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Network risk and forecasting power in phase-flipping dynamical networks
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To model volatile real-world network behavior, we analyze a phase-flipping dynamical scale-free network in
which nodes and links fail and recover. We investigate how stochasticity in a parameter governing the recovery
process affects phase-flipping dynamics, and we find the probability that no more than q% of nodes and links
fail. We derive higher moments of the fractions of active nodes and active links, fn(t) and f!(t), and we define
two estimators to quantify the level of risk in a network. We find hysteresis in the correlations of fn(t) due to
failures at the node level, and we derive conditional probabilities for phase-flipping in networks. We apply our
model to economic and traffic networks.
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I. INTRODUCTION

Across a broad range of human activities—from medicine,
meteorology, and traffic management to intelligence services
and military operations—forecasting theories help us estimate
the probability of future outcomes. In general, the greater the
uncertainty of the outcome, the more crucial it is that we be able
to forecast future behavior. Since the nodes of many dynamic
systems [1–22], such as traffic patterns and physiological
networks, periodically fail and then recover—a disease spreads
through an organism and then after a finite period of time
the organism recovers—forecasting power [23–25] is highly
relevant. It allows us to estimate the probability of future node
and link failure and recovery and to quantify the level of risk
in any given dynamic network.

When forecasting future node and link failure, we assume
that networks are not static but time-dependent. The study
of temporal networks has recently become one of the topics
in network theory. It has been shown that many methods
developed for static networks are inappropriate for the study of
temporal (dynamic) networks [5,26–29] in which both nodes
and links are active for only finite periods of time. For example,
Ref. [6] defines a time-invariant function that characterizes the
interactions of agents and constructs an activity-driven model
that provides an explanation of structural features, such as the
presence of hubs that emerge from the heterogeneous activity
of agents. Reference [26] defines the average fraction of nodes
in the sets of influence of all nodes as the reachability ratio.
Reference [29] defines the temporal correlation coefficient and
the temporal closeness centrality that quantify how quickly a
node may on average reach other nodes in temporal networks.

Many models for temporal networks have been proposed
[25,30–34]. References [30,31] propose social network models
in which links represent such ephemeral social ties as face-to-
face contacts. Reference [35] uses a null model that removes

the timing correlations between the contact sequences of ad-
jacent links, but keeps the temporal characteristics associated
with the links. Reference [33] proposes a model for studying
disease spreading in temporal networks. Reference [34]
proposes a temporal network variant as an extension of the
neighborhood vaccination scheme proposed in Ref. [18].

Reference [36] describes how the nodes in time-dependent
regular networks and Erdös-Renyi networks (i) inherently
fail, (ii) contiguously fail due to the failure of neighboring
nodes, and (iii) recover. These networks exhibit phase-flipping
between “active” and “inactive” collective network modes.
Here we analyze networks with highly heterogeneous de-
gree distributions, and we describe scale-free phase-flipping
networks in which nodes and links fail and recover. We
describe the collective behavior of these networks using two
time-dependent network variables: the fraction of active nodes
fn(t) and the fraction of active links f!(t). Our focus is on
forecasting in dynamic networks. The goal is to calculate how
many nodes will fail at any future time t , and thus to be able
to quantify the risk in any given network.

II. MODEL

(i) At each time t any node in the system can independently
fail, breaking its links with all other nodes, with a probability
p. The internal failure state of node i we denote by spin |Si〉
(if i is active, |Si〉 = |1〉).

(ii) The external failure states we denote by spin |S ′
i〉, where

|S ′
i〉 is |1〉 if node i has more than Th% active neighbors,

and |0〉 (for a subsequent time τ ′ = 1) with probability p2 if
!Th% of i’s neighbors are active. For scale-free networks, a
percentage threshold Th is the more appropriate choice than
the constant Th used in Ref. [36]. Node i—described by the
two-spin state |Si,S

′
i〉—is active only if both spins are up (1),

i.e., if |Si,S
′
i〉 = |1,1〉.
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FIG. 1. (Color online) Network statistics used in analyzing
(in)stability in the (i)–(iii) networks. In (a)–(c) we start with a
BA network with N = 10 000 and 〈k〉 = 3, and then we introduce
the (i)–(iii) network, where Th = 50% and τ = 50. Fixing p1 and
increasing p2, for each (p1,p2) we calculate the fraction of active
nodes, fn(t). We show hystereses for two network statistics: (a)
the average fn(t), 〈fn〉, and (b) the standard deviation of fn(t),
σn. We use p1 = 0.2 (p = 0.004) in two directions: from p2 = 0
to 1, and then from p2 = 1 to 0. As p2 → p′

