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We present numerical studies of the effect of long-range correlated noise on (i) the nonlinear Kar-
dar, Parisi, and Zhang (KPZ) stochastic differential equation and the related problem of directed-
polymer (DP) growth, and (ii) the ballistic-deposition (BD) model. The results for the KPZ and DP
models are consistent with each other, and agree better with one recent theoretical prediction of
Hentschel and Family [Phys. Rev. Lett. 66, 1982 (1991)] than with other theoretical predictions.
Contrary to the general belief that BD is described by the KPZ equation, we find the surprising result
that BD with correlated noise belongs to a different universality class than the KPZ equation.

Disorderly surface growth has been receiving much at-
tention recently [1-4]. Many different models—such as
ballistic deposition (BD), Eden growth, solid-on-solid
deposition— are believed to belong to the same universali-
ty class, which is described by the Kardar, Parisi, and
Zhang (KPZ) stochastic differential equation [5]
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Here h(x,t) is the deviation from the mean of the height
of the surface and 7 is the stochastic variable (noise)
describing local variations in growth rate. One justifi-
cation of the KPZ equation arises from its predicted scal-
ing form for height-height correlation function
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which is consistent with the scaling relation observed in
various surface growth models [6],

w(L,t)=h2x N 2~Lef (2b)
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Here the average is taken over all positions x in the system
of finite size L and w(L,?) is the width of the surface at
time ¢. For 1<t<t,, w(L,t)~t?, where t,~L? and
B=a/z. For t>1t,, w(L,t)~L" Numerical studies of
the roughening exponents for various surface growth mod-
els in 1+1 dimensions (one-dimensional surface) with
random noise agree well with the values predicted by the
KPZ equation (a=%,8=%).

When the noise itself is the result of another stochastic
process, then the noise cannot be treated as random—the
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noise is correlated in space and/or time [7]. In this case,
the exponents depend on the strength of the correlation.
Medina et al. [8] used dynamical renormalization-group
analysis to study the KPZ equation with long-range corre-
lated noise. The noise they studied has the correlation

nx,)nx't'N~|x—x'|2"9t —¢'|?°" ", (3a)

where d +1 is the dimension of the system (d is the di-
mension of the surface). If the noise has no temporal
correlation, i.e.,

(nx,On&x N ~|x—x'|>*"96G —1'), (3b)

the exponents obey the relation a+2z =2. Since then there
is only one independent scaling exponent, it is sufficient to
give B; for d =1

1/3, 0<p=< 1,

P=1a+20/G=20), Y <p=1. (4a)

The other feature of the KPZ equation is that it can be
mapped to the directed-polymer (DP) problem [9]. The
noise plays the role of a time-dependent random potential.
Thus, the results of Ref. [8] can also apply to the DP
problem in a correlated potential field.

Zhang [10] used a replica method to study the DP
problem with correlated noise n given by Eq. (3b). Due to
the analogy between the DP problem and the KPZ equa-
tion, Zhang predicts for d =1

(1+2p)/(3+2p), 0<p=< 1+,

(1+20)/(5=2p), + <p=1. (@b)
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Very recently, Hentschel and Family [11] studied the
scaling behavior for dissipative dynamical systems and
proposed a new relation:

B=1/3—2p), 0=<p=<+. (4¢)

Note that the three predictions [Eqgs. (4a), (4b), and (4¢)]
differ for0<p< 5.

There have been several prior attempts to verify the
analytical results with correlated noise [12]. This work
relies on numerical methods that probably generate un-
desired correlations in the noise. Here we generate alge-
braically correlated noise [13], integrate numerically the
KPZ equation, and also simulate the DP growth in a
correlated potential field. Our results for KPZ and DP
agree with each other, and qualitatively agree somewhat
better with (4c) than with (4a) or (4b). Finally, we im-
plement correlated noise into the BD model, and were
surprised to find surface roughening exponents that differ
from both the KPZ equation and the DP problem.

To construct the algebraically correlated noise, we first
generate a representation of random Gaussian uncorrelat-
ed noise no (x,t), then Fourier transform it to obtain
no(q,®). We define

n(q,0)=|q| ~*lo| ~°no(q,0) . (5)

The noise n(x,t) is obtained by Fourier transforming
n(q,») back into the space and time domain. It is
straightforward to verify that n(x,¢) obtained in this way
has the correct correlations (3a). We restrict ourselves to
the d=1 case and the noise has only spatial correlation
(0=0) as in Eq. (3b) [14].

(i) Consider first the KPZ equation with noise n de-
scribed by (3b). For a one-dimensional surface, the dis-
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crete form of Eq. (1) is
P @) =h, @)+ Atlh, G+1)+ kG —1)—2h,G)]
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Small Az is needed to obtain good convergence, and we
choose the appropriate time step by verifying that smaller
times steps do not change our results. We obtain the ex-
ponent B from w(L,?) defined in Eq. (2b), since w ~¢# for
At L1 L1, [15].

We start with the case A =0 (no nonlinearity) for which
z and B can be found exactly from dimensional analysis
[8,16]: a change of scale x— bx and t— b*t implies
h— b°h and

n(x,t)— 6P~ 127225 (x 1)

[from Eq. (3b)]. Equation (1) is scale invariant for the
choice

- =1lip
Z0 2, ﬁ() 4 + 2 . (7)
Our numerical simulation for A =0 confirms (7).

