-law correlations. We propose that
intertrade times and bid—ask price changes share the same volatility mechanism, yielding the
power-law autocorrelations in absolute values of price change and power-law tails in the
distribution of price changes. The model generates the log-linear functional relationship
between the average bid—ask spread (S),7 and the number of trade occurrences Nz, and
between (S)a7r and Qa7. We find that both results agree with empirical findings.
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1. Introduction

The study of price dynamics is the study of price changes
(Clark 1973, Schwert 1989, Farmer et al. 2004, Gillemot
et al. 2006). Empirical evidence indicates that extremely
complex trading activities affect price changes. In one of
the first attempts to model this activity, Clark (1973) uses
a discrete stochastic process ¢; to represent times at which
trading occurs. Upon this stochastic process, a new
stochastic process X(¢,) is defined representing, for exam-
ple, a stock price at time #;. The process ¢; is said to be
subordinated to X(z,). Clearly, how quickly prices respond
to trades occurring at #; determines market liquidity, and
liquidity is related to the ease with which securities are
bought and sold without substantial price changes. To
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emphasize the importance of subordinate stochastic
processes, Riccaboni er al. (2008) recently proposed a
subordinate stochastic process for the model of propor-
tional growth.

There are two main approaches to model price
dynamics: the stochastic approach (Simon 1955, Clark
1973, Fu et al. 2005) and an agent-based approach
(Maslov 2000, Maslov and Mills 2000, Kullmann and
Kertész 2001, Slanina 2001, Scalas er al. 2006, Scalas
2006). These two approaches we can understand, for
example, by comparing modeling long-range correlations
in price changes, AS,. In the stochastic approach, one
models these correlations by assuming that AS, depends
on its previous values AS,=>"; ¢;AS, ;. The choice for
statistical weights a; determines, first, whether we want
long- or short-range dependence in the autocorrelations
of AS,, and, second, which functional dependence we
want to obtain for the autocorrelation function.
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The agent-based approach models security market micro-
structure starting from different traders (agents) and
defining the trading rules among the agents, which, for
example, may finally yield long-range correlations in price
changes. Several papers propose models for artificial
markets populated with heterogeneous agents endowed
with learning and optimization capabilities (Palmer et al.
1994, Levy et al. 1994, Lux and Marchesi 1999, Raberto
et al. 2001, Eisler et al. 2009, Ponta et al. 2011).

Here we combine stochastic and agent-based
approaches to create a hybrid price dynamics model to
simulate empirical evidence reported on bid—ask spread,
stock price autocorrelations, and trading volume. In part,
we follow the subordinated stochastic process proposed by
Clark (1973). We first define a process for trading times ¢,.
When trading occurs, a package of stocks (volume)
denoted by ¢; changes owner. Thus, in terms of the
Clark (1973) process, in our model ¢; is subordinated to the
number of shares traded ¢(z;). However, in contrast to
Clark (1973), we define both #; and ¢(t;) as long-range
correlated processes. When trading occurs it triggers a
price change. In our model a co-movement between
intertrade time, defined as Ar=t¢,—1t;_;, and volatility,
defined as the absolute value of the price change, exists
because the process controlling Ar also controls the bid—
ask spread (the difference between ask and bid). The
model generates power-law autocorrelations in absolute
returns (Ding et al. 1993, Cizeau et al. 1997, Liu et al. 1997,
1999) and power-law tails in distributions of returns (Lux
1996, Gopikrishnan et al. 1999, Plerou et al. 1999). It also
yields a log-linear functional relationship between the
average bid—ask spread (S),7 and the number of trades
Nar, and between (S),7and the share volume traded Q7.

