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We study the effects of the degree–degree correlations on the pressure congestion J when we apply
a dynamical process on scale free complex networks using the gradient network approach. We find
that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for
uncorrelated networks which allow us to affirm that disassortative networks enhance transport through
them. This result agree with the fact that many real world transportation networks naturally evolve to
this kind of correlation. We explain our results showing that for the disassortative case the clusters in
the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J
and observing the opposite behavior for the assortative case. Finally we apply our model to real world
networks, and the results agree with our theoretical model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is known that a great variety of complex systems can be rep-
resented by networks, where the nodes are the elements of the
system and the links, the interactions among them. A way to char-
acterize a network is trough its degree distribution. In many cases
of interest [1], this distribution is often scale free, which is charac-
terized by a power-law degree distribution P (k) ∼ k−λ (k � kmin),
where k is the number of connections that a node can have, λ is
the degree exponent and kmin is the lowest degree allowed. The
degree distribution has an important impact on the behavior of
some dynamical processes taking place on the network, specially
on the congestion problem [1–7].

Recently the attention of scientists has been focused on to an-
other characteristic of the complex networks: the degree correla-
tion. The degree correlation can be understood as the tendency of
nodes of a certain degree to be connected with other nodes with
similar or different degree. In the first case this tendency is called
assortativity and in the last one disassortativity.

Through this property, it is possible to separate social networks
from technological networks, since the degree correlation behav-
ior is very different in either case. In social networks, like the
physics co-authorship and film actors networks [8], nodes tend to
be attached with others of similar degree, and therefore are char-
acterized by an assortative degree correlation. Technological and

* Corresponding author. Tel.: +54 223 475 6951; fax: +54 223 475 3351.
E-mail address: apastore@mdp.edu.ar (A.L. Pastore y Piontti).

biological networks such as Internet and the protein–protein inter-
action instead have a disassortative degree correlation.

Despite there are several models of networks proposed in
the literature that successfully reproduce many properties of real
world networks, only recently a few of them, take into account
the “correlation” factor in their construction. Newman showed that
models that do not consider correlation fail to reproduce many of
the real networks properties [9].

Of particular interest is to study the effects of the degree cor-
relations on the dynamical processes evolving on the top of the
network. It is known that some processes, such as synchronization
[10], transport [11], traffic dynamics [12] and growth [13] behave
differently according to the correlations present in the substrate
network where these processes spread [14].

From a quantitative point of view, the degree correlation can be
measured trough the neighbor connectivity [15], introducing the
quantity Knn(k) = ∑

k′ k′ P (k′|k) where P (k′|k) is the conditional
probability that an edge belonging to a node of degree k points
to a node of degree k′ . Then Knn(k) is the average nearest neigh-
bor degree of a node of degree k. This function increases with k in
the case of an assortative network, decreases for a disassortative
network and is flat for an uncorrelated network. Other measure of
the degree correlation is the Pearson coefficient r defined as

r = M−1 ∑
e jeke − [M−1 ∑

e
1
2 ( je + ke)]2

M−1
∑

e
1
2 ( j2

e + k2
e ) − [M−1

∑
e

1
2 ( je + ke)]2

, (1)

where je , ke are the degrees of the nodes at the ends of the
e-th edge, with e = 1, . . . , M , between je and ke . Notice that this
expression is valid for undirected networks [16]. For assortative
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(disassortative) networks, r > 0 (r < 0), and r = 0 for uncorrelated
networks. Even though this is an accepted quantity to measure cor-
relations, it should be used with caution because can hide strong
structural correlations [17]. Another measure of short range corre-
lation is the clustering. The clustering coefficient ci , for every site i
gives the probability that two nearest neighbors of node i are also
neighbor to each other.

Although there are many studies about degree correlations
and clustering in the literature, there is no agreement among re-
searchers on which topology characteristic governs a particular
process that is evolving on the network. The problem is that the
results obtained strongly depend on the algorithms used to build
the correlated network, that in general generate clustering [18,19].

In our case, we are particularly interested in the effects of the
degree correlations in the pressure congestion of a network. To this
end we apply an algorithm that preserves the clustering and the
degree distribution P (k), but allows us to change the degree cor-
relations. Then, through this algorithm we can isolate the effects of
the degree correlations from clustering on the pressure congestion
and compare the results with the uncorrelated case [4]. In partic-
ular we argue that real world networks of communications evolve
to a disassortative form in order to enhance the transport trough
them.