When A0 the exponents change. Figure 1 is a log-log
plot of w(t) vs ¢ for various values of A with p= 4. The
inset shows the successive slopes (successive approxima-
tions to B). The exponent B approaches the same value for
nonzero A. Since changing A should not change the
universality class, we carry out our simulation for that
value of A which gives the fastest convergence to the
correct value of B; then we vary the parameter p. The re-
sults are shown in Fig. 2. The solid, dashed, and dotted
lines are the predictions from three theories [Egs. (4a),
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FIG. 1. Log-log plot of w(L,t) vs t for A =10, 20, 40 (bottom to top) with p = and time step A7 =0.01, 0.005, 0.0025, respective-
ly. Here, L =8192. For clarity, each curve is shifted by logiov2. The inset shows a linear plot of successive slopes (successive approx-

imations to ) vs time.
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FIG. 2. Comparison of our numerical results and theoretical
predictions of (4a), (4b), and (4¢c) (solid, dashed, and dotted
lines, respectively). Typical error bars are shown for each of the
three models treated. The dot-dashed line, Eq. (7), is obtained
by neglecting the nonlinear term in Eq. (1).

(4b), and (4¢)], respectively. The numerical results agree
better with (4¢) than with (4a) and (4b).

To check our results, we also study the DP growth. By
a simple transformation W(x,t)=expl(A/2)h(x,1)], we
obtain from (1)

w
ot

Here W is the sum of Boltzmann weights for all config-
urations of a DP connecting (0,0) and (x,), and n(x,?) is
the potential field.

The discretized model in 1+1 dimension can be con-
structed on a square lattice, with the transverse direction
labeled x and the longitudinal direction labeled ¢. Equa-
tion (3b) implies that there is no correlation along the ¢
direction, while along the x direction the potential field is
algebraically correlated. The Boltzmann weight for all
paths joining the points (0,0) and (x,?) is

W(x, )= exp(—E./kT) . ()]

=v2W+?2‘—n(x,z)W. )

Here E. is the sum of the potential field n on config-
uration ¢, and the sum is over all configurations joining
the two end points (0,0) and (x,1).

The typical transverse fluctuation scales with the length
of the polymer 7 as {(x2(z))'"2~¢*. At zero temperature,
only the optimal path (configuration with minimum ener-
gy) makes a contribution. Since the optimal path still
dominates at finite but low temperature, we choose 7 =0
to simplify our numerical task. We generate a representa-
tion of n(x,z) [obeying Eq. (3b)], and record the end
point of the optimal path x(z). We average over many
realizations (typically 10°) of n(x,?). A log-log plot of
(x2(t))""? vs t for p=0.24 shows an excellent straight line
for ¢t > 20 (Fig. 3). The exponent v is related to the dy-
namic exponent z=qa/f=2—a of KPZ equation via
v=1/z. Hence, to compare with the KPZ results, we
define Bpp=2v—1 and show the results in Fig. 2. The
agreement with our numerical results for the KPZ equa-

FIG. 3. Log-log plot of {x2(¢))"? vs ¢ for the DP problem
with p=0.24. The straight line, plotted for visual guidance, has
slope 0.688.

tion provides an excellent consistency check on our nu-
merical methods.

(i) Next we study the BD model with algebraically
spatial correlated noise. For uncorrelated BD [1-4], par-
ticles rain down vertically onto the substrate until they
reach one of the growth sites. A growth site is defined as
the highest site on each column that belongs to the nearest
neighbors of the deposition surface. Once the particles
reach the growth site they stop and become a part of the
deposit. Note that the deposition rule defined above al-
lows lateral growth, while it is believed to be described by
the nonlinear term (VA)? in Eq. (1).

We used two methods of introducing correlated noise.
Method I: First we generate a representation of spatially
correlated noise, which gives the set of growth probabili-
ties {n;} for the L growth sites (there is only one growth
site per column). One growth site i is randomly chosen to
be a possible site for deposition. A particle is either depos-
ited with growth probability 7; at that site or the growth
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FIG. 4. Log-log plot for w(L,t) vs time for L =256,
512,...,8192 (bottom to top) for the BD model with spatially
correlated noise (p=§ ).
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site i is rejected. We used “noise reduction”—only after s
particles per column are deposited, we generate a new set
of growth probabilities {n;} (and increase the time by one
unit) [17). Method 2: At site i, we deposit a rod of length
I; proportional to the noise 7; at that site; therefore, the /;
are spatially correlated [18]. Results from both methods
agree with each other.

Figure 4 shows a log-log plot of w(¢) vs ¢ for p= %, and
the straight line gives the exponent 8 for a finite system of
size L. We calculate the width for systems of varying
length L (from 28 to 213); the actual value of B is obtained
by the extrapolation L — oo. This analysis was succeeded
in obtaining a reliable value of (= +) for p =0 (the un-
correlated noise). We then applied the same analysis with
correlated noise for many values of p and the results are
shown in Fig. 2. We find significant differences between
exponents obtained from the BD model and the DP
growth (or the KPZ model).

To summarize: (a) Our results for the KPZ and DP
models are consistent with each other and agree better
with some theoretical prediction [Eq. (4c)] than with oth-
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ers [Eqs. (4a) and (4b)]. For large values of the correla-
tion parameter p, the exponents are compatible with those
obtained from the KPZ equation in the absence of a non-
linear term [Eq. (7)1, and there is effectively no contribu-
tion from the nonlinear term in (1) to the scaling ex-
ponent B. (b) Contrary to the general belief that BD is
described by the KPZ equation, we find that BD with
correlated noise belongs to a different universality class
than the KPZ equation.

Note added. After this work was completed, F. Family
kindly sent us a copy of Ref. [19] prior to publication.
This article considers one of the models we treated (BD)
and finds agreement with (4a) over the range 0=<p
=0.43.
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