
QUANTITATIVE FI N A N C E COMMENTARY

On the origin of power-law

fluctuations in stock prices

Vasiliki Plerou, Parameswaran Gopikrishnan, Xavier Gabaix and H Eugene

Stanley respond to the comments on their recent article by Farmer and Lillo.

Introduction
We recently proposed a testable theory for the origin of

the empirically-observed power-law distributions of financial

market variables such as stock returns, volumes and frequency

of trades [1]. Our theory explains the power-law exponent of

the distribution of returns by deriving a square-root functional

form for market impact (‘square-root law’) that relates price

impact and order size. Our previous empirical analysis gave

results that support the square-root law of market impact.

Farmer and Lillo (FL) [2] raise some issues related to

the empirical validity of the theory proposed in [1]. Their

discussion is based on the following arguments:

1. FL claim that the price impact function grows slower than

a square-root law. Interestingly, FL’s empirical analysis

does find a power-law relationship for market impact

with the exponent β ≈ 0.5 for volumes smaller than a

threshold, which is consistent with the square-root form

of market impact given by our theory. However, for large

volumes, FL claim that β < 0.2 (for the New York Stock

Exchange—NYSE) and β ≈ 0.26 (based on analysing

three stocks in the London Stock Exchange—LSE). FL

do not compute error bars for β for large volumes, but

claim that, from a visual comparison, β = 0.5 (square-

root law) is inconsistent with the data.

2. FL argue that the empirical analysis that we presented

in support of the square-root functional form of market

impact [2] is ‘invalidated’ by the ‘long-memory nature of

order flow’.

3. FL analyse the volume distribution of three stocks from the

LSE and claim that the volume distribution does not follow

a power law. Consequently, FL conclude that volume

fluctuations do not determine the power-law tail of returns.

We reply to these issues by first addressing these criticisms and

then presenting our response with results of our new analysis.

1. FL find β < 0.5 for large volumes from analysing the

average value of return for a trade for a given trade

size. FL’s procedure for estimating price impact is flawed

since large orders are usually executed by splitting into

smaller-sized trades, so the procedure used by FL gives

a downward bias for the power-law exponent β defined

in our theory [1, 5], giving rise to an apparent exponent

value β ′ smaller than the correct value β. In fact FL’s

procedure gives β < 0.5 for large volumes—precisely

the domain in which we expect the order-splitting effect

to be dominant—and therefore a downward bias for β.

2. Although we present new estimators to address this point,

we believe FL’s argument to be incorrect since long-

memory in order flow clearly does not imply the same for
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returns, so FL’s criticisms about our estimation procedure

do not seem relevent. To address a potential problem

of long memory in order flow, we draw from a new

estimator for measuring market impact [3] and extend our

previous analysis to the 1000 largest NYSE stocks. Our

new estimation confirms that the market impact function

does behave as a square-root function of the volume.

3. We analyse 262 largest stocks listed in the LSE. Our

analysis of volume distribution for these 262 stocks shows

that the distribution of volume decays as a power law with

an exponent ≈ 1.5 in agreement with our previous results

for the NYSE and the Paris Bourse. In fact our analysis

of the volume distribution for the same stocks analysed

by FL shows a clear power-law behaviour with exponent

≈ 1.5—in contrast to FL’s claim.

Define Si as the price of the stock after trade i,

δpi ≡ log Si − log Si−1 (1)

as the return concomitant to trade i, so the return over a fixed

time interval �t is

r ≡
N

∑

i=1

δpi, (2)

where N is the number of trades in �t . Let qi be the number

of shares traded in trade i, so

Q ≡
N

∑

i=1

qi (3)

is the total volume in interval �t . We define the trade imbalance

� ≡
N

∑

i=1

εiqi (4)

where εi = 1 indicates a buyer-initiated trade and ε = −1

denotes a seller-initiated trade. We denote by V the size of a

large order, which can be executed in several trades.

1. Measuring market impact
Let �p be the change in price caused by a large order of size V ;

all else remains the same. Our theoretical approach [1] derives

a power-law functional form for the market impact function1,

�p ∼ V β . (5)

We hypothesized β = 0.5 and supported this using empirical

analysis.