2, 〈fn〉 and σn exhibit
first-order transitions. (c) Emergence of hysteresis in (p1,p2) space.
The hysteresis point XA is characterized by τ = 50, p = 0.0065
(p1 = 0.277), and p2 = 0.65. The curves in (a)–(c) are the averages
over different networks of the same fixed k. Different networks are
characterized by different stochastic realizations and different choices
for the initial nodes and links in BA networks.

(iii) After a time period τ , the nodes recover from internal
failure. Usually τ is random, but we also analyze the case in
which τ is constant [36].

Estimating how far the parameters of a dynamic system
are from the area in parameter space characterized by high
instability is crucial. For the network described in (i)–(iii)
above, we arbitrarily choose parameters p1 [related to p
by p1 = 1 − exp(−pτ ) [36]] and Th. We then destabilize
the network by increasing p2, causing it to transition from
phase I with predominantly active nodes to phase II with
predominantly inactive nodes. In Fig. 1(a), for varying p2,
the first network statistic—the average fn(t), 〈fn〉—gradually
decreases for p2 ∈ (0,p′

2) and then, at p2 ≈ p′
2, 〈fn〉 shows

a sudden network crash—a first-order phase transition. In
Fig. 1(b) for p2 ∈ (0,p′

2) the second network statistic—
the standard deviation of fn(t), σn—becomes increasingly
volatile. During network recovery, in Figs. 1(a) and 1(b) both
〈fn〉 and σn follow a first-order phase transition, but at a value
p2 = p′′

2 , which differs from (p2 = p′
2) obtained during the

I–II transition. Because 〈fn〉 and σn are dependent upon the
initial node spins in the network, p′

2 (= p′′
2 implies the existence

of hysteresis [37–40]. To estimate the part of the (p1,p2) phase
space that is unstable, we calculate the discontinuity (p′

2,p
′′
2 )

values for varying p1 values [see Fig. 1(b)]. Figure 1(c) shows
a hysteresis with two discontinuity lines (spinodals) in the
(p1,p2) space. The closer the (p1,p2) of a network is to the
left spinodal in Fig. 1(c), the less stable is the network.

Reference [36] reports that introducing both a dynamic
recovery with a (constant) parameter (τ (= 0) and a stochastic
contiguous spreading (p2 (= 1) leads to spontaneous collec-
tive network phase-flipping phenomena. Figure 2 shows the
fraction of active nodes fn(t) for constant τ ($τ = 0) that
corresponds to the volatile state XA shown in Fig. 1(c).
Figure 2 shows that if τ is not constant but a random variable
from a homogeneous probability distribution function (PDF),
the phase-flipping phenomenon and thus the collective net-
work mode disappear with increasing $τ (increasing stochas-
ticity in τ ). Beginning with the relation p1 = 1 − exp(−pτ )
[36] when τ is constant, we confirm this result. Suppose a
network is initially set at a phase-flipping state XA [Fig. 1(c)].
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FIG. 2. Effect of stochasticity in τ on network phase-flipping. If
τ is a random variable from a homogeneous PDF, H (τ0 − $τ,τ0 +
$τ ), with τ0 = 50, the phase-flipping phenomenon gradually disap-
pears with increasing $τ .
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FIG. 3. (Color online) Dependence of hysteresis on parameters k

and Th%. Fixing p1 and increasing p2 for each (p1,p2), we calculate
the fraction of active nodes, fn(t). (a) Average fn(t), 〈fn〉 vs p2 for
〈k〉 = 3 and 6. With increasing 〈k〉, the hysteresis region is getting
larger. We choose Th = 50%, p = 0.0001, and τ = 50. (b) Average
fn(t) vs p2 for Th = 35% and 75%. We set p = 0.0001, 〈k〉 = 6, and
τ = 50. With increasing Th, the hysteresis region is getting broader.

