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Real-world attacks can be interpreted as the result of competitive inter-
actions between networks, ranging from predator–prey networks to
networks of countries under economic sanctions. Although the purpose of
an attack is to damage a target network, it also curtails the ability of the
attacker, which must choose the duration and magnitude of an attack to
avoid negative impacts on its own functioning. Nevertheless, despite the
large number of studies on interconnected networks, the consequences of
initiating an attack have never been studied. Here, we address this issue
by introducing a model of network competition where a resilient network
is willing to partially weaken its own resilience in order to more severely
damage a less resilient competitor. The attacking network can take over
the competitor’s nodes after their long inactivity. However, owing to a
feedback mechanism the takeovers weaken the resilience of the attacking
network. We define a conservation law that relates the feedback mechanism
to the resilience dynamics for two competing networks. Within this formal-
ism, we determine the cost and optimal duration of an attack, allowing a
network to evaluate the risk of initiating hostilities.

1. Introduction
Recent research carried out on competing interacting networks [1–6] does not
take into account the fact that real-world networks often compete not only to
survive, but also to take over or even destroy their competitors [7]. For example,
in international politics and economics, when one country imposes economic
sanctions on another, feedback mechanisms can cause the country imposing
the sanctions to also be adversely affected. The decision by a wealthier country
to keep military spending at a high level long enough to exhaust its poorer com-
petitor can also contribute to its own exhaustion [8]. Similarly, in warfare, any
attack depletes the resources of the attacking force and can elicit a counter-
attack from the competing force [9]. Also, in nature, an incursion between
species can alter the dynamics of the predator–prey interaction [10].

Although, these competing interactions are a widespread real-world
phenomenon, current studies analyse only the effects of an attack on attacked net-
works, but disregard its effect on the external attacking network. For example, for
both single and interactive networks, existing studies on network robustness
report that every network, regardless of the size and architecture, can eventually
be destroyed [11–16]. But, what then prevents a network from attacking a weaker
competitor or, what is the optimal moment for initiating or ending an attack?
In order to identify the factors that inhibit a network from attacking and demol-
ishing a weaker competitor and to determine the optimal moment and duration
of an attack, we develop a theoretical framework that quantifies the cost of an
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attack by connecting the feedback mechanisms and resilience
dynamics between two competing dynamic networks with
differing levels of resilience [17,18].

2. Theoretical framework
We introduce a general methodology that can be applied to
networks of any size and structure. First, as an illustrative
example, we describe two competing Barabási–Albert (BA)
networks [19] that we designate network S and network
W. This model differs from the single network BA model in
that the two interconnected networks have both intranetwork
and internetwork links [20]. One real-world example of this
kind of network interaction is firms in an economic network
that link with other firms both domestically and abroad.

Using the preferential attachment (PA) rule [19–21], we
generate networks S and W starting with n0 nodes in each
network. At each time step, we add a new node that connects
with mS existing nodes in network S and with mW,S existing
nodes in network W, where the probability of each con-
nection depends on the total node degrees in networks S
and W. Similarly, using the PA rule, we connect a new
node in network W with mW nodes in network W and with
mS,W ¼ mW,S nodes in network S.

In a broad class of real-world networks, nodes can fail
either owing to inherent reasons [22] or because their func-
tionality depends on their neighbourhood [22,23]. Hence,
any node in either of the two networks, e.g. a node ni in net-
work S with kS neighbours in its own network and kW,S

neighbours in network W, can fail at any moment, either
internally—independent of other nodes—with a probability
p1 or externally with a probability p2. Node ni externally
fails with a probability p2 when, similar to the Watts model
[23], the total fraction of its active neighbours is less than or
equal to a fractional threshold T which is equal for all
nodes in both networks. The larger the T-value, the less resi-
lient the network. We assume that one of the two networks is
more resilient than the other, distinguishing between strong
network S and weak network W. We do so by assigning
different fractional thresholds to the strong and weak
networks, TS and TW, respectively, with TS , TW. As in refer-
ence [22], we assume that an internally failed node in

network S or network W recovers from its last internal failure
after a period t. Consecutive failures of the same node stretch
the effective failure times and introduce heterogeneity into
the distribution of inactivity periods. Because, in real-world
networks, it is dangerous for nodes to be inactive, we allow
the strong network to take over nodes in the weak network
when a node ni spends more time in internal failure than
nt, where n is a constant. Figure 1 qualitatively shows the
interaction process.

