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Quantifying fluctuations in market liquidity: Analysis of the bid-ask spread
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Quantifying the statistical features of the bid-ask spread offers the possibility of understanding some aspects
of market liquidity. Using quote data for the 116 most frequently traded stocks on the New York Stock
Exchange over the two-year period 1994-1995, we analyze the fluctuations of the average bid-ask spread
over a time intervalAt. We find thatS is characterized by a distribution that decays as a powerR&y
> x}~x"%s, with an exponents= 3 for all 116 stocks analyzed. Our analysis of the autocorrelation function of
S shows long-range power-law correlatiof§(t)S(t+ 7)) ~ 7 #s, similar to those previously found for the
volatility. We next examine the relationship between the bid-ask spread and the vQluama find thatS
~In Q; we find that a similar logarithmic relationship holds between the transaction-level bid-ask spread and
the trade size. We then study the relationship betw&and other indicators of market liquidity such as the
frequency of tradedl and the frequency of quote updatdsand findS~In N andS~In U. Lastly, we show
that the bid-ask spread and the volatility are also related logarithmically.
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[. INTRODUCTION relations. We further explore the relationship between the
] . ) ] bid-ask spread and other indicators of liquidity such as the
The primary function of a market is to provide a venuefrequency of trade occurrendé and the frequency of quote
where buyers and sellers can transact. The more buyers ag@datesU. We find S~In N andS~1In U. We find a similar
sellers at any time, the more efficient the market is in matchtogarithmic relation between the bid-ask spread and the share
ing buyers and sellers, so a desirable feature of a competitiveolume, both over a fixed time interval and on a transaction
market is liquidity, i.e., the ability to transact quickly with level. Lastly, we report logarithmic relationships between
small price impact. To this end, most exchanges have markétid-ask spread, order flow, and two different measures of
makers[e.g., “specialists” in the New York Stock Exchange volatility.
(NYSE)] who provide liquidity by selling or buying accord- Our analysis focuses on stocks that are listed on the
ing to the prevalent market demand. The market maker selYSE. The NYSE is a hybrid market in which both the
at the “ask”(offer) price A and buys at a lower “bid” price; specialist and limit-order traders play a role in price forma-
the differences=A-B is the bid-ask spread. tion. The hybrid market system ensures that specialists incor-
The ability to buy at a low price and sell at a high price is Porate the best bid and ask in the order book while posting
the main compensation to market makers for the risk theyD€ir quotes. The NYSE hybrid market contrasts with a
incur while providing liquidity. Therefore, the spread must PUrely order-driven market, such as the Tokyo Stock Ex-
cover costs incurred by the market maker7] such as{i) change, Whef‘e orders.are”submltted before prices are deter-
order processing costs, e.g., costs incurred in setting ugg"':ed’ ﬁr adqf?ote—?nven ?ystem iufh alf used in N.AS('j
fixed exchange fees, etc(ii) risk of holding inventory, Q, where different competing market makers are require
which is related to the volatility, an@i ) adverse information to provide bld-as_k quotes continuously. :
. . ; . . In an order-driven market, orders are submitted to a cen-
costs, 1., th_e r'Sk. of tradm_g with a counterparty with SUPCralized location (electronic or physica) where they are
ror mfo_rmatlon. S|_nce thg f'r.St. component is a_ﬂxed cost, thematched, executed, or deleted. Here, the bid price represents
interesting dynamics of liquidity is reflected {ii) and (iii).

. > . the largest sell limit order price and the ask price represents
Analyzing the statistical features of the bid-ask spread thuﬁwe smallest buy limit order price. Their difference defines
also provides a way to understand information flow in th

market €the spread. Order-driven markets are generally cheaper to
: . . .trade since they have smaller bid-ask spreads, in part because
The prevalent bid-ask spread reflects the underlying i y P P

. . o . Tixed costs such aB) discussed above, are not present.
quidity for a particular stock. Quantifying the fluctuations of 26) '

) : We analyze the trades and quotg@AQ) database for the
the bid-ask spread thus offers a way of understanding thﬁ/vo-year period January 1994 to December 1995. The TAQ
dynamics of market liquidity. In this paper, we show that the 4

fl ) £ th bid-ask 4 fixed fi atabase, which has been published by the NYSE since
uctuations of the average bid-ask spread over a fixed tiMgqgg3 qyers all trades and quotes for all stocks listed at three

interval display power-law distributions and long-range Cor'major U.S. stock marketdNYSE, AMEX, and NASDAQ.
Our analysis focuses on a subset of these stocks that are
traded on the NYSE.