If τ follows a homogeneous PDF, H (τ0 − $τ,τ0 + $τ ), we
easily derive the average parameter p∗

1 ≡ p1($τ ) as

E(p∗
1) = 1 − exp(−pτ0) sinh(p$τ )/p$τ, (1)

and the average deviation of p∗
1 from p1 ≡ p1($τ = 0),

E(p∗
1) − p1 = exp(−pτ0)[1 − sinh(p$τ )/p$τ ] < 0. With

increasing $τ , E(p∗
1) − p1 decreases and E(p∗

1) moves from
a volatile network regime (XA) to a more stable network
regime. Hence at XA the less dispersed τ is (and also p1), the
more pronounced the phase-flipping. Hereafter, we analyze
networks with constant τ .

Next we briefly analyze how parameters k and Th affect the
hysteresis curve. Figure 3(a) shows for two values of k that the
hysteresis region grows as 〈k〉 increases. Similarly, Fig. 3(b)
shows that the hysteresis region also grows as Th increases.

III. NETWORK RISK

We next explore the diagnostic and forecasting power of
dynamic networks. When internal (X) and external (Y ) failures
are independent, according to probability theory P (X ∪ Y ) =
P (X) + P (Y ) − P (X)P (Y ), from which Ref. [36] defines
the probability a = a(p,p2,Th) ≡ P (X ∪ Y ) that a randomly

chosen node i is inactive,

a = p + p2(1 − p)%kP (k)E(k,m,a), (2)

equal to the fraction of inactive nodes, a = 1 − 〈fn〉. Here
P (k) is the degree distribution, Th, p, and p2 are described
in (i)–(ii) above, and m ≡ Thk, E(k,m,a) ≡ %m

j=0a
k−j (1 −

a)j ( k
k − j) is the probability that the neighborhood of node i

is critically damaged. Note that the internal failures affect the
external failures, and therefore the above relation in Eq. (2) is
only approximately true. As found in Ref. [36], the deviation
of the mean-field approximation from simulations gradually
decreases as degree k increases, which is a mean-field
characteristic. For that reason, when a network is either small
or moderately large, we calculate a numerically from a time
series fn(t). For a network with N nodes, each with probability
(1 − a) of being active, using a binomial distribution we obtain
any moment of fn of order q,

〈
f q

n

〉
≡ %N

j=0

(
j

N

)q

aN−j (1 − a)j
(

N

j

)
, (3)

that is, for large values of N , 〈f q
n 〉 ≈

∫
dx xqG(x,µ = 1 −

a,σ =
√

a(1 − a)/N )—G stands for Gaussian. The depen-
dence of f

q
n on a explains why both 〈fn〉 and σn in Fig. 1 show

discontinuities for the same p2 values.
We next quantify the level of stability of the (i)–(iii)

network. Using the first two moments of Eq. (3), we define
network risk (volatility) as σn ≡

√
〈f 2

n 〉 − (〈fn〉)2. We define
it this way because an absolutely stable network assumes
that all nodes are active, fn(t) = 1. With increasing network
instability, the network fn(t) increasingly fluctuates over time,
implying that the variance of fn(t) increases. In finance, the
similar concept of stock price volatility is a measure of stock
price variation over time [41]. Because a network is more
stable when fn(t) is less volatile (σn → 0) and when 〈fn〉 is
as close to 1 as possible, we propose another network stability
measure, namely the stability network ratio,

〈fn〉/σn, (4)

where the larger the ratio is, the more stable is the network.
Figure 4(a) shows that for a (i)–(iii) network, the ratio exhibits
hysteresis behavior, e.g., with increasing instability (p2 → 1),
〈fn〉/σn decreases. When N is large, 〈fn〉/σn =

√
(1 − a)N/a

[see Eq. (3)]. In practice, if two networks have equal 〈fn〉 but
different σn, the one with the larger ratio is the more stable.
Note that a similar first-to-second moment of a price return is
proposed in finance to quantify the performance of a financial
asset [42]. Another signal-to-noise ratio defined as the ratio
of mean to standard deviation of a signal is widely used in
science and engineering [43].