3. Results
We quantify the current collective state of the strong and
weak networks in terms of the fraction of active nodes, fS
and mW, respectively [22,24,25]. We assume that initially
both networks have internal and external failure probability
values of p1 ; pX and p2, respectively. Figure 2a shows a
two-parameter phase diagram for each network in which
the hysteresis is composed of two spinodals separating two
collective states, i.e. the primarily ‘active’ and the primarily
‘inactive’. Figure 2b shows that increasing the value of p1

leads to catastrophic first-order phase transitions in both
networks. When each network recovers (i.e. when p1 is
decreased to previous values), the fraction of active nodes
returns to an upper state. Nevertheless, the critical point in
the recovery is well beyond the point at which the network
collapses. Figure 2b also shows (solid line) that the initial
choice of parameters makes network S more resilient to net-
work fluctuations in the value of p1 and that the fluctuation
needed to initiate the collapse of network S (pS

1 ; pS
1c ! pX)

is much larger than the fluctuation needed to initiate
the collapse of network W (pW

1 ;pW
1c ! pX). Furthermore,

network W is closer to a critical transition than network S.
Because network S has a higher resilience than network

W and can more easily withstand fluctuations, S could
induce the collapse of W by increasing p1, but only if the frac-
tion of its active links is not dramatically reduced. Figure 2b
shows how when network S attacks network W by increasing
p1 to "0.002, the weak network becomes abruptly dysfunc-
tional. Figure 2b also shows that when the values of p1 are
reset to their pre-attack levels the collapse of network W is
permanent (red dashed line) and, if it ceases its attack, the

(a)

attacks

attacks

damaged
nodes

(b)

takeover

takeover

Figure 1. Attacks, failures, takeovers and their cost on the attacking network. In (a), we assume that each node in both the more resilient (stronger) network S and
the less resilient (weaker) network W is described by the same failure probability. Different nodes spend different times during internal failure—the less opaque a
node is, the more time it spends in internal failure. In (b), if a node in the weaker network W remains inactive more than some threshold time, it will be taken over
by the stronger network S. However, network S pays for this takeover with a reduction in its resilience. (Online verison in colour.)
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recovery of network S is complete and all of its inactive nodes
are reactivated (see blue dashed line in figure 2b). Similarly,
when economic sanctions in a financial system are lifted the
weak economies are not restored, but the strong economics
recover after suffering little damage.

Figure 2c shows a modified competing network structure
in which there are two interconnected Erdös–Reny networks
[26] with internetwork links chosen randomly. Although this
structure differs quantitatively from the phase diagram of
competing BA networks, the same kind of transition occurs
in the random configuration. This indicates the generality of
these critical transitions in competing networks. We obtain
similar results when degree–degree correlations are intro-
duced between the links connecting both networks.
Figure 2d shows nodes in the strong network linking with
nodes in the weak network only when they are of a similar
degree (i.e. ‘assortative mixing’ [27]). As in the other con-
figurations, the better position of the attacker enables the
strong network to destroy the weak one and then return
safely to its initial state.

3.1. Mean-field theory
Using mean-field theory, we analytically describe the attack
and recovery process between two interconnected networks

with random regular topologies where all nodes within the
same network have the same degree. We assume that each
node in network S is linked with kS nodes in its own network
and kW,S nodes in network W. Similarly, each node in net-
work W is linked with kW nodes in network W and kS,W

nodes in network S. In both networks, the fraction of failed
nodes is a;1! f , where f is the fraction of functional
nodes. We can approximate the values of a at each network by

aS ¼ p$S,1 þ pS,2ð1! p$S,1ÞES ð3:1Þ

and

aW ¼ p$W,1 þ pW,2ð1! p$W,1ÞEW, ð3:2Þ

where p$S,1 ; 1! expð! pS,1tÞ [23] denotes the average fraction
of internally failed nodes and pS,2ES denotes the probability
that a node in network S has externally failed

ES ¼
XtS

j¼0

Xj

i¼0

kS

kS ! i

! "
akS!i

S ð1! aSÞi

kW,S

kW,S ! ð j! iÞ

! "
akW,S!ðj!iÞ

W ð1! aWÞ j!i:

ð3:3Þ

Here, tS represents the absolute threshold of network S
simply related to the fractional threshold TS as TS ¼ tS/
(kS þ kW.S): a node in network S can externally fail with a
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Figure 2. Attack strategy between two competing networks with different resilience levels and intra/interlink architecture. Shown are fractions of active nodes. The
most resilient, strong network S (with TS ¼ 0.3) endangers and partially destroys its own nodes by increasing their internal failure probability p1 in order to more
severely damage the least resilient network W (with TW ¼ 0.7). Each of S and W has hysteresis composed of two spinodals, representing attacking and recovery
phases. The recovery time is t ¼ 50, and the takeover and cost mechanisms are disregarded. (a) Attacking strategy between two competing BA networks with
parameters: mS ¼ mW ¼ 3 and mS,W ¼ mW,S ¼ 2. Strong network S wants to bring W in the parameter space between hystereses of W (black lines) and S (white
lines), where S is predominantly active and W is predominantly inactive (see, b). Dark red (blue) is the parameter space where both S and W are active (inactive).
(b) For p2 ¼ 0.9, fraction of active nodes in the strong fS (blue lines) and weak fW (red lines) networks as a function of the internal failure probability p1. Hysteresis
is a result of increasing p1 from zero to one and then decreasing it back to zero. The increase in p1 accounts for the attacks and the decrease for a repair of the
network. (c) Same case as (a) but for two randomly connected competing Erdös – Renyi networks. (d ) Same case as (c) but with an assortative mixing in the
connection between networks: nodes with degree d1 link, with probability 1=jd1 ! d2 þ 1j, with nodes in the other network with degree d2.
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probability pS,2 only when the number of active neighbours in
both network S and network W is less than or equal to tS.
Similarly, we obtain EW for network W by replacing S with
W, and vice versa, in equation (3.3). Finally, we set network
S to be more resilient than network W, by setting tS/(kS þ
kW,S) , tW/(kW þ kS,W).

The analytical results of figure 3a indicate that when
network S increases the internal failure probability pS,1 and
so p$S,1 in an effort to damage network W it also causes partial
damage to itself. Although it first seems that increasing p$S,1
reduces more active nodes in network S than in network
W, when p$S,1 . 0:18, the fraction of active nodes in network
W drops sharply and eventually fS . fW. This attack strategy
by network S is thus effective. If p$S,1 . 0:33, however,
network S undergoes a first-order transition that leads to
collapse, a situation that network S must clearly avoid.

Inspecting the recovery of the previous internal failure
probability values after the attack, we find that the fraction
of active nodes in both networks exhibit a hysteresis behav-
iour. Note that when the transition at p$S,1 ! 0:33 is
surpassed neither network is able to restore its functioning
to those levels attained prior to the attack.

The analytical results indicate that attacking network S is
effective only for certain values of p$S,1: Thus, network S
should increase p$S,1 only as long as the damage to network
W continues to be greater than the damage to itself, i.e. only
when DaW . DaS. Figure 3b shows the region in which attacks
by network S are effective by showing the fraction of failed
nodes in both networks in a two-dimensional phase space as
the value of p$S,1 is increased. Two solid lines with a slope of
one indicate the region in which an attack by network S is
effective. When the slope of function aW ¼ f ðaSÞ is greater
than one (the region between the two shaded lines), increasing
p$S,1 produces more damage in network W than in network S
and is thus an effective attack strategy.

In order to measure the effect of capturing nodes from a
competitor network and how takeovers can modify the resi-
lience properties of a network, we design a model in which
network S is again more resilient than network W (TS ,

TW) and where node ni of network W is taken over by

network S if its internal failure time exceeds nt, where t is
a certain failure time and n a constant. Note that the longer
a node in network W remains inactive (i.e. the higher the
value of n), the higher the probably that it will be acquired
by network S. Real-world examples of this mechanism
include sick or disabled prey in an ecological system [28,29]
or countries whose economic systems remain in recession
for too long.

3.2. Take over and conservation laws
To evaluate the acquisition costs in both networks, we define
network wealth (capital) as proportional to two variables: the
total number of links in the network—as defined in conserva-
tion biology [30,31]—and the resilience of the network. Note
that if two networks have the same number of links but
different resiliencies their wealth is not equal. Note also
that when network S acquires a node of degree kW,i from
network W the overall resilience of network S decreases
because it has acquired a weaker node. Thus, network S
pays an instantaneous, collective cost through a feedback
mechanism that decreases its resilience from an initial
threshold TS to a new threshold T0S:

One of the important issues in dynamic systems that has a
critical point as an attractor is whether a conservation of
energy is required in local dynamic interactions [32–34]. To
quantify how threshold T0s changes in competing networks,
we define a conservation law that relates the feedback
mechanism to the resilience dynamics as