2. Empirical evidence

When ink particles diffuse in water, the collision of each
ink particle with numerous water molecules causes it to
move in a random walk pattern (Chandrasekhar 1943).
The distance covered by the particle after a time AT is
Xar = ZINZA{ Ax; where X7 is Gaussian distributed and
short-range correlated, N7 denotes the number of
collisions during the interval AT, and Ax; is the change
of position of the ink particle after collision. A more
complex variation of the classic diffusion problem exists
in finance, with intertrade times—which are the time
intervals between two consecutive trades in the market.
First, intertrade times are not Gaussian uncorrelated, but
are power-law correlated variables (Ivanov et al. 2004).
Second, financial markets are characterized by many
complex hierarchies among different processes, and the
number of trading times is only one variable among
others such as the number of shares traded and the share
price. The hierarchy is roughly the following: the trading
time marks the initiation of the trade, and then a trade
triggers the price to change. This implies that in explain-
ing market activities we must consider not a univariate
model, but rather a multivariate model where different

time series are subordinated and frequently power-law
autocorrelated.

(1) Empirical evidence in bid—ask spread: The ability to
buy at a low price and sell at a high price is the
main compensation to traders for the risk they
incur (Cohen et al. 1981, Glosten and Milgrom
1985, Schwartz 1988, Admati and Pfleiderer 1988,
George et al. 1991, Brock and Kleidon 1992,
MclInish and Wood 1992, Plerou et al. 2005, Lillo
et al. 2005, Wyart et al. 2008, Ponzi et al. 2009).
The trader sells at the ‘ask’ (offer) price A and
buys at a lower ‘bid’ price B, where the difference
is the bid—ask spread. Schwartz (1988) identifies
four indicators that determine bid—ask spreads:
activity, risk, information, and competition. More
specifically,

(a) greater trading activity (shorter trading times)
can lead to lower spreads since the higher the
level of trading, the greater the chance that
buy and sell orders will tend to balance during
a trading period;

(b) there is a direct relationship between the level
of risk and spreads;

(c) there is a direct relationship between spreads
and the amount of information coming to the
market—Ilarge trades convey more informa-
tion than small trades; and

(d) There is an inverse relationship between
spreads and the level of competition.

Competition varies with volume—the number of
traders is more active as volume levels increase. In
addition, analysing NYSE stocks, Mclnish and
Wood (1992) show that the mean of (ask — bid)/
(ask + bid)/2 for each minute of the trading day
shows that spreads are relatively high at minute
three, decline at a decreasing rate until minute 293
and then increase at an increasing rate until the
close of trading. Thus, the plot of spreads over the
trading day exhibits a crude reverse J-shaped
pattern. By studying the bid—ask quotations and
transactions information during 1988, Chung and
Charoenwong (1998) find that spreads are nega-
tively associated with the number of exchange
listings, share price, and firm size. Different
models are proposed to explain bid—ask spread
properties (Cohen er al. 1981, Admati and
Pfleiderer 1988, George et al. 1991, Brock and
Kleidon 1992, Maslov 2000, Maslov and Mills
2000, Kullmann and Kertész 2001, Slanina 2001,
Scalas et al. 2000).

(i) Empirical evidence in stock price correlations:
Analysing the daily recorded SP500 financial
index, Ding et al. (1993) report a power-law long
memory in autocorrelations of absolute returns.
Podobnik ef al. (2010a) report power-law cross-
correlations of absolute returns between 1340
members of NYSE. Wang e al. (2011) report
power-law cross-correlations of absolute returns
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between world-wide indices. By analysing the
high-frequency S&P500 index and individual
U.S. firms, Liu et al. (1999) find a crossover in
correlations of absolute returns between two
power-law regimes at approximately 1.5 days.
Analysis accomplished on the time series of time
intervals between consecutive S&P500 stock trades
of different US firms revealed the same crossover
between power-law regimes, implying a parallel
with the crossover in the scaling of absolute price
returns (Ivanov et al. 2004). Engle (2000) reports a
Weibull distribution in IBM intertrade times.

