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What is the difference between randomness and chaos ? Although one can define randomness and
one can define chaos, one cannot easily assess the difference in a practical situation. Here we com-
pare the results of these two antipodal approaches on a specific example. Specifically, we study how
well the logistic map in its chaotic regime can be used as quasirandom number generator by calcu-
lating pertinent properties of a well-known random process: invasion percolation. Only if A > A}
(the first reverse bifurcation point) is a smooth extrapolation in system size possible, and percolation
exponents are retrieved. If A1, a sequential filling of the lattice with the random numbers gen-
erates a measurable anisotropy in the growth sequence of the clusters, due to short-range correla-

tions.

I. INTRODUCTION

Randomness is an abstract concept that has been very
useful but that, strictly speaking, cannot be realized on a
computer. Indeed, many models in physics—such as
random walks, localization, and percolation—are based
on the concept of randomness. The production of ran-
dom (or “quasirandom’”) numbers on a computer is a
rather heuristic subject. Based on experience, determinis-
tic algorithms are used which are highly nonlinear and
which must pass a certain number of tests. !

Chaos in deterministic nonlinear maps is one of the
major discoveries of the last few decades. Chaos in this
sense is also a well-defined concept of great importance in
areas like hydrodynamics and pattern formation. A4
priori, chaos has nothing to do with the generation of
quasirandom numbers on a computer and is certainly an-
tagonistic to pure randomness because it is deterministic.

The question we raise is to what degree can chaotic se-
quences be used as quasirandom numbers® and to what
extent do the two differ in terms of the properties of a
specific model, in our case percolation. Chaotic sequence
have been discussed before in the context of the diffusion
problem, >~ but the effect of the percolation problem has
not yet been investigated.

We consider the simplest one-parameter chaotic
map, ”® given by

xn+]=4)"xn(l_xn)’ (D

also known as the logistic map. As we approach the
chaotic regime of the logistic map with A—A,
=0.892486418. . ., the period of the sequence of num-
bers generated by this map becomes infinite. The ques-
tion is, to what extent does such a sequence behave ran-

42

domly? Will such a sequence, if used instead of a se-
quence of numbers drawn from a random-number gen-
erator, give us the same critical exponents in simulating
percolation? We will address this and other properties of
such a sequence at A=1, the most chaotic point, and also
at other values of A in the chaotic regime. We consider
invasion percolation,®!? since in this case one does not
need to calculate the percolation threshold, whereas in
ordinary percolation, we would first have to locate the
position of the threshold that would depend on the distri-
bution of numbers in consideration.

There are two important differences between our prob-
lem and the corresponding one obtained by replacing the
logistic map by a random-number generator. The first is
that the probability distribution of numbers generated by
the logistic map is not uniform (see Sec. II). The second
is that there is a time correlation (which translates to a
spatial correlation in our problem) between successive
numbers generated by the logistic map. The effect of this
is discussed in Sec. III.

We study invasion percolation without trapping on a
two-dimensional square lattice of linear size L. We as-
sign numbers generated by the logistic map in sequence
along the y axis to the sites (column by column). To grow
a cluster, we start by occupying the site at the center of
the system and then occupy the perimeter site which has
the smallest number on it at the next time step. We re-
peat the invasion process until the cluster reaches the
edges of the vertical (or horizontal) boundaries of the sys-
tem. We then use the “burning” method proposed in
Ref. 11 to study the fractal properties of the cluster and
calculate the critical exponents. All the simulations for
this work were done on the IBM 3090 computer.

In Sec. IV, we discuss the results of fractal analysis of
the infinite cluster obtained for various values of A. Fi-
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nally, in Sec. V, we discuss the growth sequence of the
infinite cluster, where we find a marked difference from
the random case due to the presence of time correlations,
which are discussed in Sec. III.

II. DISTRIBUTION OF NUMBERS

The distribution of numbers generated by the logistic
map'>!3 is not uniform. In the limit of infinitely many
numbers, it is of a flattened U shape at A=1 [see Fig.
1(a)]. We are interested in seeing whether this property
of nonuniformity will affect the fractal analysis of the in-
vasion percolation problem.

