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Abstract

It is common knowledge that any two �rms in the economy are correlated. Even �rms be-
longing to di�erent sectors of an industry may be correlated because of “indirect” correlations.
How can we analyze and understand these correlations? This article reviews recent results re-
garding cross-correlations between stocks. Speci�cally, we use methods of random matrix theory
(RMT), which originated from the need to understand the interactions between the constituent
elements of complex interacting systems, to analyze the cross-correlation matrix C of returns.
We analyze 30-min returns of the largest 1000 US stocks for the 2-year period 1994–1995. We
�nd that the statistics of approximately 20 of the largest eigenvalues (2%) show deviations from
the predictions of RMT. To test that the rest of the eigenvalues are genuinely random, we test
for universal properties such as eigenvalue spacings and eigenvalue correlations, and demonstrate
that C shares universal properties with the Gaussian orthogonal ensemble of random matrices.
The statistics of the eigenvectors of C con�rm the deviations of the largest few eigenvalues
from the RMT prediction. We also �nd that these deviating eigenvectors are stable in time. In
addition, we quantify the number of �rms that participate signi�cantly to an eigenvector using
the concept of inverse participation ratio, borrowed from localization theory. c© 2000 Published
by Elsevier Science B.V. All rights reserved.

Keywords: Random matrix theory; Cross-correlations; Econophysics

1. Introduction

Increasing evidence for scale-invariant distributions and correlation functions in
�nancial time series have attracted the attention of several physicists [1,2]. One reason
for this interest is the quest for mechanisms that gives rise to scale invariance. In phys-
ical systems, scale-free behavior [3,4] is often caused by correlations that become long
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range in the vicinity of a ‘critical’ value of a tunable parameter such as temperature.
Can we understand scale invariance in �nancial data in similar terms? To answer this
question, it is important to analyze and quantify the nature of correlations between
di�erent units comprising the system. Thus, the problem of understanding correlations
between the di�erent units that comprise the market is of scienti�c interest. Further-
more, a precise quanti�cation of correlations between the returns of di�erent stocks is
of practical importance in quantifying the risk of portfolios of stocks [2,5,6], pricing
of options, and forecasting.
The problem of quantifying correlations between the price changes of di�erent stocks

can be expressed using the following simple problem. Consider a box containing many
gas molecules and suppose there is some mechanism which records the velocities of
each of the gas molecules. Next, suppose that there are some random pair-wise bonds
between some of the gas molecules. How can we identify, which molecules are con-
nected? The problem is simply solved: we start by calculating from the records of
velocities vi of molecules i = 1; : : : ; N , a cross-correlation matrix Cij ≡ 〈vivj〉−〈vi〉〈vj〉=
�i�j, where �i denotes the standard deviation of vi and 〈· · ·〉 denotes the time average
from the entire time series of vi. If we had in�nitely many records for vi, we would
identify the non-zero o�-diagonal entries Cij which would correspond to the pairs i; j
that were connected.
To complicate the problem by one more level, suppose that we do not have just

random pair-wise bonds, but rather bonds connecting clusters of molecules. How can we
�nd from the records of the velocities, which clusters are connected? One approach is to
identify the principal components or eigenvalues (and eigenvectors) of the matrix Cij.
The participants of the eigenvectors of Cij would contain information about the clusters
of connected molecules, similar to the problem of a N -body system, interconnected
by springs, where the eigenvectors of the Hamiltonian contain information about the
di�erent modes of oscillation.
Next, suppose that the clusters that are connected by bonds do not just stay the same

in time, but rather evolve, i.e., new molecules are connected to the already-existent
clusters and some molecules which are part of one cluster become part of other clusters.
What can we do in such a case? We can still analyze the principal components of
the cross-correlation matrix, which would contain information about which molecules
on the average remained in a particular cluster for the period of time analyzed. If the
stability of these bonds in time is low, then we would expect the measured correlations
Cij to be mostly random.
Finally, if we add to the problem, �nite length of time series used for computing

the matrix elements Cij, then it is quite di�cult a problem to identify which clusters
remained bonded on the average, over the time period analyzed.