(ii1) Empirical evidence in trading volume: By analysing
a database documenting every transaction for
1000 U.S. stocks for the two-year period 1994—
1995, Plerou et al. (2000) quantify the relation
between trading activity measured by the number
of transactions Ny, and the price change Gy, for a
given stock, over a time interval [z, Af]. Denoting
by Wit the variance of the price changes for all
transactions in Az, it was found that the power-law
tails of P(Gp,) are due to P(W,,) and the long-
range correlations in |Gy,| are due to Nu,. For the
1000 stocks analysed, the cumulative distribution
of N, displays power-law behavior with a mean
value 3.40 £ 0.2, close to the exponent of the cubic
law found in the tails of P(G,,) (Gopikrishnan
et al. 1999). For the number of shares traded Qa,,
the distribution P(Q,,) displays a power-law
decay P(QOa,) x (Oa)” '™, where a=1.7+0.1
(Gopikrishnan et al. 2000). Also, the long-range
correlations in Qp, are largely due to those of Ny;.
The results are consistent with the interpretation
that the large equal-time correlations between Qn;
and the absolute value of price change |Gx,| are
largely due to N,,. However, expressing Qa, as
the sum of the number of shares traded for all
transactions, Qa,=> ¢;, Gopikrishnan er al.
(2000) and Plerou et al. (2001) report only weak
correlations in ¢;. Recently, based on the detrend-
ing cross-correlations analysis of Podobnik and
Stanley (2008) Podobnik et al. (2009a) and
Horvatic et al. (2011), Podobnik et al. (2009b)
report long-range cross-correlations between vol-
atility and the absolute values of volume changes.
They also report the existence of a cubic law in
trading volume changes, supporting the intriguing
possibility that the cubic law in price changes has
its origin in trading activities.

3. Model

Our goal is to construct a common framework for
modeling trading time, trading volume, and price
changes. To test our model, we select Exxon, a stock
typical of the U.S. market and, according to the Trades
and Quotes database (NYSE, New York, 1993), one of
the most traded U.S. companies during the four-year
period January 1993-December 1996. Our model is

comprised of three stages: (i) we stochastically generate
the duration or intertrade times (the interval between two
trading times) Ar; (ii) at each Af; we stochastically
generate the number of shares traded ¢(At;); and (iii) we
propose a mechanism that explains how both Az; and
q(At,) affect price change.

(1)

(if)

We first define trading at times indexed by a set of
numbers 7, t», 13, . ... These numbers are a realiza-
tion of a discrete stochastic process with posi-
tive increments (since #;>0), implying that ¢, <
t,<tz---. In order to reproduce long-range power-
law correlations in A¢; as found for the three-year
period January 1993—-December 1996 (Ivanov et al.
2004), we model At; using a fractionally integrated
autoregressive conditional duration (FIACD)
(Engle and Russell 1998, Jasiak 1998),

Ati = i p1)eis (1)

where ¢; is independent and identically distributed
(i.i.d.) with an exponential probability distribu-
tion (a; exp(—aj€)) (i.e. with one free parameter
a;) that is an approximation of the Weibull
distribution found for U.S. firms (Engle 2000,
Ivanov et al. 2004), {(p;) is the expectation of
duration i (Jasiak 1998), and At; at each moment ¢;
depends only on its previous values. The time
series {At;} of equation (1) in figure 1(a) is
generated using the fractional parameter
p1=0.4, which is used to reproduce the power-
law scaling in Ar (figure 1(b)). To quantify the
power-law memory, we use detrended fluctuation
analysis (DFA) (Peng et al. 1994). The fractional
parameter p;=0.4 corresponds to the DFA
exponent ¢ =0.9 found for the Exxon company
for the three-year period (Ivanov et al. 2004). The
free parameter a; of the (i.i.d.) exponential [«
exp(—a; €)] in equation (1) can be estimated from
the average intertrade times. When a trade occurs
at t;, a number of shares g(A¢;) changes ownership.
We next model a process for the time series g(At;)
for the same three-year period. For ¢(At;) of
Exxon company trades, we obtain the DFA
exponent o =0.62, which implies the presence of
weak but long-range power-law correlations. We
assume that ¢(Az;) depends not on previous At
values, but on previous ¢ values. Motivated by
Clark’s subordinated process (Clark 1973), we
assume that Az; is subordinate not to share price as
in Clark (1973), but to ¢(At;), and model g(At;)
using a fractionally integrated moving average
process (FIARCH) (Ding et al. 1993),

