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Abstract

We model the time series of the S&P500 index by a combined process, the AR+GARCH

process, where AR denotes the autoregressive process which we use to account for the short-range

correlations in the index changes and GARCH denotes the generalized autoregressive conditional

heteroskedastic process which takes into account the long-range correlations in the variance. We

study the AR+GARCH process with an initial distribution of truncated L9evy form. We :nd that

this process generates a new probability distribution with a crossover from a L9evy stable power

law to a power law with an exponent outside the L9evy range, beyond the truncation cuto;. We

analyze the sum of n variables of the AR+GARCH process, and :nd that due to the correlations

the AR+GARCH process generates a probability distribution which exhibits stable behavior in

the tails for a broad range of values n—a feature which is observed in the probability distribution

of the S&P500 index. We :nd that this power-law stability depends on the characteristic scale

in the correlations. We also :nd that inclusion of short-range correlations through the AR process

is needed to obtain convergence to a limiting Gaussian distribution for large n as observed in

the data. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Application of statistical physics methods to analyze probability distribution functions

(PDFs) of :nancial data has attracted recent interest. Much work [1–21] has been
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devoted to determine precisely the functional form of these PDFs. For the S&P500

stock index, it has been shown [7,21] that the central pro:le of the PDF is well

described by the L9evy distribution [22]. Recent analyses [21] of high frequency data

have shown that the PDF is described by a crossover to a power law, with exponent

1 + � well beyond the L9evy range (0¡�¡2). (The data cover the period 1 January

1985 to 31 December 1995, and the time interval between successive records of the

index is 1 min.) The tails of the PDF appear to exhibit stability for long but :nite time

scales.

In addition to the form of PDFs, other important, but complementary related quan-

tities, are the absolute value and variance of price changes, which are commonly used

as measures of the risk [3]. For the S&P500 index, in contrast to time series of price

changes that show only short-range correlations [9,21,23], the time series of absolute

values of price changes exhibit long-range correlations [23–27]. It is natural to ask how

slow-decaying (long-range) correlations in the variance may be related to the scaling

behavior observed in PDFs.

To describe the S&P500 index, we analyze the generalized autoregressive conditional

heteroskedastic (GARCH) process [28] to take account of correlations in the variance

of price changes. (A process is autoregressive if variable xt depends on its own lagged

values. Heteroskedasticity is related with non-constant variances.) In addition to the

GARCH process, we employ the autoregressive (AR) process [29] to account for the

e;ect of the short-range correlations in price changes and develop a combined process,

the AR+GARCH process. We show that due to the GARCH process, the AR+GARCH

process generates the power-law tails in the PDF with an exponent outside the L9evy

range. (Power-law tails in distributions can be obtained in multiplicative processes

introduced in Refs. [30] and [31].) The GARCH process itself is constructed out of

independent and identically distributed (i.i.d.) stochastic variables speci:ed by arbitrary

PDF. With the choice of truncated L9evy PDF [32], we model the crossover behavior in

the PDF of the AR+GARCH process as observed in the data [21]. We study a process

that is the sum of n AR+GARCH variables to probe for large n the stability of the

PDF. For this new process, we :nd long-range correlations in the variance arising from

the GARCH process. We also identify the long-range correlations as the source of the

empirically observed stability for a range of time scales in the power-law tails of the

PDF.

2. The GARCH process for a truncated L�evy distribution

2.1. The GARCH process

Let us de:ne an independent and identically distributed (i.i.d.) stochastic variable

vt with zero mean (〈vt〉= 0) and unit variance (〈v2
t 〉= 1). The generalized autoregres-

sive conditional heteroskedastic (GARCH) process xt [28] is a discrete time stochastic
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process generated by a stochastic variable vt through

xt = �tvt ;

�2
t = a + bx2

t−1 + c�2
t−1 ; (1)

where �2
t , called the conditional variance of the GARCH process, depends on both

most recent values of x2
t and �2

t , while a, b, and c are positive parameters. Thus,

the GARCH process has no correlations in xt , 〈xtxt′〉˙ �t; t′ , but has correlations in

the variance. (Applied for :nancial data, the GARCH process xt implies omission of

short-range correlations in the data.) For c= 0 the GARCH process reduces to the

ARCH process [33]. For b= c= 0, xt becomes vt of Eq. (1), an i.i.d. process. Using

Eq. (1), the expected variance of the GARCH process xt , de:ned by 〈x2
t 〉= 〈�2

t 〉≡ �2
x ,

becomes

�2
x =

a

1 − b− c
: (2)

Here b+c¡1 is a condition for the :niteness of �2
x , where �2

x , in practice, we calculate

from experiment.