*Corresponding author. Email address: plerou@bu.edu This paper is organized as follows. Sections Il and llI

"Present address: Goldman Sachs & Co., 85 Broad Street, Nepresent our results on the distribution and time correlations
York, NY 10004. of the bid-ask spread, respectively. Section IV presents our

*Email address: hes@bu.edu results on the relationship between the bid-ask spread, the
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share volume, and the number of trades, both over fixed time @)
intervals and at the transaction level. Sections V and VI de-
scribe the relationship of the bid-ask spread to the order flow
and to the frequency of quote updates. Section VIl explores
the relationship between the bid-ask spread and the volatility.

2 L
II. DISTRIBUTION OF FLUCTUATIONS IN THE BID-ASK
SPREAD
From the TAQ database, we select the 116 most fre-
quently traded stocks listed in the NYSE, and form for each
stock a list of all trades and quotes. For each tradihe 0 -
1994 1995 1996

database provides the trade prigeand the trade sizg,. We
use the procedure of RgB] to identify for each trade, the
bid price B; and the ask pricé\. 10°

We first compute a time series of the average spf®ad

Time (yr)

o
1 N

S=S\(t) = NE s, D
i=1

over fixed time intervalsAt, wheres=A,-B; [9] and N
=Ny (t) denotes the number of trades it [10]. In the
following analysis, we show results fat=15 min. We find
similar results forAt=30 and 60 min.

Denote byS(t) the time series of the bid-ask spread for
stock j. Figure 1a) shows that the(t) for a typical stock 107 o o0 o
displays large fluctuations. We compute the cumulative dis- X
tribution fun(?tlon P{§>x} fo_r e_ach_ Of.thej :1.’ ’11.6 FIG. 1. () Time series of the bid-ask spread ovEr=15 min
stocks.I We find that each distribution is consistent with &, 5 typical stock, Exxon Corp., for the two-year period 1994—
power law

10¢ L 116 stocks

1995. The smallest value of the abscissa is the tick size for this
stock =1/8 USD(b) The log-log plot of the cumulative distribution

of Sy, which is normalized to have a zero mean and unit variance,
for all 116 stocks in our sample. The abscissa is therefore in units of
tandard deviations. A power-law fit in the regian-3 gives a
alue for the exponenfs=3.0+0.1. Fits to individual distributions
give similar results for the exponent values.

P{S > x} ~ x5 (2)

Our estimates of the individual exponenfg are similar
across all 116 stocks in our sample. Although the functionaf,
forms of individual distributions are similar, their widths
(standard deviationsvary. We obtain a good “collapse” of
the distributions by normalizing each time seriggt) by
transforming it to zero mean and unit standard deviation.
Based on the hypothesis that the functional forms of the
distributionsP{S;>x} are the same for all stocks, we com-
pute the cumulative distribution functid®{S>x} using the
normalized spreads for all stocks1,...,116. Figure (b)
shows thatP{S>x} decays as

lll. TIME CORRELATIONS IN THE BID-ASK SPREAD

We next consider temporal correlations in the bid-ask
spread. Figure (@ shows the autocorrelation function
(S(t)S(t+ 7)) for a typical stock, wher&(t) is transformed to
zero mean and unit variance. We find tH&t)S(t+7)) de-
cays slowly and displays pronounced peaks at multiples of 1

P{S> x} ~ x{s (3)  day(390 min. The peaks originate from tHa-shaped intra-
day pattern in the bid-ask spreft#], similar to the previ-
and we find the mean valug=3.0+0.1. ously reported intradaily patterns in volatilift3,15-17.

