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Abstract – We generalize the scale-free network model of Barabási and Albert (Science, 286
(1999) 509) by proposing a class of stochastic models for scale-free interdependent networks in
which interdependent nodes are not randomly connected but rather are connected via preferential
attachment (PA). Each network grows through the continuous addition of new nodes, and new
nodes in each network attach preferentially and simultaneously to a) well-connected nodes within
the same network and b) well-connected nodes in other networks. We present analytic solutions
for the power-law exponents as functions of the number of links both between networks and within
networks. We show that a cross-clustering coefficient vs. size of network N follows a power law.
We illustrate the models using selected examples from the Internet and finance.
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Network research is a topic of interest with many
applications in physics. For example, in quantum chromo-
dynamics, network models have been used in calculating
quark-hadron transition parameters [1], and Bose-Einstein
condensation has connections with network theory [2].
Scale-free behavior has been observed in a huge vari-
ety of different networks, ranging from the Internet to
biological networks [3–15]. With few exceptions [16–23],
most network studies have focused on single networks that
neither interact with nor depend on other networks [10].
Recently it was noted [24] that port and airport networks
interact with each other and that the coupling between
these networks is not random but correlated. Our general
assumption is that real-life scale-free networks are corre-
lated rather than isolated, and that preferential attach-
ment (PA) and its variants [25–27] control not only the
dynamics within a network but also the dynamics between
different networks. In bank-insurance firm networks, for
example, we expect large banks to be more attractive to
insurance firms than small banks.
Recently, ref. [28] investigated the behavior of the

Ising model on two connected Barabási-Albert networks
in which each node of the network has a spin, and
JAB = JBA are the coupling constants between spins in

different networks. Many papers have been discussing
the robustness of interacting networks [16,18–23]. Here,
we propose a class of stochastic models for scale-free
interdependent networks in which interdependent nodes
are not randomly connected but are the result of PA.
In our approach PA controls not only the dynamics of
each network but also the interaction between different
networks. First, we define a coupled Barabási-Albert
(BA) model I composed of two interdependent networks
BA1 and BA2 where the PA between different networks
and within a network is identical. Second, we define a
coupled BA model II where the PAs between different
networks and within a network are distinct. Third, we
define a “network of networks” (NON) model. Finally, we
present two examples of interdependent networks, from
the Internet and from finance.

Model I. – In the following analyses, in order
to estimate the power-law exponent γ for a power-
law–distributed variable k with P (k)∝ k−γ we apply
two methods. In the Zipf ranking approach in which R
denotes rank, one commonly applies the regression

log(k) = a− ζ log(R), (1)
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where ζ = 1/(γ− 1), which is strongly biased in small
samples [29–31]. In the first method, in order to over-
come this bias, we apply a recently proposed regression
method [31]

log(R− 1/2) = a− (γ̂− 1) log(k). (2)

In the second method we estimate the power-law exponent
γ̂′ using the equation

γ̂′ = 1+N [ΣNt=1 log(kt/kmin)]
−1, (3)

where kmin is the smallest value of kt for which the power-
law behavior holds, and the sum runs only over those
values of kt that exceed kmin [29,30]. Equation (3) is
equivalent to the well-known Hill estimator where the
standard error on γ̂, which is derived from the width of
the likelihood maximum, is σ= γ

′−1√
n
+O(1/n).

To quantify the level of interdependency between two
networks, we next define the cross-clustering coefficient
Cij for two scale-free interdependent networks BA1 and
BA2, each with N nodes. Following the definition of the
clustering coefficient for a single network [32], we define
the cross-clustering coefficient to be