q(At) = oi(p)e;. 2

Here, 0; =Y 1" au(02)q(Ati-,) and a,I(n— po)/
[C(—p)T(1 +n)] are statistical weights where T’
denotes the Gamma function, p,€(0,0.5) is a
single free parameter (Ding et al. 1993), and € is
i.1.d., for simplicity taken from an exponential
distribution a, exp(—a»€’), the parameter of which
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Figure 1. Model assumptions. Modeling power-law correlations in intratrading time and number of shares traded in the Exxon
corporation using the stochastic process of equation (1) with fractional parameter p; = 0.4, and the stochastic process of equation
(2) with fractional parameter p; =0.12. (a) Intertrade time At of equation (1). (b) For A¢, detrended fluctuation function F(r) versus
time lag n yields strong long-range autocorrelations in Az. (c¢) Number of shares traded ¢(At,) of equation (2). (d) For ¢(At,), we find
weak long-range power-law autocorrelations.

(ay) can be estimated to give the average number
of shares traded. Since there is a simple relation
between the DFA exponent « and the FIARCH
parameter p, (¢ =0.54+ p,), from «=0.62 calcu-
lated for power-law correlations in ¢; we obtain
0>=0.12.

Thus we model At; and ¢(At,) as two mutually
independent but individually autocorrelated
power-law processes in which the correlations in
At; are much stronger than those in g(At;). There
are four parameters at this stage: p; and p,,
responsible for power-law scaling in intertrade
times At,;, the number of shares g(At;), and two
parameters, a; and a,, corresponding to the distri-
butions of i.i.d. variables in equations (1) and (2).

Figure 2(a) and (b) show that, in equations (1)
and (2), these two power-law scalings are respon-
sible for the strong power-law correlations in the
sum of the number of shares ¢; traded (the trading
volume) in a fixed time interval AT (where
AT> (A1),

Nar

O(AT) = Z qi(AL), (3)

i=1

where N7 is the total number of trades within a
time interval AT = Y"¥7 Az. Thus, even though
the time series of the individual number of shares
traded ¢q(At;) is weakly power-law correlated,
because of strong power-law correlations in the
intertrade time At; the integrated trading volume
Q(AT) exhibits strong long-range power-law cor-
relations, which were found empirically by

Gopikrishnan et al. (2000). Figure 2(c) and (d)
show that equations (1) and (2) also generate
long-range power-law autocorrelations in the total
number of shares traded in the fixed time interval
AT, where AT > (At).

Trading strategies play a key role in price
dynamics, and the literature on this topic is huge.
Diamond and Verrecchia (1987) model trading
activities by assuming that, at the beginning of a
trading day, traders are greeted with news that is
either good or bad, and that long durations are
likely to be associated with news that is bad.
Bagehot (1971) assumes that informed traders
possess non-public information that allows them
to better estimate a future security price than
uninformed traders. Easley and O’Hara (1987)
assume that informed traders trade only when they
have information and thus variations in trading
rates are associated with the changing number of
informed traders. In the model proposed by Bak
et al. (1997), buyers and sellers are represented by
particles subject to a reaction—diffusion process.
According to the Maslov and Mills (2000) model,
traders can either buy or sell stock at the market
price or place a limit order to automatically buy or
sell a particular amount of stock. In this case,
traders are allowed to trade only one unit of stock
(¢;=1) in each transaction. A mean-field variant
of the Maslov and Mills (2000) model proposed by
Slanina is found to exhibit a power-law tail with
exponent 2 (Slanina 2001). Other models with non-
trivial agent strategies have also been proposed
(Takayasu et al. 1992, Caldarelli et al. 1997,
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Figure 2. Model outcomes. Modeling power-law correlations in share volume Q(AT) and number of trades (transactions) Nar
within AT using the stochastic process of equation (1) with fractional parameter p; = 0.4, and the stochastic process of equation (2)
with fractional parameter p, =0.12 (a) Share volume Q(A¢). (b) For Q(At), detrended fluctuation function F(n) versus time lag n
yields strong long-range power-law autocorrelations in Az. (¢) Number of trades Na7. For Nar, detrended fluctuation function F(n)
versus time lag n yields strong long-range power-law autocorrelations.