The GARCH process was developed in part to take account of the long memory

in the variance typically found in :nancial data [23–27]. By iterating Eq. (1) (i.e., by

repeatedly substituting for �t on the right side), the conditional variance �2
t can be

rewritten as a constant plus the weighted average of all prior x2
t (�2

t in Eq. (1) can

be expressed as �2
t ˙ b

∑

∞

n=1 c
n−1x2

t−n). The GARCH process is characterized by an

exponentially decaying covariance function in the variance, cov(�2
t ; �

2
t−Kt) [28], with

decay rate given by |log(b+c)|. (The covariance function of the variance �2
t is de:ned

as cov(�2
t ; �

2
t−Kt)≡〈�2

t �
2
t−Kt〉 − 〈�2

t 〉〈�2
t−Kt〉, where Kt is the time horizon. For the

GARCH process cov(�2
t ; �

2
t−Kt)˙ exp(−Kt=�), where decay time � is the reciprocal

value of the decay rate de:ned as |log(b + c)|.) Even though the covariance function

decays exponentially in time, a long-range decay can be mimicked by strongly reducing

the decay rate. To achieve this long-range decay, the sum b+ c must be chosen close

to unity.

2.2. Truncated L$evy distribution

To implement the GARCH process of Eq. (1) explicitly, one must specify the form

of the initial distribution for vt , P(vt). The standard form for P(vt) in the :nancial

literature is the Gaussian [33,34] or the Student’s-t distribution [35], but other forms

are possible [29]. Generally we show that, regardless of the choice for P(vt), the

GARCH process generates the power-law tails in the PDF. But the choice for P(vt)

becomes important when a process characterized by correlations is applied to :t the

central region of empirical distribution. (The TL PDF for the ARCH process, applied

to price changes for the S&P500 index, is described in Refs. [36,37]. Price changes of

the S&P500 index are de:ned as St+Kt − St , where Kt is a time scale.) For the case

of the S&P500 index, Ref. [21] shows that the PDF is characterized by the crossover
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Fig. 1. Two di;erent sets of the GARCH process of Eq. (1) with P(vt) of the TL PDF [Eq. (3)] where b+c

is 0.7 and 0.9, respectively. The TL PDF has �= 1:3, �= 0:439, and ‘= 4 (as required, �2
v = 1, numerically

calculated). For the GARCH process, we set �x = 1 [Eq. (2)]. For all sets, the GARCH process generates the

power-law tails. In regime I, the PDF of the GARCH process, P(xt) typically follows the L9evy power-law

tails of the TL PDF, x−(1+�) (up to xt ≈ ‘). With increase of b + c, di;erence between P(xt) and P(vt)

becomes signi:cant, changing the slope of P(xt). Comparing two realizations with di;erent values of b and

c, but the same sum b+ c, we see that in regime II, the slope of the power-law tails is smaller for b larger.

Also, if b + c is :xed, the slope of the power-law tails is smaller if b is larger.

behavior from one power-law regime of the L9evy type, that describes the central region

of the PDF, to another power-law regime with an exponent out of the L9evy range. To

account for the crossover behavior in the PDF, together with long-range correlations

in the variance, we propose the GARCH process with P(vt) given by truncated L9evy

(TL) PDF [32]

P(vt)≡T�;�; l(v)≡
{

NL�;�(v) |v|6 ‘

0 |v|¿‘

}

: (3)

Here, L�;�(v) is the symmetrical L9evy PDF [22], where � (0¡�¡2), and � (�¿0)

are the two parameters of the L9evy distribution. N is the normalizing constant and

‘ is the cuto; length. We employ an algorithm in Ref. [38] provided for variables

v with � ≡ 1. Since the probability distribution of Eq. (3) rescales under v≡ v=n1=�,

T�; �̃; l̃(ṽ)≡T�;�; l(v)n
1=�, where �̃≡ �=n and l̃≡ l=n1=�, a random variable ṽ with �̃ �= 1 is

calculated as ṽ≡ v=n1=�.