Cij =Nij/kik̃j , (4)

where ki and k̃j are the number of neighbors that nodes
from BA1 and j from BA2 have within their own network,
and N the number of links between the nodes comprising
ki and k̃i. Note that for two independent BA networks,
Cij = 0, because there are no connnections between differ-
ent networks, precisely, Nij = 0 for each pair (i, j). In
opposition to this limit with independent BA networks,
we can imagine another limit where each neighbor of i
from BA1 (ki in total) is related to every neighbor of j
(k̃j in total), yielding Nij = kik̃j ≡ 1. Thus, for each pair
(i, j) Cij ranges between 0 and 1, implying that the aver-
age Cij , 〈Cij〉, obtained by summing over all i and j, is
also defined between 0 and 1.
For the sake of simplicity we first model a NON system

with only two interdependent networks. In model I, each
of the two interdependent networks BA1 and BA2 begins
with a small number (m0) of nodes. At each time step t,
we create a new BA1 node j with i) m1(!m0) edges that
link the new node j to m1 already existing nodes in BA1,
and with ii) m12 edges that link j to m12 already existing
nodes in BA2. We assume that nodes in BA1 and BA2
linked to j are chosen based on a version of preferential
attachment —the probability Π that a new node j in BA1
is connected to node i in BA1 depends on the total number
of links of node i with the already existing BA1 and BA2
nodes (total connectivity). Similarly, the same probability
Π controls whether a new node j in BA1 is connected to
node i′ in BA2.
We define the growth of the BA2 network similarly.

At each time step t we add to the BA2 network a new
node j′ with m2(!m0) edges that link j′ preferentially

Fig. 1: Power law in the Zipf plot where a node has k edges,
for model I where m1 =m2 = 3, m21 = 1 and m12 is varying
as 1, 3, and 5. Each network, i.e., BA1 and BA2, has 1000
nodes. The Zipf slope ζ is inverse of the cumulative distrib-
ution exponent γ, where ζ = 1/(γ− 1). With increasing m12,
the Zipf slope ζ for BA1 is decreasing (γ increasing), whereas
the Zipf slope for BA2 is increasing (γ decreasing). We show
the case where m12 =m21 = 0, ζ = 0.5 (γ = 3), characteristic
for the BA model. We show that P (k) is characterized by
a power-law exponent that is a function of the number of
links m1, m2, m12 and m21. With increasing m12, for BA1 we
have γ̂1 = 2.776± 0.006 (γ̂

′

1 = 3.04± 0.20), γ̂3 = 3.199± 0.007
(γ̂′3 = 3.32± 0.23) and γ̂5 = 3.56± 0.01 (γ̂

′

5 = 3.25± 0.22). With
increasing m12, for BA2 we have γ̂1 = 2.800± 0.006 (γ̂

′

1 =
3.09± 0.20), γ̂3 = 2.541± 0.005 (γ̂

′

3 = 2.66± 0.17) and γ̂5 =
2.343± 0.005 (γ̂′5 = 2.52± 0.15)

to m2 different nodes already present in BA2 and with
m21 links that link j′ preferentially to m21 already exist-
ing nodes in BA1. To reduce the number of parameters we
set m21 =m12. Note that if m21 = 0, while m12 &= 0, then
due to m21 = 0 each node in BA1 has an equal number
of links (m12) to nodes in BA2, which is unlikely in real-
world networks. After t time steps, the four parameters of
model I —m1, m2, m12, and m21— lead to an interdepen-
dent network system with t+m0 nodes in both BA1 and
BA2. BA1 has the average degree 〈k〉= 2m1+m12+m21
and BA2 has 〈k〉= 2m2+m12+m21. We perform numeri-
cal simulations in which m21 =m12. We then calculate the
probability P (k) that a node in BA1 has k edges either
with BA1 or BA2 nodes. We set m1 =m2 = 3, and vary
m12 =m12.
Figure 1 shows that, when m21 = 1, the Zipf plot

of k exhibits a power law for varying values of m12.
With increasing m12, ζ of the Zipf plot decreases (γ of
P (k) increases), and the γ exponent for BA2 decreases.
When m12 = 0, BA1 and BA2 become decoupled and
yield (γ = 3), which is characteristic of the BA model.
Thus the power-law exponent γ of P (k) is a function of
the number of links m1, m2, and m12(m21) and, due to
interdependencies, γ can change substantially for different
networks.
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Next, for model I we present analytic solutions for the
power-law exponent γ of P (k) as a function of the number
of links both between and within networks. We apply
the continuum approach introduced in refs. [6,10], which
calculates the time dependence of the degree of a given
node i, e.g., for BA1. kT1,i is the total number of edges
between i in BA1 and other nodes in BA1 —k1,i— and
between i and nodes in BA2 —k21,i,

kT1,i = k1,i+ k21,i (5)