We note that/s is similar in value to the exponent found To test the presence of long-range correlations, we first
for ¢ describing the distributioP{G > x} of price chang&cs ~ remove the intraday pattern fro®(t) using the procedure
[11,12, and the tail exponent describing the distribution ofoutlined in Ref.[13]. To accurately quantify the long-range
volatility [13]. Our analysis of the relationship between re- persistence of the bid-ask spread correlation function, we use
turn G and S shows an approximate power-law dependencghe method of detrended fluctuation analy$iBFA). We
|G|~ S* with «=0.7. For most stocks this dependence holdsherefore calculate the detrended fluctuation functigm),
only up to a threshold, after which there is a drop off. Sincedefined as theoot-mean-squarfuctuation around a polyno-
the relationship is weaker than linegr<1 followed by a  mial fit to the integrated time series 8f(for details see Ref.
drop off), our results do not seem to support the simplistic[13]). In the analysis presented in this paper we use linear
hypothesis that the power-law tails [@| with /=3 can be detrending. We find that the detrended fluctuation function
explained byls= 3. F(7) for Sscales as
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Time lag T (min) spread for a given value @ averaged over all 116 stocks over a
time intervalAt=15 min. HereSis normalized to have a zero mean
and unit variance, an@= Qy,(t) is normalized by its first centered
20 ' y ' y ' moment. The solid line shows a logarithmic fit to the data extending
- {c) over almost two orders of magnitudéy) Conditional expectation
116 stocks M (Sn- As before,S is normalized to have a zero mean and unit
‘E 15 1 B 1 variance, and we normaliz=N,(t) by its standard deviation.
% The solid line shows a logarithmic fit to the data. Note that for both
= LT (a) and (b) the ordinate takes negative values because of our nor-
5 10 ¢ 1 malization of the spread to zero mean. We have tested that these
-E relationships are robust under other normalization schemes such as
= scaling by the first moment.
Z 5l ]
F(1) ~ 7", (4)
04 05 06 07 08 09 10 with the mean value of,=0.73+0.01 for all 116 stocks
DFA exponent [Figs. 2b) and 2c)]. The correlation function therefore de-

cays as

FIG. 2. (a) The autocorrelation functiokS(t)S(t+7)) displays
peaks at multiples of one day for Exxon Cofp) The detrended (SISt + 7)) ~ 7Hs, (5)
fluctuation functionF(7) for the same stock displays long-range
power-law correlations that extend over almost 3 orders of magni- .
tude. (c) A histogram of slopes are obtained by fittifigr) = s for with s=2-21s=0.54+0.02. _
all 116 stocks. We find a mean value of the exponegt The ppwe.r-law dlsmputmns and Iong—ra.nge correlat_lons
=0.73+0.01. The error bar denotes the standard error of the medffat we find inS are similar to those found in the volatility
of the distribution of exponents, which, underd. assumptions, is (Mmeasured, e.g., bi3[) [13,15-18. The similarity in statis-
estimated as the ratio of the standard deviation of the distribution t&ical properties of spread and volatility is qualitatively con-
the square root of the number of points. In reality, ithd. assump- sistent with the notion that spreads reflect the market maker’s
tions do not hold, so the error bar thus obtained is likelyrisk of holding inventory, which is, in turn, an increasing
understated. function of volatility [19].
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FIG. 4. (a) Conditional expectation of the transaction-level

spread conditioned on trade size averaged over all 116 stocks. The FIG. 5. (@ Conditional expectationSyg of the spr_ead _for a
solid line is a logarithmic fit to the data. Heséhas been normalized 9'Ve" value ofi()| averaged for all 116 stocks over a time interval

to have a zero mean and unit variance, anid normalized by its At=15 min. The solid line shows a logarithmic fit to the data. Here,

centered first moment. For tradeinstead of conditioning solely on '(I')hls norgjellhzetlj by its f|r§t momle_|nt af(t;r. setting tlo zzro mean.
its sizeq;, we have taken a local averagedpfover four preceding e conditiona expectatlof8>‘¢,|. ere,® Is normalized to a zero

trades to account for the rapidly decaying correlation function€an and unit variance. In both plois normalized by setting to

(giSi+k)- The logarithmic result also holds without the local averag-a zero mean and unit variance.
ing. (b) The expectation of the spread conditioned on the time in-
terval & between trades. The solid line shows a logarithmic fit todirectional(buy or sel), so they consume prevalent orders in
the data. Herest is normalized by its standard deviation. the order book, thereby increasing the spread. If so, the loga-
rithmic relation that we find, particularly at the transaction
level (below), reflects the distribution of the order book
[22,23.
We next analyze the relationship betwe8q(t) and the
number of tradedN,(t). Figure 3b) shows that the increase
We next examine the relationship between the bid-askvith N of the equal-time conditional expectati¢®y can be
spread(S)q and the share volum® traded[20]. BothSand  fit by a logarithmic function
Q display intraday patterns and are large near the open and
close of the market and smaller around midday. Figue 3
shows that the increase of spread with volume is consistent,
over 2 orders of magnitude, with the logarithmic relationship
[21] For bothQ andN, we test and confirm that the logarithmic
(99~ Q. (6) relationships hqlq individl_JaIIy for each stock.

