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Abstract

We review recent work on quantifying collective behavior among stocks by applying the con-
ceptual framework of random matrix theory (RMT), developed in physics to describe the energy
levels of complex systems. RMT makes predictions for “universal” properties that do not depend
on the interactions between the elements comprising the system; deviations from RMT provide
clues regarding system-speci:c properties. We compare the statistics of the cross-correlation ma-
trix C—whose elements Cij are the correlation coe;cients of price <uctuations of stock i and
j—against a random matrix having the same symmetry properties. It is found that RMT methods
can distinguish random and non-random parts of C. The non-random part of C which deviates
from RMT results, provides information regarding genuine collective behavior among stocks.
c© 2001 Published by Elsevier Science B.V.
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The problem of quantifying cross-correlations between the price movements of dif-
ferent stocks is important not only from the point of view of understanding collective
behavior between the constituents of a complex system, but also from the point of
view of estimating the risk of a investment portfolio. The usual way of quantifying
cross-correlations is either by estimating the relevant “factors”or by principal compo-
nent analysis [1]. Here we review some results of a diAerent approach to this problem
applying methods of random matrix theory [2–7].

In order to quantify correlations, we :rst calculate the price change (“return”) of
stock i= 1; : : : ; N over a time scale Ct

Gi(t) ≡ ln Si(t + Ct) − ln Si(t) ; (1)
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Fig. 1. P(Cij) for C calculated using 30-min returns of 1000 stocks for the 2-y period 1994–95 (solid line)
and 881 stocks for the 2-y period 1996–97 (dashed line). For the period 1996–97 〈Cij〉= 0:06, larger than
the value 〈Cij〉= 0:03 for 1994–95. The shaded region shows the distribution of correlation coe;cients for
the control P(Rij) of Eq. (5), which is consistent with a Gaussian distribution with zero mean.

where Si(t) denotes the price of stock i. We analyze L= 6448 records 30-min price
changes Gi(t) for N = 1000 stocks (largest by market capitalization on 1 January 1994)
for the 2-y period 1994–95. Since diAerent stocks have varying levels of volatility
(standard deviation), we de:ne a normalized return

gi(t) ≡ Gi(t) − 〈Gi〉
�i

; (2)

where �i ≡
√
〈G2

i 〉 − 〈Gi〉2 is the standard deviation of Gi, and 〈· · ·〉 denotes a time
average over the period studied. We then compute the equal-time cross-correlation
matrix C with elements

Cij ≡ 〈gi(t) gj(t)〉 : (3)

By construction, the elements Cij are restricted to the domain −16Cij6 1, where
Cij = 1 corresponds to perfect correlations, Cij = − 1 corresponds to perfect anti-
correlations, and Cij = 0 corresponds to uncorrelated pairs of stocks. In matrix notation,
the correlation matrix can be expressed as

C =
1
L

GGT ; (4)

where G is an N × L matrix with elements {gi m ≡ gi(mCt); i= 1; : : : ; N ; m=
0; : : : ; L− 1}, and GT denotes the transpose of G.

We analyze the distribution P(Cij) of the elements {Cij; i 	= j} of the cross-correlation
matrix C. We :rst examine P(Cij) for 30-min returns from the TAQ database for the
2-y periods 1994–95 and 1996–97 (Fig. 1). First, we note that P(Cij) is asymmetric
and centered around a positive mean value (〈Cij〉¿ 0), implying that positively corre-
lated behavior is more prevalent than negatively correlated (anti-correlated) behavior.
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Secondly, we :nd that 〈Cij〉 depends on time, e.g., the period 1996–97 shows a larger
〈Cij〉 than the period 1994–95. We contrast P(Cij) with a control—a correlation matrix
R with elements Rij constructed from N = 1000 mutually uncorrelated time series, each
of length L= 6448, generated using the empirically found distribution of stock returns
[8,9]. Fig. 1(a) shows that P(Rij) is consistent with a Gaussian with zero mean, in
contrast to P(Cij). In addition, we see that the part of P(Cij) for Cij ¡ 0 (which cor-
responds to anti-correlations) is within the Gaussian curve for the control, suggesting
the possibility that the observed negative cross-correlations in C may be an eAect of
randomness.

Although by construction the elements of C are supposed to express the pairwise
correlations that exist in the system, in practice, their meaning is not clear because
of the time average involved in their calculation. Time averaging over a :nite time
series introduces measurement “noise” whereas the use of long time series amounts to
averaging over possibly changing correlations. This raises the following problem: how
can we extract from C, the cross-correlations that are signi:cant?

The approach followed here is to compare the empirical cross-correlation matrix
C against the “null hypothesis” of a random matrix of the same type (“symmetry”).
Therefore, we consider a random correlation matrix

R=
1
L

AAT ; (5)

where A is an N × L matrix containing N time series of L random elements with zero
mean and unit variance, that are mutually uncorrelated. By construction R belongs to
the type of matrices often referred to as Wishart matrices in multivariate statistics [10].