Now we analyze how the choice Eq. (3) for P(vt) a;ects the form of the PDF

P(xt) of the GARCH process xt of Eq. (1) (Fig. 1). Due to the form for P(vt),

approximately scaling as 1=(v1+�) for |v|¡‘, and due to the correlations imposed by

GARCH process, we :nd a crossover behavior between two power-law regimes. In

regime I, the e;ects of the correlations in the variance on P(xt) are generally weak,

and the di;erence between P(xt) and P(vt) is very small. For this reason, the parameter

� of P(vt) typically we chose to :t the central region of the empirical PDF. In regime

II, the GARCH process generates power-law tails in P(xt) with an exponent outside
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the L9evy range. Note that :niteness of the nth moment, de:ned as
∫

xnP(xt), implies

the range of allowed exponent in the power-law tails x−(1+�̃) of P(xt). The power-law

tails are expressed in analogy with stable L9evy power-law tails. For :niteness of the

variance (n= 2), the exponent 1 + �̃ has to be larger than 3 (�̃¿2).

2.3. Asymptotic behavior of the GARCH process for truncated L$evy distribution

To probe asymptotic behavior of PDFs over a varying time scale, we next consider

a new stochastic process

zn≡
n

∑

t=1

xt ; (4)

where as before xt is a GARCH process and n refers to a time scale. In Fig. 2, we

show two sets of P(zn) with c= 0:75, while b equals 0.24 and 0.15, respectively. We

see that, for all n presented, the power-law tails of P(zn) practically does not change

for the set characterized by b + c= 0:99. The power-law tails of P(zn) retain stability

when b + c is kept close to 1. For the set with b + c= 0:9, with increase of n, we

observe a very slow decrease of the slope in the power-law tails. Hence, the PDF P(zn)

of the stochastic process zn of Eq. (4) de:ned by correlations in the variance, where

b+c ≈ 1, preserves its power-law functional form. However, in contrast with the L9evy

process [22], the exponent 1 + �̃ is outside the L9evy range. The same behavior—the

stability of the power-law tails of the empirical PDFs with an exponent outside the
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Fig. 2. Test of the dependence of the exponent and the range of scales over which exponent is maintained.

Log–log plot of PDFs P(zn) of the stochastic process zn of Eq. (4) where xt is a GARCH process of

Eq. (1) where b= 0:24 and c= 0:75, together with PDFs P(zn) where the GARCH process xt is speci:ed

by b= 0:15 and c= 0:75. We show n equal to 1; 4; 16; 64; 256, and 1024, from left to right. For given

sets, b+ c is equal to 0:99 and 0:9, respectively. P(vt) [Eq. (1)] has the TL PDF of Eq. (3) with the cuto;

length ‘= 8, �= 1:4, and �= 0:275. We see that for the set characterized by larger b+ c, i.e., b+ c= 0:99,

the power-law tails remain stable for all values of n analyzed. For the set with b+ c= 0:9, the slope of the

tails slowly decreases with increase of n. Thus, the closer b + c to 1, the longer stability of the power-law

tails. For both sets, �x of Eq. (2) equals 1.
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L9evy range for long, but :nite time scales—has been recently observed for the

S&P500 index [21].

3. Application to the S&P500 index

3.1. Data analysis

For the S&P500 index, Ref. [7] shows that the central region of the PDF of price

changes is :t by the L9evy PDF with �= 1:4. For a long, but :nite time scale, the

maximum of the PDF of price changes (probability of return) as a function of time

scale Kt, exhibits a power law with a slope 1=�, inside the L9evy range. Ref. [39]

shows that the PDFs of price changes (Fig. 3) and relative price changes,

Rt ≡ log(St+Kt) − log(St) (5)

practically overlap after appropriate rescaling. Ref. [21] shows that the tails of the

1 min PDF P(Rt) are power-law distributed with exponent 1 + �̃= 4, beyond the L9evy

range (Fig. 4a). Further, P(Rt) retains its power-law functional form (Fig. 4a) over a

wide range of time scales Kt, after which a slow convergence to Gaussian behavior

occurs [21].