IV. FORECASTING POWER IN DYNAMICAL NETWORKS

When we have an initial configuration of active nodes, we
need to both estimate network volatility and determine how
many nodes will have failed at any future time t . We allow
the (i)–(iii) network in Fig. 1(c), initially at stable state I0, to
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FIG. 4. (Color online) Network estimator and forecasting in the
(i)–(iii) networks. (a) Network estimator, the ratio 〈fn〉/σn, exhibits
a strong hysteresis—the larger 〈fn〉/σn, the more stable the network.
The parameters used are as those in Fig. 1(a). The curve is the average
over different networks. (b) The two fractions, fn and f!, of the
network with time-dependent p1 that moves from I0 [Fig. 1(c)] at time
t = 0 to XA during the first δ = 250 steps. From δ to 2δ, the network
stays in XA. Upon reaching XA, the network phase-flips between
mainly “active,” I, and mainly “inactive” phases, II. (c) Moving from
I0 to XA after t = 2δ, we calculate two CDFs, C(fn) and C(f!), both
exhibiting a highly asymmetric bimodal shape. From C(fn) we can
estimate the percentage of (in)active nodes at future t . Shown also is
a combination of two Poissonian distributions, w1P (λ1) + w1P (λ2),
where w1 = 0.1, w2 = 0.9, λ1 = 0.59, and λ2 = 0.36, where λ1 and
λ2 are 〈fn〉 values in I and II. (d) For the number of active links, L(t),
we show P [$L(t)/L(t)] and its exponential fit.

move δ steps (with p1 changing linearly) to a highly volatile
phase-flipping state XA. Figure 4(b) shows a representative
fn(t). We always start from the same initial I0, perform a
large number of simulations [see Fig. 4(c)], and obtain the
conditional distribution function (CDF), C(fn), from which
we calculate the probability [

∫ 1
0.01q

C(fn)dfn] that no more
than q% nodes will be inactive at t = 2δ. In finance, this
probability approximates the risk that a substantial fraction of
a financial system will collapse, the so-called “systemic risk”
[44].

When we use fn, we are assuming that every node is
equally important. This frequently does not hold for real-world

networks [2,3,45], e.g., when large banks become dysfunc-
tional, they affect the overall financial network much more
than dysfunctional small banks. In the (i)–(iii) network, the
importance of each node is governed by network topology—
the time-dependent node degree, k(t). A randomly chosen link
is active if both its nodes are active, and the probability that the
link is active is (1 − a)2. The average number of active links
is

〈L〉 = (1 − a)2LT , (5)

where LT ≡ 1/2%N
i=1ki denotes the total number of links when

all links are active. Similar to Eq. (3) for a network with LT

links, each with probability u ≡ (1 − a)2 of being active, a
q-order moment of f!(t) = L(t)/LT —the fraction of active
links—is

〈
f

q
!

〉
≡ %LT

j=0

(
j

LT

)q

uj (1 − u)LT −j

(
LT

j

)
. (6)

Figure 4(b) shows a representative f!(t), and Fig. 4(c) shows
C(f!) [broader than C(fn)] from which we can calculate the
probability [

∫ 1
0.01q

C(f!)df!] that no more than q% of links
will be inactive at t . Figure 4(d) shows the PDF of the relative
change in L(t) and its exponential fit—which is potentially
important information for network management. Note that
L(t) = LT [1 − f!(t)] denotes the loss of a network’s links.
Using Eq. (5), we obtain 〈L〉 ≡ LT − 〈L〉 = a(2 − a)LT .

The (i)–(iii) network model exhibits one more potentially
important forecasting property. Suppose a network set in
a state XB [see Fig. 1(c)] within the hysteresis regime is
predominantly inactive. Reference [36] defines a local time-
dependent parameter p2,λ(t) = 1

λ
%λ

i=1p2(t + 1 − i) as the
average fraction of externally failed nodes over the most recent
interval of length λ. When p2,λ(t) crosses the “left” spinodal,
the network shifts from the inactive phase II to the active phase
I. Similarly, p1,λ(t) = 1

λ
%λ

i=1p1(t + 1 − i). In Ref. [36], the
PDF of p2,λ(t) [p1,λ(t)] determines the average lifetime of the
system in I and II. Here we find that p2(t) follows a binomial
distribution that can be approximated for large samples n with
the normal distribution N (µ = p2,σ

2 = p2(1 − p2)/n) ≡
P [p2(t)] ∼ exp[− n[p2(t)−p2]2

2p2(1−p2) ], where n = NE(a(p1,p2),k,m)
[see Eq. (2)]. From p2,λ(t) = 1

λ
%λ

i=1p2,t+1−i , we easily derive
p2,λ(t) = p2(t)/λ + p2,λ(t − 1) − p2(t − λ)/λ.

