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Abstract. – We develop a scale-invariant truncated Lévy (STL) process to describe physical
systems characterized by correlated stochastic variables. The STL process exhibits Lévy stabil-
ity for the distribution, and hence shows scaling properties as commonly observed in empirical
data; it has the advantage that all moments are finite and so accounts for the empirical scaling
of the moments. To test the potential utility of the STL process, we analyze financial data.

In recent years, the Lévy process [1] has been proposed to describe the statistical properties
of a variety of complex phenomena [2–14], due to scaling behavior in distributions similar to
that observed in empirical data. However, the application of the Lévy process to empirical
data is limited because, opposite to commonly encountered data, it is characterized by no
correlations in the moments.

Lévy walks [7] have been proposed to account for the finite moments observed for empirical
data. Another way to retain the finite variance is by means of truncated Lévy (TL) flights [15]
defined to have a Lévy distribution in the central regime, truncated by a function decaying
faster than a Lévy distribution in the tails. However, the TL process with either abrupt [15]
or smooth [16] truncation has limitations when applied to empirical data. i) The TL process
is introduced for independent and identically distributed (i.i.d.) stochastic variables, while
variables describing many physical systems are long-range correlated [17–20], and so are not
i.i.d. ii) The distributions for a variety of complex systems, however, are often characterized
by regions of scale-invariant behavior, while the TL process tends to the Gaussian distribution
and hence does not exhibit scale invariance.

Here we introduce a stochastic process which we call the scale-invariant truncated Lévy
(STL) process. The STL process might be regarded as a generalization of the truncated Lévy
process —due to scaling transformations of the Lévy type, the stochastic variables exhibit
scale-invariant behavior in the distributions, and due to truncation even in the moments. We
also propose a dynamical mechanism to account for the regimes of different scaling behavior.

c© EDP Sciences



492 EUROPHYSICS LETTERS

10
0

10
1

10
2

10
3

∆t (min)

10 -1

100

101

σ ∆
t

S&P500 index
STL(σ1)
STL + breakdown
TL(σ1)
TL(σTL)

slope=0.5

non-i.i.d. i.i.d.

ε/α=0.7σ1

σ TL

(∆t)x

σx

STL TL

Fig. 1

100 101 102 103

∆ t (min)

10-1

100

101

P ∆t
(0

)

S&P500 index
Levy and STL(σ1)
TL(σ1)
Gauss(σ1)
STL + breakdown
Gauss(σTL)

noni.i.d. i.i.d.

slope=0.5

(∆ t)x

 ε/α=0.7

STL TL

(∆ t)s

Fig. 2

Fig. 1 – S&P500 index changes show two scaling regimes for the standard deviation σ. The regime
at small time scales ∆t, where σ∆t = σ1(∆t)0.7, and σ1 is calculated for the data with ∆t = 1, we
model by the STL process (eqs. (1) and (2)) with α = 1.43 (fig. 3). From eq. (4) we obtain ε = 1.
The index changes for the entire range of time scales with the crossover at ∆t× = 30, we model by
the STL process with a breakdown (eqs. (1), (6), and (7)). The breakdown in the STL is equivalent
to a transition to a TL process at large time scales ∆t > (∆t)×, where λ∆t ≡ λ× = const and
A∆t ≡ ∆tA×, with σTL larger than σ1. This is the reason for the delay (at time scale (∆t)s ≈ 103)
in the transition from Lévy to Gaussian behavior observed for P∆t(0) in fig. 2. Note that the TL
process with a standard deviation σ1 would exhibit for P∆t(0) a transition from Lévy to Gaussian at
smaller time scales (fig. 2).

Fig. 2 – Maximum of the distribution P∆t(0) of the S&P500 index changes Rt follows the power law
scaling for more than 3 decades in ∆t. We show the STL process with α = 1.43 and A1 = 0.0027
obtained by fitting P∆t=1(Rt) (fig. 3). The maximum of the distribution, as expected from eq. (3),
follows the distribution of the Lévy process with the same α and A1 for all time scales. The TL
process (with σ1 = 0.07, identical to the empirical value) exhibits a transition at short time scales to
the Gaussian process (with the same value of σ1), in disagreement with the data. The STL process
with a breakdown at (∆t)× with distribution of eqs. (1), (6), and (7), however, is in agreement with
the data and explains the delayed transition (at (∆t)s ≈ 103) to the Gaussian observed in the data.