2. Correlations between stocks

The problem of identifying stocks that are correlated is not unlike the complex
example discussed above. We have time series of price 
uctuations Gi for i=1; : : : ; N
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stocks 1 from which we calculate the correlation matrix C which has elements

Cij ≡ 〈GiGj〉 − 〈Gi〉〈Gj〉
�i�j

; (1)

where �i ≡
√
〈G2i 〉 − 〈Gi〉2 is the standard deviation of the price changes of company

i, and 〈· · ·〉 denotes a time average over the period studied. The di�culty in quantifying
correlations between any two stocks i; j arises from the following:

• Unlike most physical systems, there is no “algorithm” to calculate the “interaction
strength” between two companies i; j (as there is for, say, two spins in a magnet).
The problem is that although every pair of company should interact either directly
or indirectly, the precise nature of interaction is unknown.

• Correlations need not be just pairwise but rather involving clusters of stocks.
• The correlations Cij between any two pairs i; j of stocks change with time.
• For each stock i, we have only �nite records {Gij; j = 1; : : : ; T}, from which to
estimate an average correlation.

3. Why random matrices?

How can we identify the correlated clusters of stocks when there is randomness in
the measured correlations Cij, either in the form of correlations that change in time,
or by the �nite length used to compute the correlation matrix elements? The problem
of understanding the properties of matrices with random entries is one which has a
rich history originating from 1950 nuclear physics from the work of Wigner, and later
on by Dyson and Mehta, and many results are known [7–14]. In the case of nuclear
physics, the problem was to understand the energy levels of complex nuclei, when
model calculations failed to explain experimental data.
The problem was tackled by Wigner, who made the bold assumption that the in-

teractions between the constituents comprising the nucleus are so complex that they
can be modeled as random. As a result, Wigner assumed that the Hamiltonian H de-
scribing a heavy nucleus has, in the matrix representation, elements Hij which can be
assumed as mutually independent random numbers. Based on this assumption alone,
Wigner derived [7–9] properties for the statistics of eigenvalues of H, which were in
remarkable agreement with experimental data.
RMT predictions represent an average over all possible interactions [10–12]. De-

viations from the universal predictions of RMT identify system-speci�c, non-random
properties of the system under consideration, providing clues about the underlying in-
teractions [13,14].

1 The data analyzed are the 30-min returns, i.e., T = 6448 records of N = 1000 stocks from the TAQ data
base for the 2-year period 1994–1995.
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Fig. 1. (a) Histogram of eigenvalue (energy level) spacings, of a heavy nucleus. The solid line shows
Wigner’s prediction for the energy level spacings of complex nuclei, calculated using the only assumption
of a symmetric Hamiltonian matrix with independent random entries [from H.I. Liou et al., Phys. Rev. C 5
(1972) 3; for more examples, see T.A. Brody et al., Rev. Mod. Phys. 53 (1981) 385]. (b) Nearest-neighbor
spacing distribution of the eigenvalues of the cross-correlation matrix C of stock price 
uctuations (from
Ref. [15]) after unfolding [13]. The bold line is the Wigner distribution for real symmetric matrices.

The class of matrices Wigner considered are real symmetric matrices, whose elements
are distributed according to a Gaussian probability distribution, the Gaussian orthogonal
ensemble (GOE). For such matrices, Wigner showed that

PGOE(s) =
�s
2
exp

(
−�
4
s2
)
; (2)

where PGOE(s), some times referred to as Wigner distribution, is distribution of energy
level spacings s. This theoretical prediction was later successfully tested on empirical
data (Fig. 1a).
Here, we review how this framework can be used to quantify and understand the

correlations between di�erent stocks [15,16]. We �rst compute the eigenvalue spacings
s ≡ �i+1−�i, where �i denote the rank-ordered eigenvalues after unfolding [13,15], and
compare the spacing distribution P(s) to the Wigner distribution PGOE(s) (Fig. 1b). We
�nd remarkable agreement – thus suggesting that the empirical cross-correlation matrix
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C is indeed consistent with a real-symmetric random matrix (or a GOE matrix). We
also apply more sensitive tests such as the number variance of � and �nd agreement
[15] with RMT results for GOE matrices, thus con�rming the consistency of C with
RMT predictions.
What can we infer from this result? From the scienti�c side, agreement of the eigen-

value statistics of C with RMT results implies that C has entries that contain a consid-
erable degree of randomness. Randomness could be the result of either nonstationary
correlations or a result of the �nite time series used. To test that �niteness of time series
alone cannot be the reason for RMT agreement, we increase the length of the time series
T used to compute C by a factor of 4. We still �nd agreement of the eigenvalue spacing
distribution with RMT predictions, suggesting that RMT agreement is also due to non-
stationary correlations. From the practical side, RMT agreement of the statistics of C
argues against the wide use of empirically measured Cij in a variety of applications.