The probability that a new node j created in BA1 will
link to an already existing node i in BA1 depends on
the probability of this process, Π(kT1,i). Approximating k

T
1,i

with a continuous real variable [10], the rate at which kT1,i
changes we expect to be proportional to Π(kT1,i) where

∂kT1,i
∂t
= (m1+m21)Π(k

T
1,i) =

(m1+m21)kT1,i
2m1t+m12t+m21t

. (6)

From the denominator in the last expression we note
that each endpoint of anm1 edge is a node in BA1 because
m1 edges are established between nodes in BA1. This is in
contrast to m21(m12) edges where one end is linked to a
node in BA1 and the other to a node in BA2. The initial
condition is that every new node i must have a degree
kT1,i(ti) =m1+m12, since it connects to m1 nodes in BA1
and m12 in BA2. From eq. (6), we obtain

kT1,i(t) = (m1+m12)(t/ti)
β1 , where

β1 =
m1+m21

2m1+m12+m21
. (7)

Note that in the limiting case m12 =m21 = 0 the networks
decouple with β = 1/2, as in the BA model [4,10]. Other
choices for β in single networks are proposed in different
models [25–27].
The probability that a node i has a degree kT1,i(ti)

smaller than kT is [6,10]

P [kT1,i(t)<k
T ] = P

[

ti >
(m1+m12)1/β1t

(kT )1/β1

]

. (8)

Assuming that new nodes are entered homogeneously in
time, the distribution of ti values is P (ti) = 1/(m0+ t).
Entering this expression into eq. (8) we obtain P (ti >
(m1+m12)

1/β1 t
(kT )1/β1

) = 1− (m1+m12)
1/β1 t

(kT )1/β1 (t+m0)
, and the degree distri-

bution P (kT ) of BA1

P (kT ) =
∂P (k1,i <kT )

∂kT
=

(m1+m12)1/β1t

(kT )1/β1+1(t+m0)β1
, (9)

where, asymptotically, for t→∞ (networks with an infi-
nite number of nodes), the above equation yields

P (kT )∝ (kT )−γ1 , where γ1 =
1

β1
+1, (10)

with β1 defined as in eq. (7). Similar to eq. (6), kT2,i is
the total number of links for a node i in BA2, which is the
total number of edges between BA2 node i and other nodes
in both BA1 and BA2, and satisfies the dynamic equa-

tion
∂kT
2,i

∂t = (m2+m12)Π(k
T
2,i) =

(m2+m12)k2,i

2m2t+m12t+m21t
. Follow-

ing eqs. (8), (9), the degree distribution P (k) in the BA2
network, γ2, and β2 is similar to that in eqs. (7) and (10)
in which 1 is replaced by 2 and vice versa.
Unlike the pure BA model, in which β = 1/2 [4,10], in

the coupled BA model we find that the power-law expo-
nent of the degree distribution depends on the number of
edges within each network, m1(m2), and on the number
of edges between the interdependent networks m12(m21).
Also, in agreement with fig. 1, whenm21 = 0, for eachm12,
β1 ! 0.5 implies γ1 " 3 for P (k), whereas P (k) for BA2 has
γ1 ! 3.
In addition to the degree distribution for the total

number of links kTi of eq. (7), we next provide an analytic
result for the degree distribution for the number of links
between nodes within a BA1 network. Following eqs. (5)

and (6), we obtain ∂k1,i
∂t =

m1 k
T
1,i

2m1t+m12t+m21t
. Entering

eq. (7) into the previous equation, we obtain k1,i(t) =
m1(m1+m12)
m1+m21

(

t
ti

)β1 + m1(m21−m12)
m1+m21

. Following eqs. (8),

(9), the degree distribution P (k) for the total number
of links between nodes within network BA1 scales as
P (k)∝ k−γ1 for t→∞. Similarly, we calculate the degree
distribution P (k) for the total number of links between
different networks and again obtain P (k)∝ k−γ1 where
k21,i(t) =