Our hypothesis equation (5) pertains to �p, the total impact

in price of a large order of size V . In practice, as in [1], large or-

ders are executed by splitting into orders of smaller size which

are observed in the trade time series as the trade size qi . The

empirical analysis of [2] and [4] refer to the relationship of local

1 As in [1], we interpret �p ∼ V β to mean that there exist a slowly varying

function L (V ) such that for large V , �p/V βL (V ) → 1. A function is

called slowly varying when for all t > 0, limV →∞ L (tV ) /L (V ) = 1.

Typical slowly varying functions are L (V ) = a, or logarithmic corrections:

L (V ) = a ln (V )α , where a and α are constants.

price change E(δp|q) and not the price impact E(�p|V ) that

we are interested in. The true market impact function E(�p|V )

is indeed notoriously difficult to measure since the information

about the unsplit order size is usually proprietary and not avail-

able, either in our data or in the data analysed by FL.

FL claim that the price impact function grows more slowly

than a square-root function for large volumes. The basis of their

claim is the analysis in [4] that E(δp|q) ∼ qβ with β = 0.5 for

small q and β = 0.2 for larger q. While E(δp|q) indeed grows

less rapidly than a square root, as reported in [10], E(δp|q)

neither quantifies price impact of large trades, nor does it con-

tradict our theory and empirical results [1]. This is because a

trade-by-trade analysis of E(δp|q) leads to a biased measure-

ment of full price impact and the exponent β, since it does not

take into account the splitting of trades [1, 5].

Consider an example. Suppose that a large fund wants to

buy a large number V of shares of a stock whose price is $100.

The fund’s dealer may offer this large volume for a price of

$101. Before this transaction, however, the dealer must buy

the shares. The dealer will often do that progressively in many

steps, say 10 in this example. In the first step, the dealer will buy

V/10 shares, and the price will go say, from $100 to $100.1,

and in the second the price will go from $100.1 to $100.2.

After some time elapses, the price will have gone to $101 in

increments of $0.1. At this stage, the dealer has his required

number of shares, and hands them over to the fund manager

at a price of $101. The true price impact here is 1%, since the

price has gone from $100 to $101. But in any given transaction,

the price has moved by no more than $0.1. So [2] would find

an ‘apparent’ price impact of no more than $0.1, i.e. 0.1%

of the price. Since as the transaction is executed the price of

the stocks goes from $100 to $101, the true price impact is

1%. As a result the procedure of FL will measure a value 10

times smaller than the true value. This downward bias explains

why FL find in figure 2 a maximum impact of 0.1%—a very

small price impact. Other evidence in economics [7, 8] finds

impacts that are up to 40 times larger than that of FL’s analysis.

Likewise our evidence pertains to large impacts, captured by

figure 2 of [1] which shows on the vertical axis values of r2

equal up to 200 times the variance σ 2, i.e. values of return r

up to
√

200 ≈ 14 standard deviations.

We can quantify the bias in the above example. Suppose

that a trade of size V is split into K = V α (10 in our example)

trades of equal size q = V/K = V 1−α , with 0 < α < 1. Then

the apparent impact δp incurred by each trade (0.1 % in our

example) will be 1/K (1/10 in our example) of the total price

impact V β (1% in our example), i.e. δp = V β/K = V β−α . So

a power-law fit of δp versus q, such as the one presented in

figure 2 of FL, will give δp ∼ qβ ′
with2

β ′ = (β − α) / (1 − α) < β.

The ‘trade-by-trade’ measurement of the price impact, as

performed by [2, 4], leads to a biased measurement β ′ of the

exponent β of the true price impact.

2 The inequality below holds if β < 1. There is wide agreement that β should

be no greater than 0.5. This is because the power-law exponent of returns ζr

and the power-law exponent of volumes satisfy ζr � ζV /β [1], so that the

empirical values ζV ≈ ζr/2 ≈ 1.5 imply β � 0.5.

C12



QUANTITATIVE F I N A N C E COMMENTARY

It is to address this bias that we examine E(r2|Q) in [1].

As is well established empirically, the sign of returns is

unpredictable in the short term, so the reasoning in [5] shows

that E(r2|Q) will not be biased3.

