PHYSICAL REVIEW E 79, 068102 (2009)

Reply to “Comment on ‘Tests of scaling and universality of the distributions of trade size
and share volume: Evidence from three distinct markets’

Vasiliki Plerou and H. Eugene Stanley
Department of Physics and Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA
(Received 16 January 2009; published 24 June 2009)

Analyzing trade-by-trade data for three distinct markets, we showed that the cumulative distributions of
trade size display power-law tails P{g>x}~x"%, with exponents {, in the “Lévy stable domain” (§q< g;
=2). Moreover we reported that the exponent values are consistent for all stocks irrespective of stock-specific
variables such as market capitalization, industry sector, or the specific market where the stock is traded. Our
conclusions were based on using two distinct estimation methods. Récz et al. now propose that one of the
estimators we used has slow convergence for a pure power law, particularly as tail exponents approach the
boundary {;:2. We examine the robustness of our results to specific estimation method by additional analysis
using five distinct techniques to estimate {,. We find results that are fully consistent with those we had
reported, providing compelling evidence that our conclusions hold regardless of estimation procedure.
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I. INTRODUCTION

We recently analyzed tick-by-tick data for three distinct
markets: (i) the New York Stock Exchange (NYSE), (ii) the
London Stock Exchange (LSE), and (iii) the Paris Bourse,
and reported that the cumulative distribution of individual
trade size g displays a power-law tail

P{g > x} ~ x%. (1)

Here {, is the tail exponent [1,2]. In addition to evidence
from performing power law regressions and obtaining esti-
mates of {,, our analysis provided the following estimates for
l:
! (a) U.S. stocks: for the largest 1000 U.S. stocks, during
the 2 yr period of 1994-1995, we reported using three dif-
ferent methods [1,2]:

1.53 = 0.07 (Hill estimator [3])
{,=1145%0.03 (Scaling of moments) (2)

1.63 = 0.03 (MS estimator [4]).
(b) LSE stocks: for the largest 85 stocks traded on the

LSE that are part of the FTSE' 100 index during the 2 yr
period of 2001-2002, we found [1]:

1.57 £ 0.01 [Hill estimator]
1.58 = 0.01 [MS estimator].

M 3)

(c) Paris Bourse stocks: for the 13 large stocks that
formed part of the CAC 40 index’ during the 4 yr period of
1995-1999, we found [1]:

{,=1.53%0.04 [Hill estimator]. (4)

Note that all our estimates of £, are within the Lévy stable
domain ¢, < §Z=2. Moreover, the values of £, are consistent
not only between stocks within the same market but also
across the three markets analyzed [1] (cf. the discussion in

'See weblink www.ftse.com
See weblinks www.nyse.com/cac40 and
http://en.wikipedia.org/siki. CAD_40
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Refs. [5,6] for a discussion of ¢, for LSE stocks).

Reference [7] points out that one of the estimators that we
use, the Meerschaert-Scheffler (MS) estimator [4], is con-
structed specifically for the domain {,<2, and is therefore
unable to distinguish between the two cases: (i) {,<2 and
(ii) {,>2. Our usage of the MS estimator is guided by the
range of exponent values {,~ 1.45-1.6 (obtained from alter-
nate methods listed above), which are within the domain of
applicability of the MS estimator. In addition, Ref. [7] shows
that, for a “pure” power-law distribution, the MS estimator
has slow convergence, and underestimates the tail exponents.

In this Comment, we report the following results:

(i) We first apply five additional estimation techniques to
measure the exponent {,. Each one of these techniques gives
results that are consistent with the values of ¢, [Eqgs. (2)~(4)]
as reported in Ref. [1]. Together they give compelling evi-
dence in support of the robustness of our conclusion that
{,<{,=2.

(i) Next we discuss the problem of estimating {o» the tail
exponent describing the cumulative distribution function,

P{Q > x} ~ x7%, (5)
of share volume in a time interval Az

Nat

NI (6)
i=1

where N,, denotes the number of trades in the time interval
At. We show that, for a control generated using g; distributed
as a power law with {, within the Lévy stable domain, ag-
gregation can give apparent exponent values {,>2 similar
to those observed in Ref. [8].