4. Deviations from RMT predictions

The results presented above are universal properties of the correlation matrix that
agree well with RMT predictions. Deviations from RMT indicate properties that are
speci�c to the system and arise from the presence of collective modes. For example,
deviations of the level spacings of certain nuclei from the Wigner distribution was
found to be connected to collective modes of the nucleus [17]. How can we detect
collective behavior? One approach is to study the eigenvalue distribution of C.
For C constructed out of uncorrelated time series, the eigenvalue distribution was

calculated exactly [18,19]. We can therefore compare [15,16,20] the distribution P(�)
with the prediction for uncorrelated time series. Fig. 2a shows P(�) for C. We note that
the “bulk” of the distribution is consistent with the RMT bounds calculated in Refs.
[18,19]. This comparison also indicates the presence of several eigenvalues clearly
outside the random matrix bound (Fig. 2a). Particularly interesting is the largest eigen-
value, which is approximately 25 times larger than the value predicted for a random
correlation matrix – suggesting genuine information about the correlations between
di�erent stocks.
Having demonstrated that the bulk of the eigenvalues satis�es RMT predictions, we

now proceed to analyze the eigenvectors of C. We �rst analyze the statistics of the
eigenvectors [15,16]. The distribution of eigenvector components for a random cor-
relation matrix is a Gaussian with zero mean and unit variance. An examination of the
eigenvectors corresponding to the eigenvalues which deviate from the random-matrix
bound shows systematic deviations from the Gaussian prediction. In particular, the
largest eigenvalue is strongly non-Gaussian, tending to uniform (Fig. 2b) – suggesting
that all companies participate. This notion can be accurately quanti�ed by the concept
of inverse participation ratios, borrowed from the localization theory, where we �nd
indeed that all components participate approximately equally to the largest eigenvector
[15]. This implies that every company is connected with every other company. In the



V. Plerou et al. / Physica A 287 (2000) 374–382 379

Fig. 2. (a) The probability density of the eigenvalues of the normalized cross-correlation matrix C for the
1000 largest stocks in the TAQ database for the 2-year period 1994–1995. Analytical results predict the
eigenvalue distribution within a bound 0:376�k61:94 for the eigenvalue distribution of a cross-correlation
matrix [18,19] from uncorrelated time series. There are several eigenvalues in the shaded region, out-
side the random matrix bound. The inset shows the largest eigenvalues for correlation matrices computed
for four six-month periods in 1994–1995, denoted as A, B, C, and D. The dashed point shows the
largest eigenvalue �1000 ≈ 50 for the entire two years, which is approximately 25 times larger than the
maximum eigenvalue predicted for uncorrelated time series. (b) The distribution of eigenvector components
for the eigenvalues within the RMT bound show agreement with Gaussian behavior whereas the eigenvalues
outside the RMT bound show signi�cant deviations from the Gaussian prediction of RMT, which implies
“collective” behavior or correlations [13] between di�erent companies. The largest eigenvalue would then
correspond to the correlations within the entire market [15,16]. Shown is the distribution of eigenvector com-
ponents corresponding to the largest eigenvalue, which conforms to an approximately uniform distribution
with all companies contributing.

stock market problem, this eigenvector conveys the fact that the whole market “moves”
together and indicates the presence of correlations that pervade the entire system.
In addition, we also examine the stability in time of the eigenvectors corresponding

to the eigenvalues that deviate from RMT bounds. To test the time stability, we �rst
split the entire two year period into four six-month sub-periods A, B, C, and D. For
each sub-period, we calculate a cross-correlation matrix, and compute its eigenvalues
and eigenvectors. We then identify, from each sub-period, approximately 15 largest
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Fig. 3. Color-coded pixel representation of Oij which shows the scalar product of the eigenvectors cor-
responding to the 15 largest eigenvalues from period A and B (six months apart): here, left to right on
the horizontal axis denote the 15 largest eigenvalues of period A in ascending order, and similarly, on the
vertical axis, top to bottom show 15 largest eigenvalues of period B in ascending order. The color coding
is done such that blue corresponds to 0 and red corresponds to 1. The eigenvectors corresponding to the
largest four eigenvalues show considerable stability (even for larger time scales of approximately 1 year).
The rest of the eigenvectors toward the RMT bounds (toward the left on the horizontal axis and top on the
vertical axis) show less stability.