Thus, having information about the previous p2,λ, p2,λ(t −
1), we can forecast the current value, where the closer p2,λ is
to a spinodal, the larger the probability that the phase will flip.
We quantify this probability using the CDF

C[p2,λ(t)] ∼ exp
[
−Nλ2E(a(p1,p2),k,m)[p2,λ(t) − p2λ(t − 1) + p2(t − λ)/λ − p2/λ]2

2p2(1 − p2)

]
. (7)

This probability can be used to estimate, given the most recent local state p2λ(t − 1) and p2(t − λ), the probability P (x !
p2s |p2λ(t − 1),p2(t − λ)) that the network will move from being predominantly inactive, II, to predominantly active, I—here,
as in Ref. [36], p2s is a spinodal value where the network phase-flips from II to I [Fig. 1(c)]. Similarly, if p1s defines a spinodal
value at which the network phase-flips from phase I to II [Fig. 1(c)], from the CDF,

C[p1λ(t)] ∼ exp
[
−Nλ2[p1,λ(t) − p1λ(t − 1) + p1(t − λ)/λ − p1/λ]2

2p1(1 − p1)

]
, (8)
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FIG. 5. (Color online) Emergence of correlations at the network
level due to failure at the node level. (a) For each time series (constant
p2) used in Fig. 1(a), we show the DFA plot of fn(t) vs scale !,
F (!) ∝ (!)α , for the I-II transition. With increasing p2 up to 0.94,
F (!) moves upward, accompanied by a small (b) increase in the DFA
exponent α. α exhibits a crossover at a scale l that varies with the
recovery times τ and τ ′. Suddenly, at p2 ≈ 0.94, the DFA exponent
drops in a first-order phase transition. We also show correlations in
the fraction of externally failed nodes (dotted lines), responsible for
correlations in fn. (b) Exponent α, calculated for both I-II and II-I
transitions for scales ! ! 100, exhibits a clear hysteresis. The curve
is the average over different networks.

we can estimate the probability P (x " p1s |p1λ(t − 1),p1(t −
λ)) that the network will fall into the predominantly inactive
phase (e.g., as in an economic recession) within the next period.

In short, we can forecast the future behavior of a dynamic
network by calculating (a) the probability that no more than
q% nodes will be inactive at any future time t , and (b) the
probability that a network will move from being predominantly
inactive, II, to predominantly active, I, and vice versa.

V. TEMPORAL CORRELATIONS IN DYNAMICAL
NETWORKS

Finally we examine the emerging hysteresis in the correla-
tions of fn(t) due to network dysfunctionality at the node level.
For each time series fn(t) (τ = const) in Figs. 1(a) and 1(b) we
apply detrended fluctuation analysis (DFA) [46]—F 2(l) ∝ l2α .
Figure 5(a) shows that fn(t) exhibits finite-range correlations
of the random-walk type (α ≈ 1.5) with a clear first-order
phase transition in which a sudden change in the correlation

exponent α occurs when p2 approaches the value at which
we expect network collapse (see Fig. 1). An approximate
explanation of the correlations in fn(t) is that correlations
in fn(t) and its hysteresis behavior are due to correlations in
the fractions of externally failed nodes p2(t) and internally
failed nodes p1(t). Figure 5(a) confirms this assumption by
showing only correlations in p2(t). The existence of hysteresis
[38–40] in Fig. 5(b) indicates that the correlations in collective
modes are not the same when the network approaches network
collapse and when the network recovers—if, e.g., our network
models the global economy, then when the economy moves
from “bad” to “good” years, “good” years are never as good
as the previous “good” years.