The comparison between C and R is performed in the diagonal basis. Thus, we :rst
compute the eigenvalues �k and eigenvectors uk , where k = 1; : : : ; N is arranged in order
of increasing eigenvalues. Statistical properties of the eigenvalues of random matrices
such as R are known [11,12] in the limit of very large dimensions. Particularly, in the
limit N → ∞, L→ ∞, such that Q ≡ L=N is :xed, it was shown analytically [12] that
the distribution Prm(�) of eigenvalues � of the random correlation matrix R is given
by

Prm(�) =
Q
2�

√
(�+ − �)(�− �−)

�
(6)

for � within the bounds �−6 �i6 �+, where �− and �+ are the minimum and maxi-
mum eigenvalues of R, respectively, given by

�± = 1 +
1
Q

± 2

√
1
Q
: (7)

We :rst compare the eigenvalue distribution of C and compare against Prm(�)
(Fig. 2). Our observations are two-fold. First, we observe that the “bulk” of the eigen-
values of C are consistent with Prm(�) [2,3]. This suggests the randomness of the bulk
which can be tested more rigorously by comparing against universal features of eigen-
value correlations of real symmetric random matrices. Speci:cally, our examination
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Fig. 2. (a) Eigenvalue distribution P(�) for C constructed from the 30-m returns for 1000 stocks for the 2-y
period 1994–95. The solid curve shows the RMT result Prm(�) of Eq. (6). We note several eigenvalues out-
side the RMT upper bound �+ (shaded region). The inset shows the largest eigenvalue �1000 ≈ 50��+. (b)
P(�) for the random correlation matrix R, computed from N = 1000 computer-generated random uncorrelated
time series with length L= 6448 shows good agreement with the RMT result, Eq. (6) (solid curve).

of the eigenvalue spacing distribution shows good agreement with the results for real
symmetric (GOE-type) random matrices.

Secondly, in Fig. 2, we :nd deviations from RMT for the largest few eigenval-
ues [2,3]. These deviations are also evident when one examines the distribution of
eigenvector components [2,3]. Fig. 3(a) shows that �(u) for a typical uk from the
bulk shows good agreement with the RMT result �rm(u). Similar analysis on the other
eigenvectors belonging to eigenvalues within the bulk yields consistent results, in agree-
ment with the results of the previous sections that the bulk agrees with random matrix
predictions. Consider next the “deviating” eigenvalues �i, larger than the RMT upper
bound, �i ¿�+. Fig. 3(b) and (c) show that, for deviating eigenvalues, the distribution
of eigenvector components �(u) deviates systematically from the RMT result �rm(u).
Finally, we examine the distribution of the components of the eigenvector u1000 corre-
sponding to the largest eigenvalue �1000.

Fig. 3(d) shows that �(u1000) deviates remarkably from a Gaussian. We observe
from �(u1000) that all stocks contribute almost equally, and the distribution is rather
narrow, suggesting that this eigenvector represents a collective mode in which all stocks
participate. This notion can be quanti:ed by comparing the price <uctuations of the
portfolio de:ned by the u1000 against a standard measure of the <uctuations of the
entire market—the <uctuations of the S&P 500 index. This comparison shows an equal-
time correlation coe;cient of 0:85 showing good agreement [7]. Thus, the eigenvector
corresponding to the largest eigenvalue represents a collective mode in which all
companies participate.

The magnitude of the largest eigenvalue itself seems to re<ect the degree of collective
behavior, as can be seen by examining the time evolution of the largest eigenvalue.
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Fig. 3. (a) Distribution �(u) of eigenvector components for one eigenvalue in the bulk �−¡�¡�+ shows
good agreement with the RMT prediction of a Gaussian with zero mean (solid curve). Similar results are
obtained for other eigenvalues in the bulk. �(u) for (b) u996 and (c) u999, corresponding to eigenvalues
larger than the RMT upper bound �+ (shaded region in Fig. 2). (d) �(u) for u1000 deviates signi:cantly
from the Gaussian prediction of RMT. The above plots are for C constructed from 30-min returns for the
2-y period 1994–95. We also obtain similar results for C constructed from daily returns.

Fig. 4. The stair-step curve shows the average value of the correlation coe;cients 〈Cij〉, calculated from
422 × 422 correlation matrices C constructed from daily returns using a sliding L= 965 day time window
in discrete steps of L=5 = 193 days. The circles correspond to the largest eigenvalue �422 (scaled by a factor
4× 102) for the correlation matrices thus obtained. The bottom curve shows the S&P 500 volatility (scaled
for clarity) calculated from daily records with a sliding window of length 40 days. We :nd that both 〈Cij〉
and �422 have large values for periods containing the market crash of October 19, 1987.

We consider daily price <uctuations of 422 stocks for the years 1962–96. Fig. 4 shows
the time evolution of the largest eigenvalue �422 compared against the time evolution
of the S&P 500 index and the S&P 500 volatility. The large downward movement
of the index in 1987 corresponds to the 1987 crash, when all stocks in the market
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almost simultaneously lost value; i.e., all stocks were moving more synchronously
than usual. We see that during this period, the largest eigenvalue almost doubled in
magnitude.

We also examine the remainder of the eigenvalues. Our analysis [7] shows that
the eigenvectors corresponding to these eigenvalues have signi:cant participants that
corresponds to major industry groups. Thus, remaining deviating eigenvectors quantify
collective behavior of stocks belonging to the same or related industries. We also :nd
that one of the deviating eigenvectors contains mainly stocks of :rms having business in
Latin America. It is possible that this collective behavior is related to the large currency
devaluation in Mexico during the end of 1994 [7]. Similar results were obtained by
using ultra-metric concepts by Refs. [13,14].

These deviating eigenvectors also have interesting dynamical features. For example,
we :nd that the price <uctuations corresponding to the portfolios de:ned by the devi-
ating eigenvectors are characterized by time correlations that decay signi:cantly slower
than that for a random eigenvector or for an individual stock [7]. This is reminiscent
of the phenomenon of critical slowing down where collective modes of the system
display very large relaxation times in the vicinity of a critical point [15,16].
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