m21(m1+m12)
m1+m21

( tti )
β1 + m21(m21−m12)

m1+m21
. Thus the

scaling exponent for P (k) is the same for links connecting
nodes of different networks, k21,i(t), links within a given
network, k1,i(t), and for the total number of links, kT1,i(t).
In practice, by testing this regularity we can determine
whether a given pair of interdependent networks follows
model I.
Model I has two interesting limits, i) when m12 =m21 =

mI , β1 = β2 = 1/2, as in the pure BA model, and ii) when
m12→∞ nodes of BA1 establish many more connections
with BA2 than with other nodes in BA1. This implies that
β1→ 0, as in eq. (7), and β2→ 1, which yields exponents
γ1→∞ (the Gaussian limit), as in eq. (10), and γ2→ 2
(the Zipf law).
Next we study the scaling of the cross-clustering coef-

ficient Cij of eq. (4) for two scale-free interdependent
networks, each with N nodes, as a function of system size.
We study the average of Cij vs. N , 〈C〉 vs. N. To give
context to 〈C〉: in a friendship network 〈C〉 reflects to what
extent an i-friend from city A and another i-friend from
city B know each other. Figure 2 fixes 〈k〉= 16, and varies
m1, m2, and m12 =m21 in order to numerically determine
that 〈C〉 vs. N follows a power law with an average slope
0.71± 0.02, a value close to 0.75, which is also obtained
numerically for the global cluster coefficient for a single
BA network [10]. As m12 =m21 increases, the intercept
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Fig. 2: (Color online) Power law in the cross-clustering coeffi-
cient vs. size of the two interdependent Barabási-Albert (BA)
models with 〈k〉= 16, compared with the cross-clustering coef-
ficient of a random graph, ≈N−1. With increasing m12 =m21
the intercept of power law increases.

of 〈C〉 vs. N also increases. Note that for two indepen-
dent BA networks 〈C〉 is zero for all N . We also study
two interdependent Erdős-Rényi (ER) networks, A and B,
each of size N , where the probability of all links, both
between and within networks, is p. First we find numeri-
cally that p= 0.5 · 〈k〉/(N − 1) is needed in order to repro-
duce a given 〈k〉 (note that p= 〈k〉/(N − 1) corresponds
to a single ER network). We next find that the cross-
clustering coefficient 〈C〉 vs. N also follows a power law
with slope −1, the same slope as found for the cluster-
ing coefficient vs. N in a single ER model [10]. Figure 2
shows that the cross-clustering coefficient 〈C〉 for two
interdependent BA models is stronger than 〈C〉 for two
interdependent ER models.

Model II. – In order to define a new scale-free inter-
dependent network model II in which we separately define
the dynamics for growing links within a network and the
dynamics for growing links between networks. In model
II we create a new BA1 node j with m1 edges that
link j to m1 existing nodes in BA1, and with m12 edges
that link j to m12 existing nodes in the BA2 network at
each t. Similarly, we link a new node j′ created in BA2 with
m2 edges tom2 existing nodes in BA2. We link new node j′

to m21 existing nodes in BA1. Links within networks,
k1,i and k2,i, are treated according to the ordinary scale-
free BA model, i.e., using the continuum approach [10]
∂k1,i
∂t =m1Π(k1,i) =

m1k1,i
2m1t

and ∂k2,i∂t =m2Π(k2,i) =
m2k2,i
2m2t

.
Thus links within a network only attract new links created
within the same network. We similarly define that only
links between networks can attract new links estab-
lished between networks. The number of links of BA1
node i with nodes in BA2, k21,i, and the number of
links of BA2 node i with nodes in BA1, k12,i, satisfy
∂k21,i
∂t =m21Π(k21,i) =

m21k21,i
m21t

and ∂k12,i∂t =m12Π(k12,i) =
m12k12,i
m12t

. Note that in edges m21(m12), one end is linked to

a node in BA1 and the other to a node in BA2. Following
eqs. (6)–(10), we find that the degree distribution P (k)
of the number of links between BA1 and BA2 becomes
P (k)∝ k−γ3 where γ3 = 1

β3
+1 and β3 = 1. This demon-

strates that the power-law exponent γ3 of P (k) does not
depend on parameters m1, m2, m12, and m21. In addi-
tion, P (k) follows a Zipf law. In practice, we can determine
whether a pair of interdependent networks follows model
II by testing this regularity.

