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Abstract

We investigate how simultaneously recorded long-range power-law correlated multivariate signals cross-correlate. To this end
we introduce a two-component ARFIMA stochastic process and a two-component FIARCH process to generate coupled fractal
signals with long-range power-law correlations which are at the same time long-range cross-correlated. We study how the degree
of cross-correlations between these signals depends on the scaling exponents characterizing the fractal correlations in each signal
and on the coupling between the signals. Our findings have relevance when studying parallel outputs of multiple component of
physical, physiological and social systems.
c© 2008 Elsevier B.V. All rights reserved.

Many empirical data are characterized by long-range power-law auto-correlations as well as by long-range cross-
correlations. Such a scale-invariant organization in both auto-correlations and cross-correlations can be observed either
for the data variables or for their absolute values [1–9].

Scale-invariant power-law auto-correlations in stochastic variables can be modeled by the fractionally auto-
regressive integrated moving-average process (ARFIMA) [10,11]:

xt =

∞∑
n=1

an(d)xt−n + εt , (1)

where d ∈ (−0.5, 0.5) is a scaling parameter, εt denotes independent and identically distributed (i.i.d.) Gaussian
variables with 〈εt 〉 = 0 and 〈ε2

t 〉 = 1, an(d) are the weights defined by an(d) = d 0(n − d)/(0(1 − d)0(n + 1)),
where 0 denotes the Gamma function and n is the time scale. We denote the auto-correlation function for xt as
A(xt , xt−n) ≡ A(n). For d = 0, the generated variable xt becomes random.
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Fig. 1. (a) Time series xt and yt for the process defined in Eqs. (2a)–(2d) where W = 0.8 and d1 = d2 = 0.4. The time series xt is vertically shifted
for clarity. Both xt and yt exhibit apparent comovement, indicating a high degree of cross-correlation. (b) Log–log plots of the auto-correlation
functions A(n) for xt and yt , and their cross-correlation function C(n) for the two-component ARFIMA process with W = 0.8 and d1 = d2 = 0.4
(top three curves), and with W = 0.8 and d1 = d2 = 0.3 (bottom three curves). For decreasing values of the scaling parameters d1 and d2 both the
auto-correlations and cross-correlations decrease, leading to smaller values of A(n) and C(n).

To account for power-law cross-correlations between two variables xt and yt , where each variable is itself power-
law auto-correlated, we propose a two-component ARFIMA stochastic process defined by two stochastic variables xt
and yt . Each of these variables at any time depends not only on its own past values but also on past values of the other
variable:

xt = [W X t + (1 − W )Yt ] + εt , (2a)

yt = [(1 − W )X t + W Yt ] + ε̃t , (2b)

X t =

∞∑
n=1

an(d1)xt−n, (2c)

Yt =

∞∑
n=1

an(d2)yt−n, (2d)

where εt and ε̃t denote i.i.d. Gaussian variables with 〈εt 〉 = 〈ε̃t 〉 = 0 and 〈ε2
t 〉 = 〈ε̃2

t 〉 = 1, an(d1) and an(d2) are
the weights defined in Eq. (1) through the scaling parameters d1 and d2 (0 ≤ d1,2 < 0.5), and W is a free parameter
controlling the coupling strength between xt and yt (0.5 ≤ W ≤ 1). We denote the cross-correlation function between
xt and yt as C(xt , yt−n) ≡ C(n). For different values of W a different degree of cross-correlation between the variables
xt and yt is observed. For example, for the case when W = 1, the process defined in Eqs. (2a)–(2d) reduces to two
decoupled ARFIMA processes defined in Eq. (1). Thus, when W = 1 the long-range cross-correlations between xt
and yt vanish, while both xt and yt remain long-range power-law auto-correlated.

In Fig. 1(a) we show segments of the time series xt and yt generated by the process defined in Eqs. (2a)–(2d)
with parameters W = 0.8 and d1 = d2 = 0.4. Both variables exhibit a very similar comovement. In Fig. 1(b) we
show the auto-correlation functions A(n) for xt and yt , as well as the cross-correlation function C(xt , yt−n) ≡ C(n).
These three curves practically overlap [Fig. 1(b), three top curves]. We also show the same correlation functions for
W = 0.8 and d1 = d2 = 0.3 [Fig. 1(b), three bottom curves]. Generally, when the coupling parameter W is kept
fixed, the stochastic process we introduce in Eq. (2) generates stronger cross-correlations for larger values of the
scaling parameters d1 and d2.

