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Abstract The quadratic assignment problem, QAP, is one of the most difficult of all com-
binatorial optimization problems. Here, we use an abbreviated application of the statistical
mechanics replica method to study the asymptotic behavior of instances in which the en-
tries of at least one of the two matrices that specify the problem are chosen from a random
distribution P . Surprisingly, the QAP has not been studied before using the replica method
despite the fact that the QAP was first proposed over 50 years ago and the replica method
was developed over 30 years ago. We find simple forms for Cmin and Cmax, the costs of the
minimal and maximum solutions respectively. Notable features of our results are the sym-
metry of the results for Cmin and Cmax and their dependence on P only through its mean and
standard deviation, independent of the details of P .

Keywords Quadratic assignment problem · Replica method

1 Introduction

Optimal assignment of classes to classrooms [11], design of DNA microarrays [9], cross
species gene analysis [19], creation of hospital layouts [13], and assignment of components
to locations on circuit boards [26] are a few of the many problems which have been formu-
lated as a quadratic assignment problem (QAP). The QAP is a combinatorial optimization
problem first introduced by Koopmans and Beckmann [20]. It is NP-hard and is considered
to be one of the most difficult problems to be solved optimally. The problem was defined in
the following context: A set of N facilities are to be located at N locations. The quantity of
materials which flow between facilities i and j is Aij and the distance between locations i

and j is Bij . The problem is to assign to each location a single facility so as to minimize
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(or maximize) the cost

C =
N∑

i=1

N∑

j=1

AijBp(i)p(j), (1)

where p(i) represents the location to which i is assigned.
In addition to being important in its own right, the QAP includes such other combinatorial

optimization problems as the traveling salesman problem and graph partitioning as special
cases. There is an extensive literature which addresses the QAP and is reviewed in [3, 6,
10, 17, 22, 24]. The QAP is exceedingly hard. With the exception of specially constructed
cases, optimal algorithms have solved only relatively small instances with N ≤ 36. Various
heuristic approaches have been developed and applied to problems typically of size N ≈ 100
or less. By contrast, a traveling salesman problem consisting of almost 25,000 towns in
Sweden has been solved exactly [4].

Our approach makes use of the replica method of statistical mechanics. The replica
method is notorious for the tremendously complicated calculations usually involved. How-
ever, we take advantage of the fact that if only the form of the solution is desired, the calcula-
tion is relatively straightforward. While we formulate the problem using the replica method,
we proceed only through the first step which consists of averaging over the disorder repre-
sented by the random matrix. At this point, using elementary arguments, we can infer the
form of the minimum and maximum costs.

We find that in the asymptotic limit in which the size of the problem N → ∞, the costs
of the minimum and maximum solutions, Cmin and Cmax respectively, are

Cmin = µAµBN2 − σAf (B)N3/2 (2)

Cmax = µAµBN2 + σAf (B)N3/2, (3)

where A is a matrix the elements of which are chosen from the random distribution P (Aij )

and the elements of B are arbitrary. Here µA and σA are the mean and standard deviations
of the distribution P (A); µB is the mean of the entries of B , and f is a function of B and N .
Equations (2) and (3) hold under the condition that both matrices are dense (have O(N2)

non-zero entries). Our goal below is to argue for the form of (2) and (3). We do not attempt
to determine the value of the functions f (B).

2 Relation to Previous Work

Previous work on asymptotic properties of random QAP instances has been generally limited
to the case in which the elements of both matrices are drawn from random (usually uniform)
distributions [1, 2, 5, 7, 8, 14, 21, 25]. Here we consider the properties of solutions to the
QAP under the requirement that the elements of only one of the matrices need be drawn from
any random distribution P . Burkard and Fincke [8] implicitly studied the case in which only
one matrix is random. They proved rigorously that, under certain conditions, asymptotically
as N → ∞, the ratio between Cmin and Cmax approaches 1, a result with which our (2) and
(3) are consistent. Our work extends [8] by finding the closed form (2) and (3). Rhee [25]
finds a closed form solution similar to (2) when both matrices are random and does not find
the explicit dependence on σA. Finally, statistical mechanics methods have been previously
used to study the random QAP [2, 5] although to the best of our knowledge the replica
method had not been used heretofore.
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3 Random Solution Cost

It is useful to first consider the solution for which p = p∗ is a random permutation. Because
the elements of A are assigned randomly and since p∗(i) and p∗(j) are random, each Bij in
the sum is multiplied by a random value of Aij the average of which is µA. Hence, the cost
of a random permutation is

Crand = µA

N∑

i,j=1

Bp∗(i)p∗(j) = µAµBN2. (4)

4 Replica Analysis

We now use the replica method to derive the form for Cmin and then derive the relationship
of Cmax to Cmin. Employing a Hamiltonian, H, defined as the QAP cost function our goal is
to compute the partition function