NkkSlðT0S ! TSÞ ¼ kW,iðTW ! T0SÞ: ð3:4Þ

Here, N is the size of the strong network, kkSl its average
degree, and kW,i the degree of the node that has been taken
over. Thus, we assume that the more important the acquired
node (i.e. the larger its degree kW,i), the greater the cost to the
resilience of network S, making it more vulnerable to future
attacks. As a result, when a predator (strong) network S
increases its size N and its degree kksl, its acquisition cost,
T0S ! TS, will decrease.
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Figure 3. Identifying the optimal parameters for attacking a weak network. Analytical approach. Strong network S (less vulnerable) uses its own probability of
internal failures p$S,1 to cause damage in weak network W and, unavoidably, induce partial self-destruction. Model parameters are kS ¼ 20, kS,W ¼ kW,S ¼ 10,
kS ¼ 5, tS ¼ 10, kW ¼ 10, pS,2 ¼ pW,2 ¼ 0.8 and p$W,1 ¼ 0:05: In (a), fraction of active nodes in network S and W, fS ¼ 1 2 aS and fW ¼ 1 2 aW, respect-
ively. Strong network S (blue) deliberately initiates its own failures (increasing p$S,1) to create larger damage in a weak (more vulnerable) network W (red). Note that
the fraction of active nodes exhibits a hysteresis behaviour for both networks, with a critical point at pC " 0.33. In (b), we investigate when S should stop attacking
W by increasing its probability of internal failure p$S,1: Shown are the fractions of failed nodes, aS ¼ 1 2 fS and aW ¼ 1 2 fW. Between points C and D (dashed
lines), an increase in p$S,1 induces more failures in the weaker network, leading to a comparative benefit. Beyond point D, the attack is not worthwhile for network S
because it suffers the consequences more intensely than its competitor.
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Here, we quantify how threshold T0S of the stronger net-
work changes in competing networks where we assume
that threshold TW of the weaker network does not change,
because every node has the same threshold. The stronger
network S has the initial number of nodes NS, the average
degree kkSl: After multiple takeovers, where S took over
nodes nw,1, nw,2, . . . , nw,n with degrees kw,1, kw,2, . . . , kw,n,
respectively, by using equation (3.4), we obtain

T0S ¼
ðkw,1 þ kw,1 þ ( ( ( þ kw,nÞTW þNSkkSlTS

NSkkSlþ kw,1 þ kw,1 þ ( ( ( þ kw,n
: ð3:5Þ

Figure 4a shows that when network S acquires nodes in
network W the threshold T0S of network S is increasingly
affected as time passes. In this example, a node in network
W is taken over by network S when the node is in failure
state longer than nt time steps, where n ¼ 2.5 and t ¼ 50.
Note that as network S acquires weak nodes, its threshold
T0S increases and it becomes more vulnerable. Figure 4b
shows the interplay between the time required to acquire a
node nt and the threshold T0S: Note that as nt increases,
takeovers become increasingly rare, and the final threshold
of network S approaches its initial resilience, here TS ¼ 0.3.

Figure 4c shows that, if the example in figure 2b is
extended to include a takeover mechanism, a fraction of
active nodes fS in network S—measured relative to the initial
number of nodes in each network—reaches values higher
than one, with a peak at py ! pz: Note that when attacks
cease (e.g. when, in an economic system, sanctions are
lifted) decreasing the value of p1, pz ! pw, the fraction

of active nodes in network S increases, but network W
is left irreversibly damaged (see the closed hysteresis
p0y ! p0z ! p0w).

3.3. Threshold diversity in competing networks
Thus far, we have studied competing interconnected net-
works in which there is only one threshold characterizing
each network. However, in real-world interconnected net-
works, commonly, the functionality of a node in a given
network is not equally sensitive to its own neighbours and
those of the other network. To this end, we assume that
node ni in network S can externally fail with probability p2

if the fraction of the active neighbours of node ni in network
S is equal to or lower than some threshold TS, or if the fraction
of the active neighbours of node ni in network W is equal
to or lower than some threshold TW,S. We similarly define
external failure in the less resilient network W by replacing
threshold TS with TW. The functioning of each node is thus
dependent on its neighbours in network S and network
W, but with different sensitivities—different resilience to
external fluctuations.