To exemplify the motivation for the STL process, we analyze the changes of the S&P500
stock index, denoted by Rt, over varying time scales ∆t sampled for the 12-year period
Jan. ’84–Dec. ’95. In particular, we focus on the scaling behavior of several statistical char-
acteristics: i) In fig. 1 the standard deviation of index changes as a function of time scale
∆t shows two different scaling regimes with a crossover at (∆t)× ≈ 30 min [21]. The regime
at small time scales is characterized by exponent 0.7, indicating the presence of positive cor-
relations in the index changes. The second regime has exponent 0.5, indicating absence of
correlations. Therefore, for the whole range of time scales, the stochastic process underlying
index changes cannot be described by an i.i.d. stochastic process, such as the Lévy or the TL
process. ii) In fig. 2 the maximum of the distribution P∆t(0), as a measure of behavior of the
distribution in the whole central part, however, follows the distribution expected for a Lévy
process for more than three decades [14]. iii) The scaling exponent of P∆t(0) is identical to
the exponent of 0.7 for the standard deviation in the first regime. However, the crossover in
the scaling of the standard deviation is not followed by a change in the slope of P∆t(0).
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The first regime at small time scales in fig. 1 characterized by correlations in index changes,
we describe by the STL process specified by the distribution

P̃(z) ≡
1

2π

∫

φ(k)eikzdk, (1)

where φ(k) ≡ exp[−
∫ ∞

−∞
dz(1− e−ikz)f(z)] is the characteristic function [16,22] and f(z) ≡

Ae−λ|z|β |z|−1−α. The parameters α (0 < α < 2) and A (A > 0) are of the Lévy process [1],
where α governs the scaling behavior of the distribution. The parameter λ makes f(z) decrease
faster than z1+α expected for the Lévy process, and so ensures a smooth truncation of the
Lévy distribution, and makes the moments finite. The parameter β can take any positive
value but, for the sake of simplicity, we set β = 1 in order to obtain an analytic form for φ(k)
(eq. (1)) [16].

Despite the truncation, we maintain scale invariance of the Lévy type for P(z), over the
entire range including the tails, by defining the scaling transformations [23]

A∆t ≡ (∆t)εA1, λ∆t ≡ (∆t)−εβ/αλ1, (2)

where ∆t is the time scale and ε can take any positive value. Under these transformations,
the distribution P̃(z) ≡ P̃∆t(z) scales as the Lévy stable distribution:

z ≡ (∆t)ε/αz1, P̃∆t(z) ≡
P̃1(z1)

(∆t)ε/α
. (3)

These scaling transformations relate the variable z1 for the time scale ∆t = 1 with the linear
combination of those stochastic variables, denoted by z, at any given ∆t. With the transfor-
mations of eqs. (2) and (3), we obtain a process with controlled dynamical properties —P̃∆t(z)
for any value of ∆t can be calculated from the distribution at any chosen ∆t (e.g., ∆t = 1).
Note that for λ = 0, and ε = 1, the distribution (1) reduces to the distribution expected for
the Lévy process [24]. For that reason, with an appropriate choice for λ, for small values of z,
P(z) has a Lévy profile in the central part. Also, for ε = 1 and λ = const in eq. (2), the scale
invariance in distributions of eq. (3) is lost and that case corresponds to the TL process [16].

Although the distribution P̃∆t(z) exhibits scaling properties identical to the Lévy stable
distribution, the Lévy and the STL process defined by eqs. (1) and (2) are different. While
the Lévy process is defined for i.i.d. variables, the STL process is characterized by correlated
stochastic variables. To demonstrate this, we consider the scaling of the second moment σ2

over varying time scales ∆t [25]:

σ2
∆t =

2A Γ((2− α)/β) λ(α−2)/β

β
= (∆t)2ε/ασ2

1 , (4)

where the last term is obtained after inserting the scaling transformations of eq. (2) in the
second term, and σ1 is the standard deviation for ∆t = 1. Clearly, the presence of correla-
tions is indicated by the scaling exponent ε/α chosen to be different than 0.5, expected for
uncorrelated process. The scaling exponent 0.5 is obtained for the i.i.d.