The absolute value of Rt exhibits long-range power-law correlations that persist up

to several months [40,41]. For a time series Xt , correlations in absolute values and vari-

ance of Xt are of the same kind [23]. This feature can be mimicked by exponentially

decaying correlations in the variance of the GARCH process with the characteris-

tic decay time �= |log(b + c)|−1 where (b + c) is appropriately chosen. We use the

sum (b+ c) as a measure of the power-law stability of PDFs over varying time scales

10
_5

10
_4

10
_3

10
_2

X

10
_3

10
_1

10
1

10
3

P
(X

)

S&P500
TL
GARCH (b+c=0.99)

4

2.4

Fig. 3. The tails of the 1-min P(Rt) [Eq. (5)] of the S&P500 index are of slope 1 + �̂ ≈ 4 [54]. Near the

origin, P(Rt) is characterized by the slope 1 + �= 2:4. The standard deviation of Rt �R equals 0:216×10−3.

Also shown is the PDF of the GARCH process xt of Eq. (1), P(xt) with b= 0:06 and c= 0:93 chosen to

give the slope of the tails of P(xt) equal to 4. The choice for the sum b + c= 0:99 is explained in Fig. 4.

P(vt) in Eq. (1) has the TL PDF of Eq. (3) with the cuto; length ‘= 8:0, and �= 0:275 and �= 1:4. The

choice for P(vt) speci:es that near the origin, the PDF P(xt) is characterized by the slope 1 + �= 2:4.
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Fig. 4. (a) Log–log plot of (symbols) P(Rt) [Eq. (5)] for the S&P500 index for di;erent time scales Kt. We

show the PDFs P(zn) of the sum of n AR+GARCH variables rt [Eq. (6)]. The parameters of the GARCH

process and TL PDF are given in Fig. 3, while �1 = 0:6 and �0 = 0:83×10−6 [Eq. (6)]. Persistence in

the power-law tails of slope 4 in the data is accomplished through the GARCH process with b + c= 0:99.

The parameter �1 in Eq. (6) is set to enable good :t between P(zn=10) and P(Rt) for Kt = 10 min. For

given parameter �1; �x of Eq. (2) is calculated from �r = 0:216×10−3 of Eq. (7) calculated from the data

[Eq. (5)] for Kt = 1 min. (b) Probabilities of return P(zn = 0) and P(Rr = 0) for small values of n approxi-

mately follow the PDF of the L9evy process with �= 1:4. In the absence of the AR process, P(zn = 0) would

tend the upper Gaussian distribution with the variance �2
r n. We also show the limit Gaussian distribution

with the variance �̂2n to which, for large values of n due to presence of the AR process, P(zn = 0) :nally

tends. It holds �̂101=2 = �10 where �10 = 0:115×10−2 calculated from Eq. (5) for Kt = 10 min. The time

scale shown is half of month long [55].

(Fig. 2)—the closer is (b + c) to 1, the longer is the stability of the power-law tails.

Generally, we show that GARCH processes with di;erent choices of “dynamical”

parameter (b + c) can generate the same slope of the PDF for a :xed time scale

Kt (Fig. 1), but di;erences in PDFs emerge for larger time scales. (The parameter

of the GARCH process, b + c and the L9evy parameter � in Eq. (3) are examples of

“dynamical” parameters. They govern the behavior of PDFs for di;erent time scales
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Kt. In contrast, the L9evy parameters ‘ and � in the paper are set to model the 1 min

PDF.) Hence, the choice for b + c can be :xed only by :tting empirical distributions

corresponding to di;erent time scales.

In Fig. 3, we compare three di;erent PDFs: (a) The 1 min PDF P(Rt) of the S&P500

index, characterized by crossover behavior between two power-law regimes with the

standard deviation �R = 0:216×10−3 calculated from the data of Eq. (5) for Kt = 1 min.

(b) The TL PDF (that is P(vt) of Eq. (1) after rescaling) with the parameter �= 1:4

[7,22] chosen to :t P(Rt) in the central regime [32]. (c) The PDF P(xt) of the GARCH

process xt , with b= 0:06 and c= 0:93. The choice (b + c) = 0:99 is explained below

when we analyze PDFs for time scales other than Kt = 1 min. The speci:c values for

parameters b and c are chosen to generate the slopes of the tails of P(xt) equal to the

slope of 4 found for the 1 min P(Rt) [21]. Due to strong correlations in the variance

(through b + c ≈ 1), the di;erence between P(vt) and P(xt) in the central regime is

more pronounced near the crossover (see also Fig. 1).