At A=1, the logistic-map iteration is equivalent to a
Bernoulli shift. Consider

_ 1—cos(276,)
n 2
Substituting this into Eq. (1) with A=1, we then obtain
the following iteration rule for 6:

6,,,=260,modl . (3)

x , where 6, €[0,1) . (2)

It is easy to see that the numbers generated by Eq. (3) are

(a)
x
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FIG. 1. Probability distribution of numbers generated by the
logistic map (10® numbers used). (a) A=1.0: P(x) is a smooth
continuous function given by (4). (b) A=0.93: P(x) is discon-
tinuous. (c) A=0.91: note the appearance of the gap.
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uniformly distributed, provided that they are not in a
finite cycle, i.e., if we start with a nonrational seed num-
ber ,, then the probability distribution P(6) is a con-
stant of order unity. Thus, from (2) the corresponding
probability distribution of x is

2 1

wsinf[cos 1(1—2x)] 7Vx(1—x)
which looks exactly like Fig. 1(a). The form (4) for P(x)
can also be exactly determined from a transformation to
the tent map. !>

We do not expect the nonuniformity of the probability
distribution function to affect our results. Since invasion
percolation proceeds by a comparison of the values of the
random numbers at each time step, one expects that the
nonuniform distribution of the individual values of the
numbers cannot affect the problem. To see the effect of
the nonuniformity of the distribution we draw numbers
randomly with a probability distribution described by (4),
and perform the Monte Carlo simulation of nontrapping
invasion percolation for a two-dimensional square lattice.
These numbers give correct percolation exponents.
Therefore we conclude that the nonuniformity of the dis-
tribution does not affect the percolation problem, except
in changing the value of p,. Presuming an absence of
correlation between numbers, the value of p, for the dis-
tribution P (x) would be given by

P(x)=

, (4)

P
fo P(x)dx ~0.592745 , (5)

where 0.592 745 is the value of p, obtained in Ref. 15.
For A=1, this gives p, ~0.643 63. From simulations we
obtain p,=0.6510.01, so the two values are in good
agreement with each other.

For A <1, however, the probability distribution cannot
be described by a continuous function in the domain [0,1]
[see Fig. 1(b), A=0.93]. As we decrease A within the
chaotic regime, we see a qualitative difference in the
probability distribution of numbers generated above and
below A=A]=~0.91964, the first reverse bifurcation
point.® A gap is found to open up in the distribution at
this value of A=A} and the width of this gap increases
[Fig. 1(c)] as we decrease A further. The appearance of
this gap plays a crucial role in our problem, as it greatly
affects the time correlation of successive numbers gen-
erated (Sec. III). In addition, there are also other such
gaps in the distribution for values of A between A} and
1.0 [for example, the window of period 3 that appears at
A=(1+v'8)/4 and has been treated in Ref. 16], which
affect our problem in the same manner.

III. TIME CORRELATIONS

There is clearly a time correlation between numbers
generated by the logistic map. However, if these correla-
tions are “short range” we would not expect them to
affect the results. In the periodic regime obviously we ex-
pect “infinite-range” correlations. The percolation test
will verify the nature of the correlations in the chaotic re-
gime.

We find that for A <A}, due to the presence of the gap,
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the time sequence of numbers is strongly correlated: it
alternates between either side of the gap (high and low)
giving rise to effectively infinite-range correlations on the
lattice. Since we are placing numbers generated by the
logistic map along the y axis in sequence, we have an al-
ternating pattern along the y direction.

For A> A} this alternating pattern continues to exist,
but has now a finite correlation length which decreases as
we increase A. In other words, a small (large) number is
more probably followed by a large (small) number along
the y direction. This tendency greatly affects the se-
quence of growth of the cluster, which is discussed in Sec.
V.

There also exist values of A > A that have gaps in their
probability distribution, e.g., the gap that appears at
A=(1+V'8)/4 has a time sequence of period 3 (Ref. 16)
and thus infinite-range correlations exist. However, for
A} <A<1.0, as long as we avoid values of A that are
characterized by gaps in the probability distribution, the
time correlations do not affect the critical exponents of
percolation, as we shall see in Sec. IV. But the time
correlations do affect the growth sequence of the cluster,
and this is discussed in Sec. V.

We also studied the behavior of the autocorrelation
function given by

Cm)=(X,X;,,,)—(X)?, (6)

where ( ) is an average over all i with i =1,2,...,N.
Between A, and A}, as we increase A (for fixed N) the
fluctuation in C(m) values with m increases [in the
periodic regime we expect very little fluctuation since we
have a string of numbers in the n cycle and the correla-
tion C(m) should not vary too much with m as long as
m >n]. Note that C(m) measures the correlation be-
tween the numbers placed on two sites that are separated
by m steps and therefore that would be neighbors along
the x direction for a lattice size of L =m. We expect that
this might be related to the tendency of directional
growth observed for even lattice size; therefore we take
only even m. We enclose plots of C(m) versus m for
values of A near Af. We find that C(m) decays with m,
with the range of this decreasing as we increase A [see
Figs. 2(a) and 2(b)]. Note that the range has become very
small already at A=0.93, and for higher values of A this
range goes to zero and C(m) is approximately constant
with respect to m. Therefore, for lattice sizes L >L*,
where L* is the range of decay of C(m), the effective
correlation along the x direction would be the same as
the infinite-size case.
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FIG. 2. Decay of autocorrelation function (10° numbers
used). (a) A=0.92, (b) A=0.93.