Z =
∑

{p}
exp

[
− H

kT

]
=

∑

{p}
exp

[

− 1
kT

N∑

i,j=1

AijBp(i)p(j)

]

(5)

and the free energy

− F

kT
= lim

N→∞
lnZ (6)

where k and T are the Boltzmann constant and temperature respectively. Then,

Cmin = F(T = 0). (7)

Since the Hamiltonian includes a random matrix, A, we want to calculate the value of the
free energy F averaged over the disorder specified by the probability distribution P (A).
However, averaging the log of the partition function is difficult. The replica method of sta-
tistical mechanics [12] was introduced to make calculation of this average possible. The
replica method has been used not just on models of physical systems (such as spin glasses
[12, 18, 23]) but also on such combinatorial optimization problems as graph partitioning
and the traveling salesman problem [15, 16, 23]. The calculation of the average of the
partition function is simplified using a mathematical identity known as the replica trick,
ln(x) = limn→0(x

n − 1)/n. Then (6) becomes

− F

kT
= lim

N→∞
lim
n→0

1
n

(
Zn − 1

)
, (8)

where

Zn =
(∑

{p1}
exp

[
−H({p1})

kT

])
. . .

(∑

{pn}
exp

[
−H({pn})

kT

])
(9)

and Zn ≡
∫

P (A)Zn dA denotes Zn averaged over the disorder. Here each Hamiltonian
represents a replica of the original system and the sum over {pα} now denotes the sum over
all permutations in all replicas.
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In order to achieve physically sensible results with f ≡ F/N intensive, we require the
mean and standard deviation of P (A) to scale as (see [15, 18, 23])

µA = µ̃A/N

σA = σ̃A/
√

N (10)

with µ̃A and σ̃A independent of N . In Appendix A we then find that

Zn = exp
[
−nµAµBN2

kT

]

×
∑

{pα }
exp

[
σ 2

A

2(kT )2

∑

i,j

(
n∑

α

Bpα(i)pα(j)

)2]

. (11)

As explained in Appendix B, (11) holds under the condition that neither A nor B is sparse.
We can make the following observations based on (11) and (8):

– Consistent with (2), the dependence of F on A is only through µA and σA.
– If σA = 0 and/or T → ∞, substituting (11) in (8) yields F = µAµBN2 which is the cost of

the random solution, (4). This is reasonable because (i) physically for high temperatures
we expect randomness and (ii) if σA = 0, all entries in A are identical and all permutations
yield the same costs.

We infer the form of F(T = 0) as follows:

– In (11) σA appears in the combination σA/T . Thus, from (8) we see that in the T → 0
limit, only a term linear in σA can survive in F .

This linear dependence on σA as well as on µA is consistent with the simple case
in which all of the elements in A are scaled by a constant, z, in which case σA → zσA

and µA → zµA. Clearly the optimal permutation is unchanged but the cost is also scaled
by z. Thus, in this simple case, for any permutation (including the optimal one) the linear
dependence on µA and σA must hold.

– Given that we obtained (11) by expanding in 1/
√

N , we expect the second term in the
expressions for Cmin to be proportional N3/2 since the leading term is proportional to N2.

Given the considerations, above the only possible expression for the second term in F is
σAf (B)N3/2 where f is a function of B only.

The form of Cmax follows directly as follows. Let Cmin(A,B) and Cmax(A,B) denote the
optimal minimum and maximum costs respectively of the QAP problem with matrices A

and B and let −A denote a matrix with elements −Aij . Since Cmax(A,B) = −Cmin(−A,B)

and since µ−A = −µA and σ−A = σA, the form for Cmax in equation (3) follows directly
from the form for Cmin.

If the entries of B are also drawn from a random distribution as in previous work, it is
straightforward to show that

Cmin = µAµBN2 − cσAσBN3/2

Cmax = µAµBN2 + cσAσBN3/2
(12)

where c is a constant independent of A and B and σB is the standard deviation of the entries
in B . The dependence of the N3/2 term on A and B only through their standard deviations
has not been shown before.
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Fig. 1 For an N = 100 QAP
instance consisting of an A
matrix with elements from a
Gaussian distribution and a B
matrix representing a
two-dimensional grid, (from top
to bottom), Cmax, Crand, and
Cmin versus standard
deviation σA . For a given σA ,
Cmax and Cmin values are
equidistant from Crand value

5 Numerical Results

To confirm our findings, we use the tabu search (TS) [27] heuristic to obtain approximate
numerical solutions for a number of QAP instances. We employ matrices of the types de-
scribed in detail in Appendix D. We use the notation “A matrix type”-“B matrix type” to
specify a QAP instance.

