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Abstract

We model the power-law stability in distribution of returns for S&P500 index by the

GARCH process which we use to account for the long memory in the variance correlations.

Precisely, we analyze the distributions corresponding to temporal aggregation of the GARCH

process, i.e., the sum of n GARCH variables. The stability in the power-law tails is controlled

by the GARCH parameters. We model the crossover behavior in magnitude correlations of

returns by the so-called two-FIARCH process. Besides detrended fluctuation analysis, we

employ the method proposed by Geweke and Porter-Hudak to estimate the fractional

parameter in magnitude correlations.
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Much work [1–7] have been devoted to determine precisely the functional form of

financial distributions since Mandelbrot [3] and Fama [4] have suggested stable Lévy
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distribution [8] to describe fat tails in the distributions of returns, defined as the first

difference of the logarithm of cotton (Mandelbrot) and common stock prices

(Fama). For high-frequency S&P500 index recorded each minute, Gopikrishnan et

al. [9] have shown that the distribution of 1 min returns for S&P500 index is well

described by the crossover behavior between a power-law regime of a Lévy type,

found before by Mantegna and Stanley [5], and a power-law regime with an

exponent 1 þ a well beyond the Lévy range (0oao2) [10]. Due to large number of

data points, it has been shown that the far tails of the distributions of returns appear

to exhibit stability for long, but finite time scales (Fig. 1a) [9], while the probability

distribution in the central part is well described by stable Lévy distribution (Fig. 1b).

The crossover behavior between two power-law regimes has been also found in

magnitude correlations [11] (Fig. 2).

To describe power-law stability in the distribution of returns for different time

scales, we employ the generalized autoregressive conditional heteroskedastic

(GARCH) process: xt ¼ st�t, where �t is an i.i.d. process and s2
t ¼ aþ bx2

t�1 þ

cs2
t�1 [12]. The GARCH process is developed to take account of variance

correlations typically found in financial data [12] (Fig. 2). Error distribution

function Pð�tÞ is defined as h�ti ¼ 0 and h�2t i ¼ 1, while a, b, and c are nonnegative

parameters, where bþ co1, for stationarity reason. By iterating the conditional

variance s2
t , it can be rewritten as a constant plus the weighted average of all

prior x2
t .

Generally, regardless of the choice for Pð�tÞ, the GARCH process generates the

power-law tails in the distribution of xt [13–16]. But the choice for Pð�tÞ becomes

important when the GARCH process is applied to fit the central region of empirical

distribution, since even GARCH process generates the power-law tails in PðxtÞ, the
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Fig. 1. (a) For finite time scales the power-law tails of the probability distributions of index returns remain

practically stable with exponent equal to 4. The probability distributions of temporal aggregations of

variables of Eq. (1) exhibit the same behavior. (b) For the same time scales, the probability distribution of

index returns at origin follows the Lévy distribution with a ¼ 1:4. We present the corresponding Gaussian

distributions for cases with and without serial correlations. We also show the probability distribution at

origin of the temporal aggregation of variable of Eq. (1), Pðzn ¼ 0Þ.
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very central region of PðxtÞ typically resembles the functional form of error

distribution, Pð�tÞ [14,15].

To this end, since the 1 min distribution of returns for the S&P500 index in Fig. 1

is characterized by the crossover behavior from one power-law regime of the Lévy

type [8], describing the central region of the distribution, to another power-law

regime with an exponent out of the Lévy range, we model the empirical crossover by

the GARCH process with Pð�tÞ given by truncated Lévy (TL) distribution [2]. Since

the central regime of the 1 min distribution PðRtÞ in log–log plot is of slope

1 þ â � 2:4, for the error distribution Pð�tÞ we choose the Lévy exponent a ¼ 1:4
[2,15]. With a set of parameters given in Ref. [15], we obtain the power-law tails in

PðxtÞ with the slope of the tails equal to 4.

Next, to account for the effect of the short-range correlations in 1 min returns, in

addition to the GARCH process, we employ an autoregressive (AR) process [2]. To

probe for large n the dynamic stability of the distributions, we study a temporal

aggregation of the GARCH process, the process zn that is a sum of n AR+GARCH

variables

rt ¼ f0 þ f1rt�1 þ sx�t : ð1Þ

In Fig. 1a, besides empirical distributions for different time scales Dt, we show the

distributions PðznÞ. Persistence in the power-law tails of slope 4 in the data we model

by the GARCH process with bþ c taken to be close to 1 [12,15]. The long-range

magnitude correlations built in the GARCH process yield stability in the power-law

tails of the distribution for a long range of time scales. The closer bþ c to one, the

longer power-law stability [15].