In addition, the STL process exhibits scaling not only for the second moment but also for
all higher moments:

〈|z|n〉 ≡

∫

dz |z|n P̃∆t(z) = ∆tεn/α〈|z1|
n〉 . (5)
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Fig. 3 – Distributions P∆t(Rt) of the S&P500 index changes Rt for different time scales ∆t. By solid
lines, we show the distributions P̃∆t(z) of eqs. (1), (6), and (7) for the same time scales. We fit only
P∆t=1(Rt), when ∆t = 1. We set α = 1.43 (eq. (1)), since the central part of P∆t=1(Rt) is nice fit
by the Lévy distribution with given α. The rest of parameters (eqs. (6) and (7)) A1 = 0.0027 and
λ1 = 2.6 are found to give the standard deviation (eq. (4)) for ∆t = 1 as calculated for the data, and
to fit better P∆t=1(Rt) in the entire range. For any ∆t > 1, P̃∆t(z) is calculated from P̃∆t=1(z).

Hence, the STL is a process for which the distribution P̃∆t(z), the second moment σ2, and
all higher moments 〈|z|n〉 scale with the same scaling exponent ε/α, due to the scaling trans-
formations we introduce in eq. (2). The STL process yields the same scaling exponent for the
maximum of the distribution and the standard deviation as found for the data in figs. 1 and 2.

To account for the crossover behavior shown in fig. 1 in the scaling of the standard deviation
of index changes at time scale (∆t)×, we introduce a new stochastic process with two different
regimes of time scales —the STL process with a breakdown— with the distribution of eq. (1)
and the scaling transformations

λ∆t =

{

(∆t)−ε1β/αλ1, 1 ≤ ∆t ≤ (∆t)×

λ×, ∆t > (∆t)×

}

, (6)

A∆t =

{

(∆t)ε1A1, 1 ≤ ∆t ≤ (∆t)×

∆t A×, ∆t > (∆t)×

}

. (7)

At the crossover time scale (∆t)× the STL process with breakdown exhibits a transition
from a non-i.i.d. STL process, where standard deviation scales as σ∆t ∝ (∆t)ε1/α, to an i.i.d.
TL process for which σ∆t ∝ (∆t)1/2. Here α, A1 and λ1 are free parameters, chosen to fit the
distribution P∆t(Rt) for the S&P500 data at time scale ∆t = 1. The parameter α = 1.43 is
set to fit the central region of P∆t=1(Rt) that is approximately the Lévy distribution, while
A1 and λ1 are set to reproduce P∆t=1(Rt) over the entire range (fig. 3). The first regime in
eqs. (6) and (7) at small time scales ∆t < (∆t)×, which we call the STL regime, accounts
for the empirical regime in fig. 1 with correlations in index changes, where σ∆t ∝ (∆t)0.7.
Equating this scaling exponent with that from eq. (4), ε1/α = 0.7, we obtain ε1 = 1. The
second regime at large time scales, or the TL regime, accounts for the uncorrelated regime in
index changes in fig. 1, where σ∆t ∝ (∆t)0.5. Continuity of the distributions and the moments
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Fig. 4 – (a) For the S&P500 index (Jan. ’84–Dec. ’95), we show how the standard deviation of index
changes and relative index changes completely overlap, after rescaling by the average value of the
index for that period. The standard deviation is calculated for a long period of time (12 years). In
(b) and (c) we show how the distributions of the same stochastic variables collapse after rescaling by
the same average value of the index. The collapse is obtained again for both high-frequency (1 min)
and low-frequency (1 week) data. We also subdivide the 12 year period in two equal subintervals,
and find the same collapse.

at the crossover time scale (∆t)× is ensured by continuity in the values of A and λ: from

eqs. (6) and (7) we find A× ≡ (∆t)ε1−1
× A1 and λ× ≡ (∆t)

−βε1/α
× λ1, where β = 1.

We find that the maximum of the distribution P̃∆t(0) of eqs. (1), (6), and (7) for the STL
process with a scaling breakdown is in good agreement with P∆t(0) for the data for more
than three decades (fig. 2). P̃∆t(0) gradually scales from a value expected for a Lévy process,
L(0) ∝ (∆t)−1/α to a value expected for a Gaussian process, G(0) = 1/(

√

(2π)σTL)(∆t)−1/2,
where σTL is the standard deviation for the limiting Gaussian distribution. Since σTL is
larger than σ1 calculated for the data with ∆t = 1, in fig. 2 we see that the transition from
the Lévy to the Gaussian regime is delayed compared with the transition from the Lévy to
a limiting Gaussian process if the whole range of time scales is characterized by i.i.d. TL
stochastic variables with standard deviation σ1. The reason for the delay is that for the first
STL regime in eqs. (6) and (7), σ∆t increases with exponent 0.7, that is much faster than 0.5
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expected for the second i.i.d. TL regime (see fig. 1). At the crossover time scale (∆t)×, the
standard deviation reaches the value σ× = (∆t)0.7