Recent empirical studiegl7] show that the long-range
One may expect that small spreads should accompany largerrelations in volatilityV and volumeQ can be related to
volumes, since one expects that counterparties are easier ttee long-range correlations M. This is becaus¥ ~ VN and
find during times of large activity. Here we find the opposite Q~ N, andN has recently been shown to be long-range cor-
relation, i.e., a positive correlation between the equal timeelated[17,20. Similarly, since(Sy~In N, it is not surpris-
conditional expectatioS); and Q. Perhaps the reason for ing that the long-range correlation Bialso arises from the
this increasing relationship is that large volumes tend to béong-range correlations iN.

IV. BID-ASK SPREAD, SHARE VOLUME, AND TRADING
ACTIVITY

A. Fixed time interval analysis

(SN~ In N. (7)
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FIG. 6. (a) Probability density functiod?(U) for the number of quote revisions for all 116 stocks. Her& for each stock is normalized
to a zero mean and unit variangb) The correlation functiofU(t)U(t+ 7)) shows long-range correlatiofaith a marked intraday pattern
(c) The histogram of our estimates of DFA exponents for each stock. We find a mean exponent ugli8.@8+0.03. As before, the error
bar denotes the standard error of the médnThe conditional expectatio{®), of the spread for a given quote-update frequency. The solid
line shows a logarithmic fit to the data. Hddehas been normalized by its second moment.

B. Transaction level analysis approximation. We find that ast increases the bid-ask

We next analyze the relationship between spread and vofPreaddecreasesand the functional relationship ig~ig.
ume at the trade level. To test the time dependence betwedtP):
spreads and volume, we first analyze the correlation function
(giS+- The correlation function has its largest valuekat (g~ —In &, 9
=0; fork<<0, correlations are almost zero while for 0 we
find correlations that decay to zero quickly. Beyokd4
trades, we find no statistically significant correlation.
We next analyze the conditional expectati), of the
transaction-level bid-ask spread conditioned on the trade

size. We find[Fig. 4a)], similar to Eq.(6), V. SPREADS AND ORDER FLOW

(8)g~Inq. ® Similar logarithmic functional forms also describe the re-

The logarithmic relationshig~In Q [Eq. (6)] can therefore lation between the bid-offer spread and order flow. During
be understood becauSe 1/N=l's, and= ,s==N.In g can  periods of large demand or supply, we exp8db be large,
be expressed to leading order in terms d@iﬁlqi)ﬂn Q, since a market maker increases the spread to compensate for
and consequenti$~In Q. the additional risk.

We next examine the relationship betweeand the time Denotea;=-1 if the trade is seller initiated ang=1 if
interval &t between trades. The average intertrade time interthe trade is buyer initiated. The volume imbalance can then
val (8t) can be thought of as a reciprocal Nfy to a first  be defined a$24]

where the brackets denote an average over all transagtions
conditioned onét.
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The logarithmic relationshifS) o~ In(|Q2[) is not surpris- §_ 0.8
ing, sincelQ2| ~ Q for large volumes, and we have seen above g
that S~In Q. E
2 02
'-5
VI. FREQUENCY OF QUOTE UPDATES S (b)
-0.4 -
Our analysis thus far has focused on the properties of the 10° 10’
bid-offer spread. A closely related indicator of liquidity is the Midquote change M|

quote-update frequendy= U (1), i.e., the number of times 3 .
a new bid or offer is posted in the market in a time interval ~FIG. 7. (& Conditional expectatior{S)g| of the spread for a
At. Note that the prevalent bid or offer can change eithe@iven volatility (estimated byG|) averaged over all 116 stocks. The
because of incoming market orders, limit-order cancellaSolid line shows a logarithmic fitb) The conditional expectation
tions, or by the specialist posting an improved quote over th(%SNMI of the spread for a given magnitude of the midquote change
prevalent best limit-order book bid or ask. We therefore anal™- The fit is curved because we use a shifted logarithmic\fit
lyze the statistics of) to understand the behavior of liquidity B N(x*Xo) to the data. A reasonable fit can also be obtained by a
in terms of quote updates power law; we find small exponent values.(& and(b) G, S, and
Figure 52) showz that .the distributio(U) decays al- M have been normalized to have a zero mean and unit variance.
most exponentially, unlike the frequency of tradéswhich

has power-law fluctuationgl7]. Performing power-law fits UOU(t+ 7)) ~ 7, (15
gives a very large value of exponent, consistent with an ap-
proximately exponential behavior. with u,=2-2v,=0.44+0.06. Somewhat related results are