Motivated by the fact that for linear processes the auto-correlation function does not change under randomization of
the Fourier phase [12,13], we next test how this phase-randomization procedure affects the degree of cross-correlations
between xt and yt . First, we perform a Fourier transform of the original time series, e.g. xt , preserving the Fourier
amplitudes but randomizing the Fourier phases. Then, we perform an inverse Fourier transform and obtain a surrogate
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Fig. 2. Cross-correlation function C(n) before Fourier phase-randomization procedure for the time series xt and yt shown in Fig. 1 (open symbols).
After Fourier phase randomization of xt and yt the cross-correlation function virtually disappears (filled symbols) for any value of d1 and d2.

Fig. 3. Cross-correlation function C(n) between time series xt and yt generated by the process in Eq. (2) for varying values of W and
d1 = d2 = 0.4. The cross-correlation function has highest values for W = 0.5, and tends to zero for W approaching 1. When W = 1, xt
and yt become two decoupled ARFIMA processes.

(linearized) time series x̃t . Applying this phase-randomization procedure to both time series xt and yt generated by
the two-component ARFIMA process in Eq. (2), we calculate the two auto-correlation functions for x̃t and ỹt , as well
as their cross-correlation function C(x̃t , ỹt−n). As expected, the auto-correlation functions remain unchanged after
Fourier phase randomization, but the cross-correlation function C(x̃t , ỹt−n) completely vanishes [Fig. 2].

Next, we investigate the case when the scaling parameters d1 and d2 are fixed, while the coupling parameter
W varies. In Fig. 3, we show how the cross-correlation function changes for different values of W and for fixed
d1 = d2 = 0.4. The closer the value of the parameter W to 1, the weaker the cross-correlations (W = 1 corresponds
to the case of two decoupled ARFIMA processes).

Next we analyze how the degree of power-law auto-correlations changes when varying parameters W , d1, and d2
in Eqs. (2a)–(2d). To quantify the auto-correlations we employ the detrended fluctuations analysis (DFA) method.
We estimate the rms fluctuation function F(n) for different time scales n [14–18]. A power-law dependence of F(n)

on the time scale n – F(n) ∝ nα , where α is the correlation exponent – indicates presence of power-law auto-
correlations. In Fig. 4, we show the DFA scaling curves obtained for xt and yt generated by the two-component
ARFIMA process in Eqs. (2a)–(2d), where d1 = 0.4 and d2 = 0.1, and the coupling parameter W varies. For
W = 1 the processes xt and yt are decoupled and thus not cross-correlated. In this case, xt behaves as a power-law
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Fig. 4. DFA scaling curves for the time series xt and yt generated by the two-component ARFIMA process in Eqs. (2a)–(2d), where d1 = 0.4 and
d2 = 0.1. For W = 1, xt and yt are decoupled and thus not cross-correlated, and xt behaves as the ARFIMA process in Eq. (1) defined only by the
scaling parameter d1, while yt becomes a separate ARFIMA process defined only by the scaling parameter d2. For W 6= 1, the scaling properties
of xt depend on both parameters d1 and d2. When W = 0.5, the DFA correlation exponent α for xt becomes equal to the DFA correlation exponent
for yt . The DFA exponent for |yt | does not depend on W .

auto-correlated ARFIMA process controlled by only the scaling parameter d1, with the DFA correlation exponent
equals α = 0.5 + d1 = 0.9. Similarly, yt becomes a separate ARFIMA process (decoupled from xt ) which is
controlled only by the scaling parameter d2, where α = 0.5 + d2 = 0.6. We find that with decreasing value of W
(from 1 to 0.5), xt becomes a mixture of two ARFIMA processes and the DFA correlation exponent α gradually
decreases towards α = 0.6 corresponding to the yt process, controlled by parameter d2 = 0.1. In contrast to xt , for
the process yt the DFA correlation exponent α virtually does not change with the varying coupling parameter W .

In finance, the efficient market hypothesis (EMH) asserts that prices on traded assets (bonds, stocks) already reflect
all information about the assets. In an efficient market, stock prices are commonly tested by employing random walk
hypothesis. In Ref. [19] it is found the long-range power-law dependence in the capital markets of six European
transition economies. Clearly, one may expect that some of these markets are mutually related and thus a process like
the one defined in Eqs. (2a)–(2d) has a potential applicability.