IV. PERCOLATION EXPONENTS

We calculated the values of important percolation ex-
ponents at the most chaotic point A=1.0 [Figs. 3(a) and
3(b)] as well as at other lower values of A (Figs. 4 and 5)
above the value A=A} for reasons mentioned in Sec. IIL
We used the burning algorithm of Herrmann, Hong, and
Stanley!' and also their conventions for choosing the
backbone. The values of the exponents obtained shown
in Table I correspond to the following quantities:!” the
mass of the infinite cluster (d ), the mass of the backbone
(dgg), the minimum'® path (d;,), and the number of
red'”?® bonds (d,.4). The log-log plots gave asymptotic
straight-line behavior and extrapolation to infinite lattice
sizes gave correct percolation exponents (Figs. 3 and 4).

TABLE I. Comparison of our calculated percolation exponents and known values.

df dBB dmm dred

Known value 5 1.60+0.05% 1.13+0.002° 3°
A=1.0 1.86%0.05 1.64+0.05 1.10£0.05 0.74+0.05
A=0.93 1.87+0.05 1.66+0.05 1.12+0.05 0.82+0.05
A=0.92 1.83%£0.05 1.64+0.05 1.13£0.05 0.82+0.05

#Reference 11.
bReference 18.
‘Reference 19.
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FIG. 3. Percolation exponents obtained using numbers gen-
erated by the logistic map x,,,=4Ax,(1—x,) at the most
chaotic point A=1.0 (p, =0.65+0.01). The number of samples
averaged over varied from 500 for the largest lattice to 30000
for the smallest. About 24 h of CPU time were used to generate
the data for (a) and (b). (a) Log-log plot of various quantities vs
L (linear size). X, mass of the infinite cluster; +, mass of the
backbone; {, minimum path; O, number of red bonds. (b) Ex-
ponents by extrapolation.
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FIG. 4. Exponents by extrapolation for A=0.93. X, mass of
the infinite cluster; +, mass of the backbone; ¢, minimum path;
[, number of red bonds.

conclude that the presence of time correlations does not
affect the static properties of the percolation cluster, as
long as we avoid values of A that have gaps in their prob-
ability distribution. However, it does affect the dynamic
properties, as we shall see in Sec. V.

V. TIME SEQUENCE OF GROWTH
OF THE INFINITE CLUSTER

As we watch the invasion percolation cluster grow, we
observe some interesting phenomena. Below A} the clus-
ter is effectively one dimensional. This is because for
even-sized lattices, neighbors along the x direction belong
on the same side of the gap in the probability distribution
mentioned in Secs. II and III. Therefore, once the cluster
grows to a site that belongs to a row of small numbers, it
continues to grow along the x direction.

For A> A}, due to the finite correlation length along
the y direction mentioned in Sec. III, the effective corre-
lation along x disappears for large L. However, there is
still a tendency to grow continuously along x due to the
finite-range correlation along y. In other words, an in-
vaded site with a small number has a high probability of
being surrounded along the y direction by sites with large
numbers and therefore prefers to grow along x. This ten-
dency of preferential growth along x tends to get weaker
with increasing A and disappears as A— 1. However, this
difference in behavior from the random case that exists
even for A>Af does not affect the values of the ex-
ponents, as we concluded in Sec. IV. In other words, the
structure of the final cluster cannot be distinguished from
one grown with random numbers, but the pattern of in-
vasion is quite different, as mentioned above. As we fol-
low the growth of the cluster we can divide the possibili-
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ties at each step into three categories.

(a) The next occupied site is the neighbor along the x
direction of the most recently occupied one.

(b) The next occupied site is the neighbor along the y
direction of the most recently occupied one.

(c) The next occupied site is not a neighbor of the most
recently occupied one.

Since this result of the growth sequence of the cluster
for A> AT is the only distinguishing factor between such a
cluster and one grown by using a random-number genera-
tor, we are interested in defining a parameter that de-
scribes this difference with the random case, as a function
of A. For this purpose, we define the following quantities.

(i) N,: The number of sites that are occupied by in-
vasion to the nearest neighbor of the most recently occu-
pied site along the x direction.

(ii) N,: The number of sites that are occupied by in-
vasion to the nearest neighbor of the most recently occu-
pied site along the y direction.