In Fig. 1, we plot Cmin and Cmax versus σA for an instance of type Gaussian-Grid. As
expected, the plots are linear in σA and the absolute values of Cmin and Cmax are equal for a
given σ . This is consistent with (2) and (3).

A stronger test is achieved by studying instances specified by a matrix that represents a
random graph of average degree k. In this case,

σA(k) =
√

k(N − 1 − k) =
√(

N − 1
2

)2

−
(

k − N − 1
2

)2

(13)

which represents a circle with origin at ((N − 1)/2,0). In Fig. 2(a) we plot Cmin, Crand, and
Cmax versus k, 0 ≤ k ≤ N −1, for an instance of type Random-Grid. In order to illustrate the
behavior of Cmin and Cmax in more detail, in Fig. 2(b), we plot ∆Cmin/max ≡ Cmin/max −Crand.
The solid line is an ellipse of the form

C
theory
max/min = ±σA(k)f (B)N3/2 (14)

where f (B) is chosen to best fit of (14) to the data. The fit is consistent with the theory,
exhibiting both the expected linear dependence of the optimal costs on σA(k) and the sym-
metry represented by (2) and (3). In Fig. 3 we show similar plots for other varied QAP
instances.

We now study the dependence of ∆C on N . We treat instances in which the A matrix is
random or random regular and consider different types of B matrix. To compare results for
instances of different sizes, we define the normalized quantities ∆Cnorm and knorm

∆Cnorm ≡ ∆C

µBN2
; knorm ≡ k

N − 1
. (15)

With this normalization we expect

∆Cnorm ∼ σAN−1/2. (16)

In Fig. 4(a), (c), and (e) we plot ∆Cnorm for various values of N for various instance types.
We confirm the N−1/2 dependence by plotting
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Fig. 2 For an N = 100 QAP
instance consisting of an A
matrix representing a random
graph and B matrix representing
a two-dimensional grid, (from
top to bottom), (a) Cmax, Crand,
and Cmin versus average degree
k and (b) ∆Cmax and ∆Cmin
versus k. In this and all following
figures, the upper and lower
semi-circles are the ∆Cmax and
∆Cmin plots, respectively. The
solid circular line represents the
theoretical prediction

Fig. 3 For various N = 100 QAP instance, ∆Cmax and ∆Cmin versus k. The solid circular line represents
the theoretical prediction

∆Ccollapsed ≡ ∆CnormN1/2 (17)

in Fig. 4(b), (d) and (f). The collapse is consistent with (16). Additional plots for other
instance types are shown in Fig. 2 in the Supplement.
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Fig. 4 (a), (c), (e) Normalized ∆C versus normalized k for instance sizes N = 100 (light gray); N = 225
for (a) and 200 for (c) and (e) (medium gray); and N = 400 (black). The right hand column contains the
corresponding collapsed plots

6 Discussion and Summary

With an innovative use of the statistical mechanics replica method involving only elementary
arguments and minimal mathematics, we determine the form of the values of the minimal
and maximal costs for the random QAP. This is a significant advancement on a problem for
which progress has been exceedingly slow. We find remarkably simple forms for Cmin and
Cmax providing insight into what have heretofore been isolated numerical results. This work
not only (i) presents concrete results for the QAP but also (ii) illustrates the power of the
replica method to unify and extend results on a very difficult problem.

Acknowledgements We thank S.V. Buldyrev for helpful discussions and the Defense Threat Reduction
Agency (DTRA) for support.
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Appendix A: Integration over Disorder

In the following we retain only terms which do not vanish in the N → ∞ limit. This is
equivalent to retaining terms only to second order in Aij . Because we want to maintain the
exponential form, we write

Zn =
∫

P (A)
∑

{pα }
exp

[

− 1
kT

n∑

α=1

N∑

i,j=1

AijBpα(i)pα(j)

]

dA

=
∑

{pα}
exp

[
ln

∫
P (A)e− 1

kT

∑
i,j

∑n
α Aij Bpα (i)pα (j) dA

]

=
∑

{pα}
exp

[
ln

∏

i,j

∫
P (Aij )e

− 1
kT

∑n
α Aij Bpα (i)pα (j) dAij

]

=
∑

{pα}
exp

[∑

i,j

ln
∫

P (Aij )e
− 1

kT

∑n
α Aij Bpα (i)pα (j) dAij

]

=
∑

{pα}
exp

[∑

i,j

ln(1 + yij )

]
(18)

where yij ≡
∫

P (Aij ) exp[− 1
kT

∑n
α AijBpα(i)pα(j)]dAij − 1. Expanding yij to second order

in Aij we have:

yij ∼
∫

P (Aij )

[

1 − 1
kT

n∑

α

AijBpα(i)pα(j) + (
∑n

α AijBpα(i)pα(j))
2

2(kT )2

]

dAij − 1

= −µA

kT

n∑

α

Bpα(i)pα(j) + µ2A

2(kT )2

(
n∑

α

Bpα(i)pα(j)