We next consider temporal correlations in the quote-obtained in Ref[26].
update frequency. Figure(§ shows the autocorrelation As we have found previously, spreads depend logarithmi-
function{U(t)U(t+ 7)) for a typical stock wher&l(t) is trans-  cally on the number of trades. Similarly, we find a logarith-
formed to zero mean and unit variance. As before, we findnic relationship between spreads and the frequency of quote
that (U(t)U(t+ 7)) decays slowly and displays pronounced revisions. Figure (@) shows that the conditional expectation
peaks at multiples of 1 day890 min), similar to the intraday
pattern that we find irS. To accurately quantify these corre- (Sy~InU. (16)
lations, we use the DFA method and find that the de-trended
fluctuation function forJ scales as

Fu(n) ~ 7, (14) VIlI. RELATION BETWEEN SPREADS AND

_ _ VOLATILITY
with the mean value,,=0.78+0.03 for all 116 stockg-ig.

6(c)]. Here, we have first excluded the effects of the intraday ~ Finally, we study the dependence of the bid-ask spread on
pattern, and have performed linear detrending for computinghe volatility of price movements. As a short-term estimate

Fu(7). of volatility, we consider two measurega) the magnitude
The correlation functiorKU(t)U(t+ 7)) correspondingly |G|=|G|(t) of the price changes antb) the magnitude
decays as IM|=|M|,(t) of the midquote change over the time interval
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At. Figure &a) shows that the equal-time conditional expec- Referencd30] studies the evolution of spreads and vola-
tation (S)|g| of the spread for a given value ¢®| increases tility following large price moves in the NYSE and NAS-
logarithmically, DAQ. They find that for the NYSE, both the volatility and
the bid-ask spread decay as a power law following a large
(S|~ In(IG]). (17) price move. For NASDAQ, however, they find that the bid-

We find similar behavior for the spread when conditioned orfiSk spread reacts in a much milder way than for the NVSE

: . . 20% increase compared to a 600% increase for the NYSE
the absolute changes in the midquote pfid [Fig. 6b)], [30]). On the other hand, Ref23] finds that their analysis of

(S~ In(IM]). (18)  the Island ECN order book for NASDAQ stocks seems to

o ] o o give qualitatively similar results to their analysis of the Paris
It is interesting to contrast our finding of a logarithmic de- goyrse. In light of these findings, it is interesting to see if the
pendence of the bid-ask spread on the volatility with theyg|ationships that we uncover for the spread and its relation
somewhat related results of RE27], where an almost linear g volume in the NYSE hold for quote-driven markets as
relationship is reported between the time-averaged spreggg||.
and the time-averaged volatility for LSE stocks. While the | sum, we have analyzed the statistical properties of the
linear relationship of Refl27] is a time-averaged property pjd-ask spread for the most frequently traded 116 stocks in
that holds between the mean spread and the mean volatilighe NYSE. We have found that the bid-ask spr&aver a
for a particular stock, our finding of EqL8) reflects more on  fixed time intervalAt displays power-law distributions and

the dynamics of the joint evolution &t) and[M(t)]. long-range temporal correlations. Our finding the®y,
~In N suggests that the long-range correlationsSiarises
VIIl. DISCUSSION AND SUMMARY from those ofN. We have explored the relationship between

he bid-ask spread and the transaction volume and find a
garithmic relationship both over fixed time intervals and at
the trade-by-trade level. Lastly, we have found logarithmic

froni icati i CN) order book. which i relationships between spreads, order flow, and volatility. Our
ronic communication networkECN) order book, which is results add to the existing literature on the relationships be-

?_rr‘le of mar;){[hele;ctronlc platfortr)ni thf’"t Cofr?r?r'setNASfDAdQ'tween spreads and volatility, and uncover interesting loga-
ey report the fong-memory behavior of the rates of ordel;y, ;e relationships that may offer a guide to modeling the

placement anpl cancellqtlon, that is relf_;lted_to_ our finding o icrostructural dynamics of spreads, returns, volume, and
long memory inS. Studying double-auction limit-order mar- volatility

kets within a model where order arrivals and cancellations
follow a Poisson process, Rg¢R9] finds an exponential tail
for the distribution of spread, and a weak approximately lin-
ear relationship between spreads and order size. It is possible We thank Xavier Gabaix for helpful discussions. We
that their inherent assumptions about thin-tailed distributiorthank the NSF and the Morgan Stanley Microstructure Re-
of order sizes or théi.d. nature of order flow gives rise to search Grant for support. PG’s contribution to this work was

The relationships that we uncover for the bid-ask sprea
are interesting from the perspective of recent work
[22,23,26,28-3D Referencg26] analyzes the Island elec-

ACKNOWLEDGMENTS

the disparity with our empirical finding d8~In Q. primarily during his thesis work at Boston University.