Challet and Zhang 1997, Cont and Bouchaud
2000).

We now simplify the trading process, but at a
level that can still provide us with the scaling
properties found in price and trading dynamics. In
this model, bid and ask prices are stochastically
generated at each time coordinate. We do this in
response to the Gopikrishnan ez a/. (2000) finding
that the correlations in the absolute values of price
changes are largely due to correlations in trading
volume. Engle and Russell (1998) report evidence
of co-movements between intertrade time and
volatility—the absolute value of price changes.
Similarly, Ivanov et al. (2004) quantify this
co-movement finding as an analogy in the power-
law scaling between the absolute value of price
changes and the time intervals between consecutive
stock trades. Finally, for the 116 stocks analysed,
Plerou et al. (2005) report that the average bid—ask
spread S is characterized by a cumulative distri-
bution that decays as a cubic power law. These
results clearly suggest a common origin for price
change dynamics and trading time dynamics. In
our model, at each trading time a single trader
trades stock while other traders put either bid or
ask prices. We therefore suggest the following
process for generating the trader’s (agents’) ask
and bid price changes, respectively:

AS* = Yi(p1)e], “4)

AS" = —yr(p)e], (5)

(iif)

where ,(d)—the volatility process shown in
equation (1)—is responsible for the long memory
in intertrade times, and €/ is from an exponential
function. Thus in our model intertrade times and
bid—ask price changes share the same volatility
mechanism. In our simulations we keep the
number of bid and ask traders equal and constant.
Clearly this is an approximation, since the number
of bid and ask traders changes over time and at
certain times, e.g. during market crashes, substan-
tially increases.

To illustrate how trading influences price changes,
consider a simple example with only two ask
traders. Suppose trader A puts an ask order with
3000 shares and requires that its price be at least
$100 per share. Trader B puts an ask order with
6000 shares and requires that the price exceed $110
per share. Trader C decides to buy the cheapest
6000 shares. Clearly, trader C can buy 3000 shares
from trader A at $100 per share and 3000 shares
from trader B at $110 per share. We assume that
for the trader who trades shares, the probability of
a bid offer is equal to the probability of an ask
offer, and this assumption ensures that there will
be no serial correlations (figure 3(b)). Based on
this trading decision, using the stochastic process
of equation (1) to generate intertrade time Az;, the
stochastic process of equation (2) to generate the
number of shares traded at Ar, ¢i{At;), and
the choice for bid and ask price changes in
equations (4) and (5), we generate a price time
series (see figure 3(a)). Using the detrended
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time lag n

Figure 3. Model outcomes. Modeling power-law autocorrela-
tions in absolute values of price change using the stochastic
process of equation (1) with fractional parameter p; =0.4, and
the stochastic process of equation (2) with fractional parameter
p>=0.12 as in figures 1 and 2. (a) Time series of price for
100,000 time steps with average intertrade time (Af)=0.137.
(b) Detrended fluctuation function F(n) versus time lag n yields
strong long-range power-law autocorrelations. We also show
that there are no correlations in price changes.
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Figure 4. Model outcomes. Zipf plot with power-law tails in
absolute values of price changes using the stochastic process of
equation (1) with fractional parameter p;=0.4, and the
stochastic process of equation (2) with fractional parameter
0>=0.12 as in figures 1 and 2.

fluctuation function F(n), in figure 3(b) we show
that the absolute values of price changes exhibit
strong power-law autocorrelations.