Our analysis [1] was presented with data for the 116 most

actively traded stocks. To check if the result of β = 0.2 for

large volumes presented in [2] and [4] could arise from in-

creasing the size of the database, we now extend our analysis

to the 1000 largest stocks in our database for the 2-year pe-

riod 1994–1995. Figure 1(a) confirms that E(r2|Q) ∼ Q as

predicted by our theory.

2. Robustness of estimation
against the long memory of order flow
FL argue that the empirical analysis that we presented in

support of the square-root functional form of market impact

is ‘invalidated’ by the ‘long-memory nature of order flow’.

FL’s argument is based entirely on the assumption that returns

due to each transaction i can be written as ri = εiq
β

i where

εi = 1 for a buy trade and εi = −1 for a sell trade. Under

this assumption, FL then argue that our estimator E(r2|Q)

is affected by the long-range correlations in the trade signs

εi [2, 11]. FL give some numerical evidence for this potential

effect for small to moderate volumes.

All of the tests shown by FL are for a fictitious return fi con-

structed on a trade-by-trade basis as fi = εiq
β

i . FL’s argument

and the tests shown in figure 1 of FL are for the fictitious return.

In reality, returns certainly cannot be expressed as ri = εiq
β

i ,

with εi being the trade indicator. Indeed, if this were true, re-

turns themselves would be long-range correlated—a possibil-

ity long known to be at odds with empirical data. Since the sign

of the return ri and that of the trade sign εi are clearly not equal,

FL’s argument about our estimation procedure being affected

by the long-memory nature of the trade sign (εi) is incorrect.

(See [11] on a related point.)

Although FL’s argument is incorrect, to address the general

concern that the autocorrelations of the trade signs εi might

bias our analysis, we draw from a forthcoming paper [3], which

performs the following analysis4. For each interval �t define

qmax as the size of the largest trade. In our theory, if the largest

trade Vmax is large, it will have a the major influence on the

value of return, so that one will have r2 ∼ V
2β

max ∼ q
2β
max. Hence

qmax gives us a diagnostic value of the behaviour of the largest

trade, independently of a potential collective behaviour. We

detail this in [3]. We compute E(r2|qmax) and find (figure 1(b))

E(r2|qmax) ∼ qmax. (6)

3 Our theory is one of large trades. The evidence presented in [2] concerns

small to moderate size trades. It follows a long tradition pioneered by [6]

(see also [10, 11]), and may be fine for small to moderate trades. The issue

of splitting may be less important for those trades, but it is almost certainly

crucial for large ones (e.g. trades bigger than 5 to 10 times the average trade

size). This is why the trade-by-trade E(δp|q) measurement has a downward

bias for large trade, which is avoided when we take E(r2|Q).

4 We give the basis of this analysis in [3]. The specifics of the split matter in

principle. In [1] we present a theory of power-law splitting in which the size

of the largest chunk, qmax, is proportional to that of the entire order, V .
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Figure 1. (a) Conditional expectation function E(r2|Q) of the
squared return for a given volume for�t =15 minutes for 1000 largest
stocks in the NYSE, Amex and NASDAQ (1994–1995). We normal-
ized r for each stock to zero mean and unit variance, and normalized Q

by its first centred moment. This normalization procedure allows for
a data collapse for different stocks and the plot represents the average
for 1000 stocks. Regressions in the range 3 < Q < 70 give values of
β = 1.05±0.08. (b) E

(

r2|qmax

)

of the squared return for a given qmax

for�t = 15 minutes. Hereqmax is the largest trade size in the15 minute
interval. Power-law regression gives the value of 2β = 1.09 ± 0.06
consistent with β = 0.5. (c) E

(

r2|qmax

)

of the squared return

for a given qmax for fixed number of trades N = 40. Source: [3].
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Figure 2. (a) Probability density function of trade volumes for Vodafone (VOD) for 2001. A power-law fit in the region 10 < q < 1000
gives a value of the exponent ζq = 1.5 ± 0.1. In contrast FL finds much more rapid decay. (b) Probability density function of trade volumes
for 10 largest stocks listed in the LSE, showing clear evidence of power-law decay with exponent ζq = 1.5 ± 0.1, consistent with our
previous results [9] for the NYSE and for the Paris Bourse. Here q are normalized by its first centred moment, so all 10 distributions collapse
on one curve. We find an average exponent ζq =1.59 ±0.09. (c) Same as (b) but for all 265 stocks in our sample where q is normalized for
each stock by its first centred moment. We find ζq = 1.4 ± 0.09. (d) Probability density function of trade volumes for 30 largest stocks listed
in the Paris Bourse obtained by the same procedure. We find ζq = 1.49 ± 0.03 [5].