)2

(19)

where µA2 is the second moment (around zero) of P . Expanding ln(1 + yij ) to the second
order in yij and substituting (19), we have

ln(1 + yij ) ∼ −µA

kT

n∑

α

Bpα(i)pα(j) + µ2A

2(kT )2

(
n∑

α

Bpα(i)pα(j)

)2

− 1
2

(
µA

kT

n∑

α

Bpα(i)pα(j)

)2

= −µA

kT

n∑

α

Bpα(i)pα(j) + σ 2
A

2(kT )2

(
n∑

α

Bpα(i)pα(j)

)2

(20)

where we have only retained terms to O(A2
ij ). Finally we have

Zn =
∑

{pα}
exp

[
∑

i,j

[

−µA

kT

n∑

α

Bpα(i)pα(j) + σ 2
A

2(kT )2

(
n∑

α

Bpα(i)pα(j)

)2]]

=
∑

{pα}
exp

[

−µAµBnN2

kT
+ σ 2

A

2(kT )2

∑

i,j

(
n∑

α

Bpα(i)pα(j)

)2]

(21)

where we use the fact that
∑

i,j Bpα(i)pα(j) is independent of permutation.



742 G. Paul et al.

Appendix B: Requirements on A and B Matrices

That µA and σA scale as in (10) in order to achieve physically sensible results with f =
F/N intensive (i.e. independent of N ) is required so that the quantities in the exponents
of (2) do not scale as N2 which would ultimately result in f scaling as N as N → ∞.
The exponents will scale as N2 if A and B are dense (have O(N2) non-zero elements). If,
however, either matrix is sparse the exponents will scale as N and the requirements on uA

and σA do not hold. We cannot then expand equation (18) in Aij as done in Appendix A.
Thus our results do not apply to QAP instances in which both matrices are not dense, such as
the traveling salesman problem. Our results do apply to graph partitioning of dense graphs
including random graphs in which the average degree k of the graph scales such that k/N is
a constant—the case we have treated here (see also Refs. [15, 28]).

The requirement that A and B must be dense appears to be equivalent to a requirement,
specified by Burkhard and Fincke [8] in which they studied asymptotic properties of prob-
lems with sum (e.g. QAP) and bottleneck objective functions. They proved rigorously that,
under certain conditions, asymptotically as N → ∞, the ratio between Cmin and Cmax ap-
proaches 1, a result with which our (2) and (3) are consistent. A key condition is that |S|,
the number of non-zero elements which contribute to the sum in the objective function,
increases to infinity faster than the log of the number of feasible solutions |T |:

λ0|S| − log |T | → ∞ as N → ∞ (22)

for a certain fixed constant λ0 > 0.
For the QAP, |T | ∼ N ! and |S| ∼ N2 if A and B are dense but |S| ∼ N if either is sparse.

Equation (22) holds in the former case but not in the latter.
Using statistical mechanical methods in Ref. [2], Albrecher et al. also make use of the

requirement of (22) to prove the results of Ref. [8] generalizing and repairing an earlier
statistical mechanical approach [5].

Appendix C: Relationship to Graph Partitioning

The problem of partitioning a graph into two subgraphs of size rN and (1 − r)N with the
minimum number of edges between the two subgraphs can be represented as a QAP as
follows: One matrix, A, is the adjacency matrix of the graph to be partitioned. The other
matrix, B , the graph partitioning matrix, is the adjacency matrix for a bipartite graph in
which edges are present between two sets of vertices; one set contains rN vertices and the
second set contains (1 − r)N vertices. The QAP cost function is the cost of partitioning the
graph represented by A.

Appendix D: Matrix Types

We employ matrices of the following types:

– Uniform—the matrix elements are chosen from a uniform distribution on the interval
[0,100].

– Gaussian—matrix elements are chosen from a Gaussian distribution with zero mean and
standard deviation σ .
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– Half-Gaussian—matrix elements are chosen from a Gaussian distribution as above but
only elements with value greater or equal to zero are used.

– Random (graph)—the matrix is the adjacency matrix of a random graph with edges
present with probability p. The average degree of the graph is k = pN .

– Random Regular (graph)—the matrix is the adjacency matrix of a random regular graph
for which all vertices are degree k.

– Grid—the matrix elements are the Euclidean distances between points in a two-
dimensional square grid. The distances between adjacent points along the x and y axes
are 100.

– Graph Partitioning—the matrix is the graph partitioning matrix described in Appendix C.

All matrices are symmetrical with zero diagonal. For the Random and Random Regular
matrices that represent graphs, we study cases of the graph degree k ranging from 0 to
N − 1.
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