In Fig. 1(b) we show five distributions of return at origin, one of which is

empirical. For small time scales n, Pðzn ¼ 0Þ approximately follows the Lévy

distribution with a ¼ 1:4. If there were no serial correlations (f1 ¼ 0), Pðzn ¼ 0Þ

would follow the upper Gaussian distribution with the variance scaling as s2
rn, where
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Fig. 2. Log–log plot of the mean standard deviation F ðtÞ of the detrended fluctuations of absolute

S&P500 returns and absolute values of variables of the two-FIARCH process.
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s2
r is the 1 min empirical variance ðsr ¼ sx, where sx corresponds to the GARCH

process). For the lower limit Gaussian distribution, serial correlations exist only for

small time scales, where its variance scales as ŝ2n. The theoretical 1 min variance ŝ2

is related to the empirical 10 min variance as ŝ210 ¼ s2
10 [15]. The parameter f0 and

correlation parameter f1 are calculated from the data [15]. For given parameters

a; b; c of the GARCH process, sx is related to sr, through the relation

s2
x ¼ ð1 � f2

1Þs
2
r .

Next we focus on the functional form of correlation pattern in magnitudes of

returns for S&P500 index. As shown in Ref. [11], magnitude correlations in returns

are specified by a crossover between two different power-law regimes (see Fig. 2). To

see how crossovers in the magnitude correlations can be modeled, note that Engle et

al. (see, Ref. [17]) proposed the fractionally integrated ARCH process (FIARCH)

ðxt ¼ st�tÞ where long-range power-law correlations in jxtj are accomplished if

weights an, defined in volatility st ¼
P1

n¼1anjxt�nDtj, are chosen to decay for nb1 as

a power-law series in n, / n�1�a, with a unique scaling exponent a.

In order to obtain a crossover in the power-law magnitude correlations, in Ref. [16]

we propose a stochastic process that we call two-FIARCH process xt ¼ stet, where

st ¼
P1

n¼1anjxt�nDtj while the weights an are defined as an ¼ n�1�d1 for non� and

an ¼ n�1�d2 for n4n�. The crossover time scale n� and parameters d1 and d2 are

found from the empirical data, where those parameters are related to DFA

exponents [18], calculated for different regimes in magnitude correlations, by a

simple linear relation [16]. In Fig. 2, we see that correlation pattern of the process fits

nicely the pattern obtained for the empirical data.

After DFA analysis, we apply a method proposed by Geweke and Porter-Hudak

(GPH) [19] for an estimator of the fractional parameter, d. The method is based on a

regression of the ordinates of the log spectral density on trigonometric function.

Suppose that a sample of z of size T is available. Let lj;T ¼ 2pj=T denote the

harmonic ordinates and Iðlj;T Þ denote the periodogram of these ordinates. One may

show that the parameter d can be estimated from the least-squares regression

lnðIðlj;T ÞÞ ¼ A� d lnð4 sin2ðlj;T Þ=2Þ þ �j ; ð2Þ

where the Schuster periodogram is defined as follows:

Iðlj;T Þ ¼
1

T2

X

T

t¼1

ðjzj � j�zjÞ cosðlj;T tÞ

 !2

þ
X

T

t¼1

ðjzj � j�zjÞ sinðlj;T tÞ

 !2
2

4

3

5 : ð3Þ

Here T ¼ 127 000 (calculated for 10 min returns) and �j is assumed to be i.i.d. with

zero mean and variance p2=6. The estimated d for absolute returns jrtj is 0:21 with t-

statistics of 93, respectively. Since d parameter exceeds t ¼ 1:96 with 1 df at the 5%

level of significance, we conclude that d parameter is statistically significant at the

5% level. Note that this value for d is considerably different compared to the one

obtained by DFA method ðd ¼ 0:34Þ.

In the paper, we model both power-law stability in distribution of returns and

crossover in magnitude correlations found for S&P500 index. We show that the
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stability in the power-law tails is controlled by the GARCH parameters. We employ

different methods to calculate fractional parameter for magnitude correlations.
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