eigenvectors that deviate from the RMT bounds. Let us denote by ai, i = 1; : : : ; 15,
the 15 eigenvectors of period A (in ascending order of eigenvalue), and similarly bj,
j = 1; : : : ; 15, for period B. We measure time stability by the scalar product

Oij(�) ≡
N∑
‘=1

ai‘(t)b‘j ; (3)

where Oij is a 15×15 matrix, and N =1000 is the number of components of each
eigenvector. If the vectors are perfectly stable, then we expect Oij to be diagonal with
elements 1. No stability would mean all elements of Oij are zero. We show in Fig. 3,
a color-coded version of Oij, which shows that the eigenvectors corresponding to the
largest 4,5 eigenvalues show large values of Oij. As we move toward the RMT bound,
the eigenvectors show decreasing amounts of stability.

5. Correlations and scaling?

In the previous sections, we presented evidence for di�erent modes of correlations be-
tween di�erent companies. For example, the largest eigenvalue of the cross-correlation
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matrix showed correlations that pervade the entire market. In physical systems under
certain conditions, long-range correlations between subunits result in scale-invariant
properties of the system [3,4]. Could it be that the above observed cross-correlations
result in scale-invariant behavior?
Recent studies [21] show that the distribution of returns for individual companies and

for the S&P 500 index have the same asymptotic power-law behavior with an exponent
1 + � ≈ 4. This is surprising because the distribution of index returns GSP500(t) does
not show convergence to Gaussian behavior – even though the 500 distributions of
individual returns Gi(t) that form GSP500(t) are not statistically stable. More precisely,

GSP500(t) ≡
500∑
i=1

wiGi(t) ; (4)

where wi ≡ Si=
∑N

j=1 Sj, where Si denotes the market capitalization of company i. From
the central limit theorem for random variables with �nite variance, we expect that the
probability distribution of GSP500(t) would show signs of convergence to Gaussian,
provided there are no signi�cant dependencies among the returns Gi for di�erent i.
Instead, it is found that the distribution of GSP500(t) has the same asymptotic behavior
as that for individual companies.
In Ref. [22], it was shown that when Gi(t) is time-shu�ed, the observed scaling

behavior between S&P 500 index returns and individual stock returns breaks down –
suggesting the existence of non-trivial cross-correlations that cause scale-
invariant behavior. Using RMT methods, we have seen that the largest eigenvalue
is by far the strongest in
uence common to all stocks. Therefore, in the spirit of the
often-used market models, one possible way to reconcile the largest eigenvalue is to
express

Gi(t) = �i + �iM (t) + �i(t) ; (5)

where M (t) represents an in
uence common to all stocks, �i, and �i are parameters that
can be estimated by a regression, and �i(t) is a stock-speci�c term. Using this simple
market model, one can attribute the scaling behavior of S&P 500 and individual stock
returns to the market M (t), which is a common in
uence for all stocks.
Recent studies have also analyzed economic data from the physics perspective of

a complex system with each unit depending on the other. Stanley and Salinger �rst
located and secured a database – called COMPUSTAT – that lists the annual sales
of all publicly traded �rms in the United States. With this information, Stanley and
co-workers calculated histograms of how �rm sizes change from one year to the next
[23]. They found that the distribution of growth rates of �rm sales has the same
functional form regardless of industry or market capitalization. Moreover, the width
of these distributions � decrease with increasing size S (measured by sales) as a
power law with an exponent approximately 1=6. Similar scaling exponents were also
found for di�erent measures of size S such as the number of employees. Recently,
similar statistical properties were found for the GDP of countries [24] and for university
research fundings [25].
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The scaling behavior �(S) ∼ S−�, with � ≈ 1=6 is surprising, since, one expects by
the central limit theorem that �=1=2 [23]. Hence, it is not impossible to imagine that
the value of � ≈ 1=6 found for such diverse systems may be the result of correlations,
similar to those we found for stock prices, that involve all subunits of the system,
because similar empirical laws appear to hold for data on a range of systems that at
�rst sight might not seem to be so closely related.
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