[1] T. Copeland and D. Galai, J. Finan88, 5 (1983. highest bid and the lowest ask &t and(ii) the ratio ofS(t) to

[2] D. Easley and M. O’Hara, J. Financ. Ecoh9, 69 (1987). the prevalent midquotéroportional spread

[3] R. Roll, J. Financ.39, 1127(1984. [11] T. Lux, Appl. Financ. Econ6, 463(1996.

[4] J. Y. Campbell, A. Lo, and A. C. MacKinlayfhe Economet- [12] V. Plerouet al, Phys. Rev. E60, 6519(1999; P. Gopikrishnan
rics of Financial MarketgPrinceton University Press, Prince- et al, ibid. 60, 5305(1999.
ton, 1999. [13] Y. Liu et al, Phys. Rev. E60, 1390(1999; P. Cizeauet al.,

[5] Y. Amihud and H. Mendelson, J. Financ. Eca. 31 (1980. Physica A 245 441 (1997).

[6] L. Glosten and P. Milgrom, J. Financ. Ecoh4, 71 (1985. [14] A. Abhayankaret al, J. Bus. Finance Account.24, 343

[7] J. Hasbrouck, J. Financ. Eco@2, 229 (1988. (1997 documents a study of intraday patterns in bid-ask

[8] Following the procedure of C. M. Lee and M. J. Ready, J. spread for the quote-driven LSE SEAQ.
Financ. 46, 733 (1991, we use the prevailing quote at least [15] T. Mclnish and R. Wood, J. Finanel7, 753 (1992.
5 s prior to the trade. Lee and Ready report that 59.3% of th¢16] A. Admati and P. Pfleiderer, Rev. Financ. Stud.723(1988.
guotes are recorded prior to trade. They find that using thg17] V. Plerouet al, Phys. Rev. E62, R3023(2000.
prevailing quote at least 5 s prior to the trade mitigates this[18] M. Lundin et al,, in Financial Markets Tick by Tickedited by

problem. See also Reff7]. P. Lequeux(Wiley, New York, 1999, p. 91; Z. Dinget al,, J.
[9] We consider only those quotes that correspond to an actual Empirical Financel, 83 (1993.

trade. [19] The reason for the positive correlation between the bid-ask
[10] Two alternative definitions aré) the difference between the spread and volatility can be seen by the following argument

046131-7



PLEROU, GOPIKRISHNAN, AND STANLEY PHYSICAL REVIEW E/1, 046131(2009

presented in Ref.3]. Consider the pric®(t)=P" +e(t)S(t)/2, [25] We took the difference between the number of buyer-initiated
whereP" denotes a “fundamental” value around which prices and seller-initiated trades into consideration because price

move ande(t) denotes.i.d. variablese {-1, 1}, which implies changes, when conditioned on the number of trades, do not
that the variance of price changes is &(t) =s*/2, making show a significant dependence on volume per tf&ielones,
volatility linearly dependent onS, where AP(t)=P(t+1) G. Kaul, and M. Lipson, Rev. Financ. Stud, 631 (1994].

~PQ. [26] D. Challet and R. Stinchcombe, eprint cond-mat/0211082;

[20] P. Gopikrishnaret al, Phys. Rev. E62, 4493(2000.

[21] Fitting a power-law function gives generally worse quality fits.
The exponents that we obtain thus are quite srdll1-0.2, .
which is consistent with a logarithmic relation. We find similar (to be published .
results for other logarithmic relationships reported herein.  [28] S. Maslov and M. Mills, Physica 4299, 234.(2001).

[22] J.-P. Bouchaud, M. Mezard, and M. Potters, eprint cond-mat/29] E. Smithet al, Quant. Finance3, 481(2003.
[30] A. G. Zawadowski, J. Kertész, and G. Andor, e-print cond-

eprint cond-mat/0208025. See also Physica@0, 285(2007).
[27] G. Zumbach, eprint cond-mat/0407769, Quantitative Finance

0203511.
[23] M. Potters and J.-P. Bouchaud, eprint cond-mat/0210710. mat/0401055, Physica Ato be publishell see also eprint
[24] V. Plerouet al, Phys. Rev. E66, 027104(2002. cond-mat/0406696.

046131-8