(iii) Lastly, we discuss the performance of the MS estima-
tor. Although for a pure power-law distribution [e.g., P(g
>x)=a%x% if x>a, and 1 otherwise], the MS estimator
converges slowly as illustrated in Fig. 1 of Ref. [7]; we note
that its convergence and accuracy is better for genuinely
Lévy stable distributions.
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II. ESTIMATION OF THE EXPONENT ¢, FROM FIVE
ADDITIONAL ESTIMATION TECHNIQUES

To obtain additional confirmation that {, is robust to the
choice of estimation technique, we have further analyzed the
data for the 116 most actively traded U.S. stocks using five
separate estimation techniques:

A. Technique 1: max-spectrum estimator

The max-spectrum estimator, proposed in Ref. [9], is a
unique approach for estimating the tail exponent ¢,. Consider
an ii.d. series X; with the cumulative distribution P(X > x)
~x~® The max-spectrum estimator [9] utilizes the relation-
ship that the maximum event observed over a block of size m
scales as m'"®. We find [10,11]

£,=1.59 = 0.02. (7)

B. Technique 2: moment estimator

The moment estimator [12] is a generalization of Hill’s
original method obtained by including a correction term. We
obtain [13]

£,=1.73 £ 0.04. (8)

C. Technique 3: Fraga-Alves estimator

The Fraga-Alves estimator [14] is a location-invariant es-
timator based on Hill’s original estimator. Alternative tech-
niques such as Pickand’s estimator [15] have the same
location-invariant property although it is found to display
large variance. We find [16]

Z,=1.71 £ 0.03. 9)

D. Technique 4: discrete Hill estimator

The discrete Hill estimator [17] is a variant of Hill’s
method for discrete data sets. Applying this estimator to the
U.S. data, we find [18]

£,=1.55=0.02. (10)

E. Technique 5: Hill estimator with optimal threshold

The Hill estimator with optimal threshold [17] relies on
using the Kolmogorov-Smirnov statistic to determine the op-
timal estimation threshold. The optimal threshold is chosen
such that the probability distributions of the data and the
best-fit power law are as similar as possible beyond this
threshold. We find [19,20]

£,=1.69 = 0.02. (11)

Each of these five distinct estimation techniques yields re-
sults that confirm our findings reported in Ref. [1]. Together,
they provide compelling evidence that {,<2.

We conclude with a graphical analysis of the distribution
of trade size P(g>x), certainly the most direct method of
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FIG. 1. Distribution function P(g>x) of the trade size ¢ for all
three databases analyzed in Ref. [1]. The data for each stock have
been scaled by its median. The tails for all three distributions seem
consistent with £, <2 within the Lévy stable domain. Power-law
regressions give {,=1.55+0.04 (NYSE), 1.73%0.02 (LSE), and
1.60 % 0.03 (Paris Bourse). Please refer to the text for more accurate
exponent estimates.

analyzing the tail behavior (Fig. 1). The solid line corre-
sponds to {,=1.5 while the dashed line shows the limit ,
=2. We note that (a) the three distributions are mutually
compatible, as corroborated by various exponent estimates
listed above, and (b) all three display tail exponents which
are consistent with £, <2.

III. ESTIMATION OF THE EXPONENT ¢,

Next we focus on share volume Q,, defined in Eq. (6).
Consistent estimation of the exponent {,, which describes
the tail behavior of the cumulative distribution of share vol-
ume P(Q>x), is a more challenging problem than estimat-
ing {,. First, O, acquires long-range correlations from N,
[2], so unlike trade size g, it has pronounced dependencies.
Second, estimators such as the Hill estimator which rely on
an estimation threshold give biased results (cf. Fig. 6 in Ref.
[1]) for aggregated data such as Q,, This estimation bias,
which increases with the degree of aggregation (i.e., with
increasing Ar), apparently led Ref. [8] to conclude that the
“true” exponent {, increases with increasing Ar with an ex-
ponent estimate {,>2 implying finite variance. Similar bias
is present for other estimators which rely on an estimation
threshold, including the “shifted Hill” method, also applied
in Ref. [8].

It is instructive to compare the performance of various
estimators when applied to computer-generated aggregated
data such as

N
Yo =2 % (12)
i=1

where x; is generated to follow a power-law distribution with
exponent £, [cf. Eq. (16) of Ref. [1]], and N is generated to

068102-2



COMMENTS
100 00000000090 T T T
[ ]
[ ]
4 °
10 3 ° 3
[ ]
Q [ ]
I\ 107 E .. 3
> °
N’
[a W -3
=10 F 2.3 3
@]
=,
= 10 3 _
O
-
b 5
2107 E 'y |
A
10° k [XTLS
: (a) Y, constructed from { =1.7 3
10‘7 Ll I R Ll i
0 1 10 100 1000
X
4.0 T T T T " “
(b) ‘
L35 Hill’s estimator -
) 0 Moment estimator
]
i
<
E "l % |
=
n
; i
—
- 44
15} 2.5[]- Y %H] i
2 7 oo gialoitioiglel), .,
g . ¢ #HHHHH‘ '
2 MU
/M 2.0
CY=1‘7
1.5 : ' : : : '
5.0 10.0 15.0 20.0 25.0