In addition to the above, to ensure that our estimation

is robust to varying number of trades in a fixed �t , we

have computed E(r2|qmax) for fixed number of trades instead.

Figure 1(c) shows that E(r2|qmax) ∼ qmax for r over N = 40

trades. It can be seen that a power-law regression gives the

value of 2β = 1.10 ± 0.06.

We would like to emphasize that in figure 1 we consider

very large trades that are up to 70 times the first moment

of volume. They correspond to returns of up to 14 standard

deviations of returns. This confirms that we study very large

trades and returns—the ones that are relevant for the study of

power-law fluctuations, while in contrast FL’s analysis does

not systematically treat large trades.

We conclude that the procedure used in [2] has a downward

bias of the price impact β of large trades. When we perform

more appropriate analysis, we confirm that the β ≈ 0.5. This

corroborates our hypothesis [1, 5] that large fluctuations in

volume cause large fluctuations of prices.
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3. Half-cubic power-law distribution of volumes
The last claim of FL pertains to the very nature of the volume

distribution. They present the results of their analysis of three

stocks in the LSE and claim their analysis shows no evidence

for a power-law distribution.

We analyse the same database which records all trades for all

stocks listed in the LSE. From this database, we first examine

one stock—Vodafone, VOD—which is analysed by FL. For

this stock, we compute the volume distribution and find clear

evidence for a power-law decay (figure 2(a))

P(q) ∼ q−ζq−1 (7)

with ζq = 1.5±0.1, in agreement with our results for the NYSE

and the Paris Bourse [1,9], but in sharp contrast to the FL results

who claim a thin-tailed distribution for the same data.

For the 10 largest stocks in our sample, figure 2(b) shows

that P(q) is consistent with the same power law of ζq = 1.5

which is consistent with our earlier finding for the NYSE [9].

We extend our analysis to the 250 largest stocks and find similar

results (see figure 2(c)).

To test the universal nature of this distribution, we analyse

data for 30 largest stocks listed in the Paris Bourse and find that

P(q) is consistent with the a power law with almost identical

exponents ζq = 1.5 (figure 2(d)).

In summary, the analysis of [2] pertains to small to moderate

trades. FL’s estimation is biased for large trades, so FL can

detect only very small price impacts, less than 0.1%. When

we use our more general procedure and study significantly

larger data, we confirm our initial finding of a square root

price impact function. We conclude that the available evidence

is consistent with our hypothesis [1, 5] that large fluctuations

the volume traded by large market participants may contribute

significantly to the large fluctuations in stock prices [3].

Note added in proof
After [2], it has become clear that FL’s claim of a non-

power-law distribution of trade sizes for the LSE stocks is

based on incomplete data. FL’s analysis excludes the upstairs

market5 trades which contain the largest trades in the LSE.

In contrast, our result of a 1.5 power-law exponent for the

volume distribution is based on data containing all trades (both

the upstairs and the downstairs market trades) in the LSE.

By excluding the large trades in the upstairs market, FL set

an artificial truncation at large volume, so FL’s finding of a

non-power-law distribution of volume is a trivial artifact of

incomplete data. Although FL claim in their note added in

proof that ‘it has been shown that large price fluctuations in

the NYSE (including the upstairs market) and the electronic

portion of the LSE are driven by fluctuations in liquidity’ their

new analysis and findings are affected by the same problems as

in their present comment: (i) incompleteness (absence of the

upstairs market trades) of the data analysed and (ii) they do not

take into account the splitting of large orders.

Gabaix et al [1, 5] and FL [2] discuss two distinct possi-

bilities respectively: (i) large price changes arise from large

5 Large trades tend to be executed in the ‘upstairs’ market by bilateral

arrangements than through the order book.

trades and (ii) large price changes arise from fluctuations in

liquidity [10,12]. While we believe that both mechanisms play

a role in determining the statistics of price changes, our empir-

ical findings support the possibility that the specific power-law

form of the return distribution arises from large trades.
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