We first consider the size dependence of the quantity
R =N,/(N,+N,) for fixed A=0.92,0.98 [Figs. 6(a) and
6(b)]. We see that there is a variation, but R saturates to
a constant value above some value of L, beyond which
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FIG. 6. Dependence of R =N, /(N,+N,) on the lattice size.
The numbers of samples averaged over varied from 500 for the
largest lattice size used to 10000 for the smallest. (a) A=0.92:
+, correlated column model; O, independent column model.
(b) A=0.98: +, correlated column model; O, independent
column model.
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FIG. 7. Dependence of R on A for L=150, which is
effectively the same as the limiting curve L — . The number
of samples averaged over was 500.

finite-size corrections become unimportant. In Fig. 7 we
plot R versus A for a lattice size above the saturation
value. Note that R should have the value { for the ran-
dom case and tends towards it as A—1. We find that the
curve of R(A) has a smooth, well-defined behavior for
any L and tends to approach the limiting form that we
have plotted in Fig. 7, as L —«. (From Fig. 6 one can
see that at L =150, R has already saturated to its
infinite-size limit.)

As we inferred in Sec. III, for lattice sizes L >L*,
where L* is the range of decay of the autocorrelation
function, the effective correlation along x would be the
same as the infinite-size case. And for this model, the
infinite-size behavior would be identical to the behavior
on a lattice of the corresponding size constructed by put-
ting down numbers from the logistic map on each column
independently. In other words, every time we get to a
new column, we would choose a new random seed for the
logistic map and start iterating again. This would elimi-
nate correlation along x due to finite lattice size. We
compared the values of R for different lattice sizes for our
“correlated column model” with A=0.92 and 0.98 with
the corresponding “independent column model” [see
Figs. 6(a) and 6(b)]. For A=0.92, we find that the curves
for the two different models [Fig. 6(a)] merge at L * =~ 150,
which agrees well with the value of L* from Fig. 2(a).
Also, for A=0.98, the two curves coincide for all values
of L, which again agrees with our argument above, since
L* for A=0.98 is almost zero.

VI. SUMMARY AND COMMENTS

We have pointed out in Sec. I that there are two main
features that distinguish this problem from the corre-
sponding random one. These are (a) the nonuniformity of
the probability distribution, and (b) the existence of
correlations between numbers successively generated by
the map. In Sec. II, we have treated (a) and come to the
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conclusion that it should not in any way affect the prop-
erties of the percolation problem, except in changing p,,
the percolation threshold. In Sec. III we have treated (b)
and in Sec. IV we have concluded from our results that
neither (a) nor (b) affects the static properties of the per-
colation cluster. In Sec. V we find that (b) does affect the
dynamic (growth-pattern-related) properties and we have
analyzed this effect. In the following paragraphs, we
comment on some related aspects of the problem.

We have verified that the period of the numbers gen-
erated by the map is not infinite, even at A=1, due to
computer truncation. In general, truncation seems to
affect the problem in the sense that there is no “truly
infinite” period in the chaotic regime. For example, at
A=1 there are two periods of length 160853385 and
105 364 478, respectively, when we use double-precision
numbers. However, from studying correlations above
[fluctuation in C(m) with m for A=1 has disappeared at
N =10%], it seems that there is still an “effective period”
less than 10°, i.e., there is repetitive fine structure within
a period. Thus it seems that the larger system sizes will
be influenced more by this “effective period” and there-
fore data at large L may not be reliable. This would ex-
plain the erratic behavior that we found above L =250
and therefore we did the extrapolation on the basis of re-
sults obtained for lattice sizes below this value (Figs. 3-5).
It is well known that good quasi-random-number genera-
tors also have this problem, in that their maximal period
is many orders of magnitude longer than their effective
period. As an example for a large-scale computation in
which such a problem arises, one can cite Normand,
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Herrmann, and Hajjar. %!

Of course, another reason for the aforementioned er-
ratic behavior is simply that we might not have had
enough statistics. In particular, the fluctuation in the
number of red bonds does not show a tendency to de-
crease as we increase the lattice size. We found that the
running average seems to stabilize around 4000 runs for
L=10, but for L=160, it still is not stabilized around
4000 runs, whereas one would expect it to do so much
earlier. This behavior can also be seen from the large
fluctuations in the exponent for the number of red bonds
even at A=1 [in Fig. 3(b)].

It would be interesting to use invasion percolation with
the logistic map as the number generator as a model of
some special kind of porous medium which exhibits the
kind of correlation discussed in Secs. III and V, along one
direction; namely, that the resistance to flow of the medi-
um has a tendency to alternate between large and small
values, within some finite correlation length.
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