VI. DATA ANALYSIS

To demonstrate how our model describes an economic
network in which firms are treated as nodes, we connect our
model parameters p, τ , and Th to real financial variables.
Since the seminal paper of Ref. [47], many models have been
developed in finance to estimate the probability pf that a firm
will experience financial distress. This probability is only par-
tially related to the (i) probability of internal failure p because
p does not take into account the possibility that the firm may
fail because of the proximity of failed neighbors. Using the the
second parameter τ , we define the period of time needed for an
internally failed node to recover. The counterpart to parameter
τ in finance is the average time a firm experiences financial
distress, which in the United States is approximately two years
[48]. We relate the third parameter Th—the vulnerability—to
finance by first recognizing that a bank i has a set of financial
variables, e.g., interbank assets AB,i , interbank liabilities
LB,i , deposits Di , and illiquid assets AM,i [49]. We define
solvency in a bank as (1 − φ)AB,i + AM,i − LB,i − Di > 0,
where φ denotes the fraction of neighbor banks to i that have
failed [49]. In addition, the larger the bank’s capital buffer
Ki = AB,i + AM,i − LB,i − Di , the less the bank will depend
on its neighbors. Thus in our model Ki is inversely related to
Th [50].

To demonstrate the utility of the (i)–(iii) network model
when analyzing real-world networks, we first analyze a small
economic network of 19 developed countries [51], and we
use an output measurement of trading dynamics, per capita
gross domestic product—GDP. For each country and for each
year t between 1870 and 2012 [52], a country (node) is
active if the GDP growth is non-negative (if it has been a
“good” year). Figure 6(a) shows the fraction of active countries
fn(t) that are becoming increasingly interdependent due to
globalization [the nonstationarity analyzed in Fig. 4(b)]. When
we disregard this nonstationarity, we find model parameters
(p = 0.082 ± 0.02, p2 = 0.77 ± 0.03, τ = 1.33 ± 0.5, and
Th = 56 ± 3%) for which the 〈fn〉 of our model and the
second network moment σn are the best fits of the empirical
moments. Figure 6(b) shows the fn(t) of the model. From p1 =
1 − exp(−pτ ) [36], p1 = 0.103 suggests that any randomly
chosen developed country will experience recession (failure)
approximately every ten years, since p1 represents the average
fraction of internally failed nodes [36]. The parameter p2 =
0.77 indicates that there is an ≈77% probability that a country
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FIG. 6. (Color online) Application of dynamical networks. (a)
Economics—how far is an economy from a volatile regime? Fraction
of developed countries, fn(t), not in recession ($gdp > 0). (b) For
a (i)–(iii) network we show the model’s fn(t) obtained by fitting
the first and the second moments in (a), where τ = 1.3, Th = 56%,
p1 = 0.103, and p2 = 0.77. (c) Hysteresis with two spinodals for the
(i)–(iii) network with N = 100, τ = 2, and Th = 50%. The parameter
set is close to the critical line in the supercritical region.
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FIG. 7. (Color online) Air traffic network. Fraction of active
northeastern US airports, fn, with more than 40% of canceled flights.
We also show f!.

will undergo recession if its trading partners have recently
experienced recession. Figure 6(c) shows the hysteresis [38]
in (p1,p2) space for the (i)–(iii) network model with τ = 2
and Th = 50%. We also show developed countries with p1 =
0.106 ± 0.01, p2 = 0.82 ± 0.02. We next analyze fn(t) for
23 Latin American countries, 25 EU countries, and 25 Asian
countries for each year since 1980. We calculate the network
stability ratio 〈fn〉/σn of Eq. (4) for each group and obtain the
values 3.25, 4.15, and 6.95.

We next analyze the airport traffic network [53] in
the northeastern United States (The Library of Congress
definition) comprising 66 airports (nodes), and we consider
only those flights (links) within the northeast. For each
day during the period from June 1, 2012 to May 31, 2013,
we calculate the fraction of failed airports, 1 − fn(t). We
arbitrarily define failed airports as those in which more
than Th = 40% flights have been canceled for the day. The
air traffic network in Fig. 7, as expected, shows a much
higher level of node stability than is typical in economic
networks—i.e., rarely does 1 − fn(t) reach 40%. Since the air
traffic network is scale-free [23], we apply the (i)–(iii) network
model to fit the empirical 〈fn〉 and σn data to the parameters of
the model—p = 0.011 ± 0.003 and p2 = 0.92 ± 0.03. Note
that airports in the air traffic network still function when links
fail (when flights are canceled). This suggests that an item
(iv) could be added to the (i)–(iii) dynamic network model,
namely the failure probability, p3, of each link.
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