For power-law distributed variables with cumu-
lative distribution P(s>x)~ x~¢, the Zipf plot of
size s vs. rank R usually exhibits a power-law
scaling regime with a scaling exponent ¢ for a large
range of R (Stanley et al. 1995, Podobnik et al.
2010b, 2011), ¢=1/¢. Using the Zipf ranking
approach, in figure 4 we show that the tails of the
distribution of absolute values of price change
exhibit a power law. The Zipf exponent corre-
sponds to the scaling exponent (¢=2.
Using different parameters and different i.i.d.

distributions in equations (1), (2), (4), and (5), it
is clear that we can eventually obtain an exponent

corresponding to a cubic law (Gopikrishnan et al.
1999).

Using quote data for the 116 most frequently traded
stocks on the New York Stock Exchange over the two-
year period 1994-1995, Plerou et al. (2005) analyse the
relationship between the bid-ask spread and other
indicators of liquidity such as the number of trades
occurring N7, and the share volume traded Qa7 They
found S o< In No7 and SocIn Qa7 They also examined
the relationship between the spread expectation condi-
tioned by the time interval between trades. They found
that, as Ar increases, the bid—ask spread decreases, and
the functional relationship is approximately (s)a, x
—InA¢. In order to reproduce the last finding and to
keep the rest of the findings, we modify the bid—ask
process of equations (4) and (5), which gives the propor-
tional and not the reciprocal dependence between the
spread and the intertrade time interval. Then we generate
the trader’s (agents’) ask price changes,

AS* = (Yi(p1) e, (6)

AS" = —(Wi(p1)) V€], (7

where >0 and € are explained in equations (4) and (5).
In figure 5(a) and (b) for y =0.25 we show the log-linear
functional relationship between the average of the spread
(S)ar and the number of trades occurring Npz, and
between (S)a7 and the total share volume traded Qa7
and both agree with empirical findings. Since the average
intertrade time interval Ar can be thought of as a
reciprocal of Na7, the model accurately gives the the
reciprocal dependence between the spread and the
intertrade time interval.

We have proposed a stochastic process that may offer a
guide to modeling the microstructural dynamics of
spreads, returns, volume ¢(At;), and volatility. It gives
the statistical properties of the intertrade time interval Az,
the bid-ask spread, and the volatility, all in good
agreement with empirical findings. We model Az; and
q(At;) as two mutually independent but individually
autocorrelated power-law processes in which the correla-
tions in At; are much stronger than those in ¢(At,). There
are three exponentially distributed i.i.d. processes in
equations (1) and (2) and and (6) and (7), where the
parameters @; and a, defined in equations (1) and (2) can
be estimated to fit the average intertrade times and the
average number of shares traded, respectively. The
fractional parameters p; and p, in equations (1) and (2)
can be estimated to fit the scaling in the autocorrelations
of Ar and ¢(At), respectively. The parameter y in
equations (6) and (7) controls the power-law exponent
and the strength of the autocorrelations in absolute values
of price changes. The larger y, the smaller the exponent
for the power-law tails. We believe that subordinated
processes with long-range correlations have a broad range
of potential applications.
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Figure 5. Model outcomes for the stochastic process of equation (1) with fractional parameter p; = 0.4, and the stochastic process of
equation (2) with fractional parameter p, =0.12 as in figures 1 and 2 and equations (6) and (7) with y =0.25. (a) Average spread S
versus share volume. (b) Average spread versus number of transactions for a given AT. Both exhibit log-linear functional

dependence in agreement with empirical findings.
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