Data analysis. – There are many interdependent
networks or “networks of networks” (NON) in real-world
data [19]. For example, in physiology, the human body is
an example of a NON system that includes the respiratory,
nervous, and cardiovascular systems [15].
As an example of a NON we consider the Internet:

a network of routers or autonomous systems (AS)
connected by links [33–36]. Using the fractal concept in
which each part of a complex system is an approximate
reduced-size copy of the whole —i.e., is “self-similar”—
we analyze AS connections not for the entire world
[35,36] but rather the Internet connections between three
countries. Specifically, we study AS connections between
the US, Germany, and the UK recorded over an 18-month
period. For each of the three countries we study both total
connectivity (kT ) and the number of links (k) within each
country. For the clustering coefficient, considering, e.g.,
the two interdependent couples (UK-Germany), chosen
because the network size for each country is comparable,
we find 〈Cij〉= 0.155. Note that for two independent BA
networks, Cij is zero.
For the sake of simplicity, fig. 3 shows the NON

results of our study on network of routers for only two
interdependent countries, the US and the UK. We find
that 9685 cities in the US and 1170 cities in the UK
are connected by routers. For each country we show
a) the number of links established within the country,
b) the total number of links established not only within
the country but also with the coupled country, and c) the
cross-links, e.g., the links established from the UK routers
to the US routers, and vice versa. Note that no cross-
links between UK and the US router networks implies
no interdependency between the networks. We find that
each Zipf plot of k in eq. (1) exhibits an approximate
power-law scaling [7]. For each country we find that γ̂T

obtained for total connectivity is smaller than γ̂ obtained
for links within a single country —employing eqs. (2), (3)
for the US we find γ̂T = 2.24± 0.01 (γ̂′T = 2.17± 0.04) and
γ̂ = 2.26± 0.01 (γ̂′ = 2.17± 0.04). For the UK we find γ̂T =
2.0± 0.01 (γ̂′T = 2.21± 0.11) and γ̂ = 2.06± 0.01 (γ̂′ =
2.20± 0.11). We note that similar results for the exponents
of degree distributions do not imply that interdependency
exists between two networks. To this end, for the cross-
links which quantify the level of interdependency between
countries (again, no interdependency, no cross-links), we
find for US-UK γ̂ = 2.04± 0.03 (γ̂′ = 1.98± 0.09) and for
UK-US γ̂ = 2.39± 0.02 (γ̂′ = 2.54± 0.24). We also show
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Fig. 3: (Color online) Level of interdependency between coun-
tries (no interdependency, no cross-links). Approximate power
laws in the Internet obtained for the number of links vs.
rank R in AS interdependent networks between different coun-
tries. We calculate the exponents of eqs. (2) and (3) for the
total number of links and the number of links established
only within each country. For the US we obtain γ̂T = 2.24±
0.01 (γ̂′T = 2.17± 0.04) and γ̂ = 2.26± 0.01 (γ̂′ = 2.17± 0.04),
and for the UK γ̂T = 2.00± 0.01 (γ̂′T = 2.21± 0.11) and γ̂ =
2.06± 0.01 (γ̂′ = 2.20± 0.11). For the cross-links, we obtain:
for US-UK, γ̂ = 2.04± 0.03 (γ̂′ = 1.98± 0.09) and for UK-US,
γ̂ = 2.39± 0.02 (γ̂′ = 2.54± 0.24).