Figure 5a shows, for a given set of parameters, a two-
parameter phase diagram of competing networks, a model
that incorporates the threshold separation for external failure
but excludes takeover and feedback mechanisms. This model
resembles that in figure 2, but uses different configurations.
Suppose network S spontaneously activates at time t0 but,
owing to differences in the variables characterizing network
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Figure 4. Cost and takeover mechanisms in two competing BA networks. (a) Threshold T 0S of network S as a function of time for two competing BA networks with n ¼ 2.5
and t ¼ 50. Fluctuations in the evolution of T 0S are a consequence of the degree of the acquired node: the higher the degree the higher the increase of T 0S: (b) Fraction of
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increase to values higher than one. In this example, network W is irreversibly damaged after p1 is restored to its initial value. (Online verison in colour.)
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S and network W, initiates a substitution mechanism, not a
takeover. Thus, each time node ni in network W spends a
time period in an inactive mode that exceeds the substitution
time—e.g. in ecology, a period of time without food—ni is
replaced by a new node from network S. Figure 5b shows
the fraction of active nodes in each network calculated relative
to the initial number of nodes at time t0. Fractions of active
nodes of both networks exhibit a catastrophic discontinuity
(a phase flip) at t " 2000, which is characteristic of a first-
order transition. Because both networks are interdependent,
substituting nodes from the less resilient network W affects
the functionality of network S even more dramatically than
that shown in figure 2. Thus, beyond some threshold, we
expect that additional weakening of network W will also
permanently damage network S. This demonstrates how
dangerous an attacking strategy can be for an attacker in a
system of interdependent networks, e.g. between countries
that are at the same time competitors and economics partners.

Figure 5c shows that when the attacks and substitutions
cease, the fractions of active nodes in network S and network
W reach points C0 and C00, respectively. If the probability of
internal failure p1 spontaneously decreases during the
recovery period because of network interdependence the
functionality of network S is not substantially improved.
The triumph of network S over network W has its price. In
ecology, for example, although the population of each species

tends to increase, a dominance strategy is risky, e.g. the
extinction of a key species can trigger, through a cascade
mechanism [15,35], the extinction of many other species [36].

Figure 5d shows the change in the ratio between the
fraction of active nodes in network S and network W as a
function of time. This ratio can serve as an early-warning
mechanism [37] that indicates when attacks should be
stopped. Optimally, the stopping time for attacks will be
when the ratio reaches its maximum.

Finally, figure 6a shows that when the feedback mechanism
(the cost of taking over) defined in equation (3.4) is included, the
fraction of active nodes in each network exhibits an even richer
discontinuous behaviour than in figure 5c, where the cost was
excluded. After 50 000 steps, because of the decrease in network
S’s resilience after each substitute, the final fraction of active
nodes in network S is substantially smaller than the correspond-
ing fraction in figure 5c (i.e. when the cost is excluded). At the
same time, figure 6b shows that an increase in the takeover
time nt decreases the fraction of substitutes.

4. Summary
In conclusion, we have presented a theoretical framework
based on resilience, competition and phase transitions to
introduce a cost-of-attack concept that relates feedback
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mechanisms to resilience dynamics defined using a linear
conservation law. Our model for competing networks can
be applied across a wide range of human activities, from
medicine and finance to international relations, intelligence
services and military operations.

We focus on a specific context where a more resilient
network attacks a less resilient competitor network. The
model assumptions about the structure and dynamics for
two interactive networks with competing interactions and
different resilience levels have to be adjusted in regard to dif-
ferent real-world scenarios (see the electronic supplementary
material, S4).

The ability to measure attacker network resilience and its
attack cost is crucial, because every weakening of the resili-
ence reduces the probability of the survival of the network
under future attacks. For example, in political socio-economic
systems, a network-based approach for overcoming com-
peting countries could be more effective by applying
economical sanctions than by carrying out military actions.
Interdependent links established between countries during
prosperous times can facilitate sanctions (intentional fluctu-
ations) that are used as a weapon when more resilient
countries try to overcome less resilient countries. They can
also facilitate the global propagation of economic recessions
(spontaneous fluctuations). During long economic crises,
these interdependent links can become fatal for less resilient
countries, whose weakness is enhanced by being underdogs
in a global network-of-networks and, at the same time,
whose resources can be captured by more powerful countries.

Although our proposed framework is suited for
representing the simplest case of bilateral economic inter-
dependence between just two countries (networks), it
provides the basis for more general scenarios of alliances of

more countries (networks). The concept of alliance where
some countries unite in order to attack some other alliance
is especially interesting when there is heterogeneity in resili-
ence of allied attacker countries. For example, the most
dominant countries economically can increase their domi-
nance at the expense of their partners in the alliance or they
can, on the other hand, depend on the alliance’s weakest
country (see the electronic supplementary material, S4A).

In addition to the intentional fluctuations characteristic of
human societies, our methodology can also be applied to a
broad class of complex systems in which spontaneous fluctu-
ations occur, from brain functioning to ecological habitats
and climate fluctuations [30,36,38–43]. The methodology is
based on specific structure, dynamics and mechanisms of
the model of networks with competing interactions and
different resilience levels, which have to be adjusted for
different systems and contexts of application (see the elec-
tronic supplementary material, S4).
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