× σ1. From the continuity of the standard
deviation for different regime of time scales at (∆t)×, we calculate σ× = (∆t)0.5

× σTL, where
σTL is the standard deviation for the limiting Gaussian distribution. The time scale (∆t)s of
the transition between the Lévy and the Gaussian regime can be calculated by equating the
maximum of the probability P∆t(0) for the Lévy and Gaussian distributions [26]. We find
that (∆t)s = B(∆t)×, where B ≈ 70 (fig. 2). Such a relation is interesting, since it explicitly
connects the crossover from the Lévy to the Gaussian regime in scaling of distribution with
the crossover from non-i.i.d. to i.i.d. process in scaling of standard deviation.

Finally, in fig. 3 for different time scales ∆t, we compare the empirical distributions P̃∆t(Rt)
of the S&P500 index changes with the distributions P̃∆t(z) of eqs. (1), (6), and (7). Good
agreement between the data and the theoretical results is observed both for the central part
and for the tails. At small time scales, the scale-invariant behavior of P̃∆t(z) is maintained in
the entire range due to the scaling transformations of the STL process (eq. (2)). The crossover
to an i.i.d. TL process at large time scales ensures a smooth transition to a Gaussian-like
profile. We find that the proposed mechanism of a STL process with a breakdown provides a
reliable control of the dynamical properties of the distribution.

Up to now, we have considered the changes of the S&P500 index as the stochastic variables
analyzed. The choice of stochastic variable depends on the type of the stochastic process: e.g.,
for an additive process one considers increments, while for multiplicative processes the appro-
priate choice are relative increments. In finance, it is traditionally assumed that economic
indicators arise from a multiplicative process, and correspondingly the preferred quantity to
analyze are the relative changes commonly defined as the difference in the natural logarithm
of the index. The additive and multiplicative processes are related for high-frequency data
(small ∆t) and short period of analysis, so the use of index changes or relative index changes
leads to similar results. We find that even for low-frequency data (large ∆t) and for long
period of analysis (up to 12 years), the results for the distribution and the standard deviation
remain similar for both the index changes and the relative index changes (fig. 4).

We have proposed a stochastic process that even in the presence of correlations among
the stochastic variables exhibits a Lévy stability for the distribution. The STL process is
characterized by identical scaling exponent for both the moments and the PDF. The STL
process provides a unified dynamical picture to describe different statistical properties, and
can be generalized for situations when the moments and the PDF exhibit different scaling
behavior. The STL process can be utilized —as we show in the case for financial data— not
only for processes with a single scaling regime but also for systems with different regimes of
scaling behavior. Recently, the crossover behavior in scaling of moments has been found for
DNA sequences [27].
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[4] Havlin S. and Ben-Avraham D., Adv. Phys., 36 (1987) 695.
[5] Bouchaud J.-P. and Georges A., Phys. Rep., 195 (1990) 127.
[6] Ott A., Bouchaud J.-P., Langevin D. and Urbach W., Phys. Rev. Lett., 65 (1990) 2201.
[7] Shlesinger M. F., Zaslavsky G. M. and Klafter J., Nature, 363 (1993) 31.
[8] Solomon T. H., Weeks E. R. and Swinney H. L., Phys. Rev. Lett., 71 (1993) 3975.
[9] Bardou F., Bouchaud J.-P., Emile O., Aspect A. and Cohen-Tannoudji C., Phys. Rev.

Lett., 72 (1994) 203.
[10] Moon J. and Nakanishi H., Phys. Rev. A, 42 (1990) 3221.
[11] Hayot F. and Wagner L., Phys. Rev. E, 49 (1994) 470.
[12] Hayot F., Phys. Rev. A, 43 (1991) 806.
[13] Zumofen G. and Klafter J., Chem. Phys. Lett., 219 (1994) 303.
[14] Mantegna R. N. and Stanley H. E., Nature, 376 (1995) 46.
[15] Mantegna R. N. and Stanley H. E., Phys. Rev. Lett., 73 (1994) 2946.
[16] Koponen I., Phys. Rev. E, 52 (1995) 1197.
[17] Akgiray V., J. Business, 62 (1989) 55.
[18] Bollerslev T., Chou R. Y. and Kroner K. F., J. Econometrics, 52 (1992) 5.
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