We next consider a separate stochastic process which generates simultaneously two time series with power-law
auto-correlated absolute values of their variables and long-range cross-correlations between these absolute values.
Power-law auto-correlations in the absolute values of the stochastic variables can be modeled by the Fractionally
Integrated ARCH (FIARCH) process [20,21]:

xt = σtεt (3a)

σt =

∞∑
n=1

an(d)
|xt−n|

µx
, (3b)

where εt denotes an i.i.d. Gaussian variable with 〈εt 〉 = 0 and 〈ε2
t 〉 = 1, and 0 < d < 1/2 and µx = 〈|xt |〉. The

sum of the weights an(d) satisfies
∑

∞

n=1
d 0(n−d)

0(1−d)0(n+1)
= 1, yielding 〈σt 〉 = 1. While for the time series xt generated

by Eq. (1) the auto-correlation function A(xt , xt−n) is zero for all time scales n, for the absolute values |xt | the auto-
correlation function is A(|xt |, |xt−n|) = 0(1 − d)0(n + d)/(0(d)0(n + 1 − d)), which for n � 1 converges to the
power law A(n) ∼ n−1+2d .

To account for power-law cross-correlations between the absolute values of two variables, where the absolute values
of each variable are simultaneously power-law auto-correlated, we have previously introduced [22] a two-component
FIARCH process with scaling parameters d1 and d2:

xt = [Wσxt + (1 − W )σyt ]εt (4a)

yt = [(1 − W )σxt + Wσyt ]ε̃t (4b)
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Fig. 5. DFA scaling curves of the time series |xt | and |yt | generated by the two-component FIARCH process in Eqs. (4a)–(4d), where d1 = 0.4
and d2 = 0.1. For W = 1, |xt | and |yt | are decoupled and thus are not cross-correlated. In this case, xt becomes a separate FIARCH process as
defined in Eq. (3), and the auto-correlation properties of xt depend only on the scaling parameter d1, while yt is another FIARCH process with
auto-correlation properties depending only on the parameter d2. For W 6= 1, the scaling properties of xt depend on both parameters d1 and d2.
When W = 0.5, the DFA correlation exponent α for |xt | becomes equal to the DFA correlation exponent for |yt |. Note that the DFA exponent for
|yt | does not depend on W .

σxt =

∞∑
n=1

d1 0(n − d1)

0(1 − d1)0(n + 1)

|xt−n|

µx
(4c)

σyt =

∞∑
n=1

d2 0(n − d2)

0(1 − d2)0(n + 1)

|yt−n|

µy
, (4d)

where εt and ε̃t are i.i.d. variables with 〈εt 〉 = 〈ε̃t 〉 = 0 and 〈ε̃2
t 〉 = 〈ε2

t 〉 = 1, W is the coupling parameter controlling
the degree of cross-correlations, and µx = 〈|xt |〉 and µy = 〈|yt |〉.

Note, that each of the variables is controlled by a composite volatility – e.g. for xt the composite volatility is
W1σxt + (1− W1)σyt [Eq. (4a)] – that is a combination of two FIARCH volatilities σxt and σxt [Eq. (3b)]. Stability of
the FIARCH process is achieved through the condition 〈σt 〉 = 1. To retain stability for the two-component FIARCH
process in Eq. (4), the average values of the composite volatilities Wσxt + (1 − W )σyt and (1 − W )σxt + Wσyt in
Eqs. (4a) and (4b) should be 1. For W = 1 the process in Eqs. (4a)–(4d) reduces to two decoupled FIARCH process
as defined in Eqs. (3a) and (3b), and thus |xt | and |yt | are not cross-correlated.

In Ref. [22] we have analyzed the cross-correlation functions between |xt | and |yt | for the process defined in Eqs.
(4a)–(4d) for varying values of the parameters W , d1, and d2.

Finally, we analyze how the auto-correlations in the absolute values change when varying the parameters W , d1,
and d2. In Fig. 5, we show the DFA scaling curves for d1 = 0.4 and d2 = 0.1, and for varying W . For W = 1, the
time series xt and yt are decoupled and so not cross-correlated. In this case, xt is a FIARCH process controlled only
by the scaling parameter d1, and exhibits long-range power-law auto-correlations characterized by a DFA correlation
exponent α = 0.5 + d1 = 0.9. Similarly, yt is another FIARCH process controlled only by d2, and characterized by
α = 0.5 + d2 = 0.6. We find that with decreasing value of W (from 1 to 0.5), xt is controlled by both parameters
d1 and d2, and the DFA exponent α gradually decreases towards the value α = 0.6. At the same time, the process yt
which is controlled only by the parameter d2 = 0.1 is also characterized by α = 0.6, regardless of the values of W .

Besides FIARCH process, we also analyze FIGARCH(1,d,0) process (d is a scaling parameter) defined in Ref. [23].
In Eqs. (4a) and (4d), we replace two FIARCH processes by two FIGARCH processes and find, regarding cross-
correlations, the same scaling behavior as found for FIARCH processes.

The presented modeling approach and findings may have relevance when quantifying cross-correlations in
simultaneously recorded multivariate time series of fractal nature. This problem is pertinent to multiple component of
physical [24–26], physiological, social and financial systems.
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