the cross-link interdependent router connections between
the UK and Germany, with 1170 cities in the UK and
1989 cities in the Germany. We find for Germany-UK
γ̂ = 2.01± 0.03 (γ̂′ = 2.01± 0.15) and for UK-Germany
γ̂ = 2.51± 0.05 (γ̂′ = 2.20± 0.25). Note that the similar
degree distributions shown in fig. 3 never guarantee
similar mechanisms of network generations or even other
characteristics of networks such as community structures
and degree assortativity [37].
As another example of a NON we consider two networks

from Yahoo Finance for 2011 [38]. Figure 4 shows 4544
US firms (both financial and non-financial) listed on the
NYSE and Nasdaq representing network BA1, and 15636
mutual funds representing network BA2. Note that firms
comprising BA1 and mutual funds comprising BA2 present
only a partial picture of the complete financial network.
Clearly, one may extend this analysis by including addi-
tional networks such as hedge funds and pension funds.
For each firm i of BA1 we show the total number of hold-
ers, i.e., the total number of institutions holding shares
(including links from institutional owners such as pension
funds, banks, mutual funds, and hedge funds, but also
other firms linked to i), kT1,i. Thus because mutual funds
comprising BA2 hold shares in BA1, interdependency
between the two networks is established. Note that it is
also possible that firms in BA1 hold shares of other firms
in BA1 [39].
Figure 4 shows the exponents of eqs. (2), (3) for US

firms: γ̂ = 2.73± 0.01 (γ̂′ = 3.42± 0.17). For each mutual

Fig. 4: (Color online) Power laws in interdependent financial
networks. Power law in the Zipf plot with exponent ζ = (1− γ)
for total number of links vs. rank R for 15636 mutual funds,
4544 US firms and separately for 384 US banks. For each
firm i we calculate links from mutual funds and other firms
to firm i. For each mutual funds i we calculate links from
mutual fund i to other mutual funds. We obtain the following
exponents: for firms, γ̂ = 2.725± 0.008 (γ̂′ = 3.42± 0.17); for
banks, γ̂ = 2.17± 0.02 (γ̂′ = 2.39± 0.31); for mutual funds, γ̂ =
2.231± 0.002 (γ̂′ = 2.31± 0.09).

fund i of BA2 we show the total number of holdings,
which includes firms of BA1 and also pension funds and
other institutions not included in our study. We show the
exponents of eqs. (2), (3) for mutual funds: γ̂ = 2.23±
0.002 (γ̂′ = 2.31± 0.09). Figure 4 shows the plot kT1,i vs.
rank between rank 20 and 2000. Figure 4 also shows kT1,i vs.
rank for US banks, which represent only a small fraction
of the total number of US firms, where γ̂ = 2.17± 0.02
(γ̂′ = 2.39± 0.31). Note that that we can replicate these
diverse values for γ1 and γ2 using model I.

Discussion. – Models I and II, which we have used
to study network pairs, can be generalized to N interde-
pendent networks. For each pair (I, J) where I and J run
from 1 to N , at each time step t we add a new node j
to BAI with mI(!m0) edges to mI already existing
nodes in BAI and mIJ edges to mIJ nodes already
existing in BAJ . Applying eqs. (5), (6), defined for a pair
of networks, to the N networks case (the NON model),
for kTI,i —the total number of edges between a node i
and other nodes in BAI , and between i and other nodes

in BAJ— we obtain
∂kTI,i
∂t =

(mI+Σ
N
J=1mJI)k

T
I,i

2mIt+ΣNJ=1mIJ t+Σ
N
J=1mJIt

.

Following eqs. (6)–(10), we find that the degree distri-
bution P (k) of the number of links between BAI and
BAJ becomes P (k)∝ k−γ5 , where γ5 = 1

β5
+1, and

β5 = (mI +ΣNJ=1mJI)/(2mI +Σ
N
J=1mIJ +Σ

N
J=1mJI).

Understanding the dynamics of interdependent
networks —how different networks simultaneously evolve
in time— is a necessary precondition to predicting the
behavior of networks over time, and to discovering how
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quickly failures initiated in one network spread to other
networks [40–43].
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