Estimation threshold

FIG. 2. (a) Distribution function P(Y >x) of aggregated time
series Yz, = Eﬁﬁl‘xi, where x; are generated to have a pure power-law
tail of {,=1.7, Ny, is generated to have a pure power-law tail of
{n,,=3. and (N,) is set to have the same average value as (Ny,) for
At=15 min in the NYSE data. The solid line shows a power-law fit
which gives the estimate 2 y=2.28 £0.05, significantly larger than
the true value of {y=1.7. (b) Hill estimator and the moment estima-
tor [12] applied to Y as a function of estimation threshold shows an
exponent estimate {y>>2 although the true value is {y=¢{,=1.7.

have a power law {y=3 (similar to empirical results [21]).
Consider the case when {,=1.7 (similar to some of the esti-
mates we obtain for £ ). Since {, is within the Lévy stable
domain, we expect the asymptotic behavior P(¥>x)~x~%
with {,=¢,=1.7 (since £,<{y) [22]. However, as shown in
Fig. 2(a), the distribution function P(Y > x) is virtually indis-
tinguishable from a power law with a larger exponent
value—regressions give {y=2.29+0.04.

Figure 2(b) shows the results of applying the Hill’s esti-
mator and the moment estimator [12] to the same data.
Clearly both of these estimators provide exponent estimates
significantly larger than the true value of {y=1.7. Note that
these estimates, including the power law regression estimate
{y=2.29%0.04 are not unlike the estimates of {,~2.3 re-
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FIG. 3. Comparison of the exponent estimates Z’ obtained from
the MS and the Hill’s estimator for symmetric Lévy stable distrib-
uted data generated using the procedure of Ref. [24].

ported in Ref. [8]. Indeed, for truly Lévy stable distributions,
it is well documented that common estimation techniques
such as Hill’s estimator give exponent estimates which have
significant upward bias when the tail exponent is in the range
1.5< ¢, <2 [23]. This fact is particularly relevant in this case
since §q<2, so as N becomes large, the distribution of Q
approaches a Lévy stable distribution as claimed in Ref. [1].

IV. RATE OF CONVERGENCE
OF THE MS ESTIMATOR

Reference [7] notes that the MS estimator has slow con-
vergence. We have explored the possibility of using other
threshold-independent techniques for estimating £y, e.g., the
Hosking-Wallis (HW) estimator [25]. Although the HW es-
timator does not have the limitation that its domain of appli-
cability is for exponents <2, it is reliable only for pure
Pareto distributions [25] and gives unstable results in the
presence of any departures from the pure Pareto form, even
at small values. For example, the HW estimator would pro-
vide reliable results for control data such as presented in Ref.
[7]. In contrast, the MS estimator is more robust to this effect
although the rate of convergence is slow. As shown in Fig. 1
of Ref. [7], the deviation between the actual and estimated
exponent values is particularly large for the pure power-law
form as ¢, approaches 2 even with 5X 10° points.

For Lévy stable distributed data however, this deviation is
more benign. To illustrate the performance of the MS esti-
mator, we have generated surrogate data following a stable
Lévy distribution using the methods of Ref. [24]. Figure 3
shows that the MS estimator underestimates the true expo-
nent while Hill’s estimator overestimates. As per the discus-
sion in Sec. IIT of Ref. [4], the performance of the MS esti-
mator is superior to that illustrated in Ref. [7] because the
data in Fig. 3 is generated to follow a Lévy stable law in
contrast to a distribution with a power-law tail as in Ref. [7].
We note that, since {, <2, the distribution of the aggregated
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data Q would more closely resemble the Lévy stable data in
Fig. 3 so the MS estimator, although its convergence is slow,
is useful to estimate {o-In addition, our numerical tests show
that the MS estimator is useful in detecting dependencies of
the exponent on other variables (more so than Hill’s tech-
nique), which is particularly relevant in the context of testing
the dependence of {,, on variables such as market capitaliza-
tion.

In summary, we applied five additional estimation tech-
niques to calculate the exponent {,. We first show that each
of these techniques give results that are consistent with the
values of {, reported in Ref. [1]. Together they give compel-
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ling evidence in support of the robustness of our conclusion
that {,<2. Second, we discussed the problem of estimating
{o, the tail exponent describing the decay of the cumulative
distribution of share volume Q,,. Third, we showed that, for
surrogate data generated assuming g¢; is distributed as a
power law within the Lévy stable domain £, <2, aggregation
can give apparent exponent values {,>2.
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