3.2. Combined AR+GARCH process

Besides long-range correlations in absolute values of price changes Rt of Eq. (5),

time series of price changes exhibit short-range correlations. An autoregressive (AR)

process [29] is commonly employed to account for such short-range correlations. To

encompass empirical evidences found for the data, we de:ne a combined AR+GARCH

process as

rt =�0 + �1rt−1 + xt ; (6)

where xt is the GARCH process of Eq. (1). The expected variance of rt is given by

�2
r =

�2
x

1 − �2
1

(7)

and �2
x is de:ned by Eq. (2).

In Fig. 4a, we compare the PDFs of linear combinations of n AR+GARCH variables

(zn≡
∑n

t=1 rt) with the PDFs P(Rt) of the S&P500 index over varying time scales Kt

(Kt = 1 min corresponds to n= 1). The slope of the tails in P(Rt) retains stable for

a wide range of Kt, and then very slowly decreases for larger Kt. Numerically (see,

Fig. 2), we :nd the choice for (b+c) used in Fig. 3, that ensures the “duration” of the

power-law stability as found in the data. We show that di;erent values of parameter

�1, while the GARCH parameters b and c are constant, do not a;ect P(zn=1) of

the AR+GARCH process, but change the form of P(zn) for n �= 1. During the :tting

procedure, keeping b and c constant, we :nd the value of the parameter �1 that enables

good agreement between P(zn) and P(Rt) for di;erent Kt.

For small values of n in Fig. 4b we see that, P(Rt = 0) and P(zn = 0) approximately

follow the PDF expected for the L9evy process with �= 1:4 [9]. The upper straight line

corresponds to the Gaussian distribution

G(zn = 0) = 1=[
√

2 �Rn
1=2] ; (8)
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where �R is found for the data of Eq. (5) with Kt = 1 min. This is the limiting Gaussian

distribution to which sums of GARCH variables (without AR process) converges. We

show that compared with the case with no AR process, inclusion of the AR process

shifts P(zn = 0) downwards, and so postpones the convergence to the limit Gaussian

distribution

G(zn = 0) = 1=[
√

2 �̂n1=2] (9)

to which P(zn = 0) tends for large values of n. The existence of two limit Gaus-

sian distributions is due to the fact that short-range correlations in Rt imply that the

time-averaged standard deviation of Rt , �(Kt) does not scale with unique scaling expo-

nent for Kt [9,21,39]. For Kt¿10 min, where short-range correlations in Rt practically

vanish [21], we may set �(Kt) = �̂(Kt)1=2, where �̂(Kt)1=2 = �10 and �10 is calculated

for the data of Eq. (5) with Kt = 10 min. Thus, e;ectively, for small time scales Kt,

the AR process combined with the GARCH process enables the approximate scaling

of P(zn = 0) vs. n with the slope 1=�. The slope 1+ �̂ ≈ 4 corresponds to inverse-cubic

law (�̂= 3) in the tails of cumulative distribution of Rt [21].

4. Summary

In summary, a variety of :nancial data are characterized by long-range correlations

in the variance [23–27], short-range correlations in price changes [9,21,23], L9evy type

of scaling in the central region [5,42] and power-law tails in the PDFs with expo-

nent beyond the L9evy range [43]. In this paper, to model time series of the S&P500

index, we derive the AR+GARCH process, where the GARCH process we employ

to account for long-range correlations in the variance, and the AR process to take

account of short-range correlations in price changes. The GARCH process itself gener-

ates power-law tails in the PDFs. We employ the GARCH process with the truncated

L9evy distribution to obtain a crossover behavior between a power law of L9evy type and

a new power law “dynamically generated” due to correlations in the variance imposed

by GARCH process. We analyze the sum of n AR+GARCH variables and show that

the long-range correlations in the variance, imposed by the GARCH process alone, are

followed by dynamical stability in the power-law tails of the PDF for a long, but :nite

range of n. In applications, the GARCH process might be very useful since numerous

phenomena described by stable power-law statistics are characterized by correlations

with long-range decay over wide range of time scales [44–53].
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