It is known [4] that for the uncorrelated case the pressure
congestion increases with λ when the process has a relaxational
component. In [4] it was shown that by introducing a surface re-
laxation mechanism, congestion in SF networks can be reduced,
but the same mechanism has no effect on congestion in the case
of Erdös Renyi random graphs [20].

In order to study the effects of the degree correlations of the
underlying network on the transport, we measure the congestion
pressure J .

The congestion pressure of a network is measured in the gradi-
ent network. The gradient direction of a node i is a directed edge
pointing towards a neighbor j on the substrate graph G , which has
the lowest value of the scalar field of its neighborhood. If i has the
lowest value of h in its network neighborhood, the gradient link
is a self-loop. In other words, the gradient network is the collec-
tion of all gradient edges on the substrate graph G . In the gradient
network, each node has just one outgoing link and � incoming
links. When a node has � = 0, belongs to the perimeter of a gradi-
ent network cluster. Then J is the average fraction of nodes with
� = 0, J = N (� = 0)/N . Thus J is a global indicator of the pres-
sure congestion and higher J means more congestion. In Ref. [4]
the authors studied a dynamic process of gradient-induced flows
produced by the local gradients of a non-degenerate scalar field
h = hN

i=1 distributed over the N nodes belonging to G . They found
that the dynamic process decreases J compared to the static case
[21]. The findings in Ref. [4] were interpreted trough a structural
transition in the clusters of the corresponding gradient networks.

Recently, Pan et al. [22] studied the effects of the degree cor-
relations on the pressure congestion in networks without any dy-
namics, using the model introduced in [3] for the gradient net-
work, and they found that assortative networks are less congested
than disassortative. This founding contradicts the observation that
most of the transport networks are disassortative. Transport in real
networks cannot be thought as a static process.

Even though at the present time no one has a global under-
standing about what governs the evolution of complex networks, it
is factual information that many of these networks have SF degree
distribution. This include large-scale communication networks, and
many biological networks. If there is a theory to explain this, it
must be based on processes and principles that are common to all
these different systems. So it is possible to think that the network
structure and hence its evolution is tied to its main functionality,
which is transport. However, transport is ubiquitously related to

gradients, or biases distributed across the system. Therefore when
a dynamic process is applied we expect a different behavior, that
could explain why different kind of networks evolve with certain
degree correlation.

In this Letter we study the effect of the degree correlations on
J in SF networks when a dynamical process is applied.

2. Theoretical model

In this section we discuss the construction of the substrate net-
works with and without degree correlations used in this work.
In order to generate uncorrelated SF networks we implement the
configurational model [23], with a power law degree distribution,
where the degree ki of a node i is between 2 = kmin � ki � kmax =√

N in order to uncorrelate the original network [24]. Then, to cor-
relate the original uncorrelated network, we apply the algorithm of
rewiring links [25–27], in which, at each step, two links of the net-
work, connecting four different nodes are randomly chosen. After-
wards, the four nodes are ordered according to their degrees. If we
want to correlate the network in a assortative mode, the links are
rewired with probability p in such a way that one link connects
the two nodes with larger degrees and the other link connects the
remaining nodes with smaller degrees and with probability 1 − p
the links are rewired at random. In the opposite case, if we want
to correlate the network in a disassortative mode, with probabil-
ity p, one link connects the highest degree node with the lowest
degree node and the other link connects the remaining nodes. In
both cases self-loops and multiple connections are forbidden. As
can be seen the parameter p controls the different degrees of as-
sortativity or disassortativity that a network can have. Although we
cannot achieve with this model the extremes value of r, to our end
the values obtained are enough demonstrative since most of real
world networks correlation fall in the range of values obtained by
this model. We emphasize that this model does not change P (k)

and does not change clustering, which is very small in the original
network.

After building the SF network, at t = 0, a random scalar field h
is constructed assigning to each node of the substrate network a
random scalar uniformly distributed between 0 and 1. In Fig. 1 we
show a scheme of the substrate network and the gradient network.
Then the scalars h ≡ h(t) evolve obeying the rules of the Family
model [28].1 This model is the simplest model of transport due to
gradients, in which at every time step a node i of the substrate is
chosen at random with probability 1/N and it becomes a candidate
for growth. If hi < h j for every j (gradient criterion) which is a
nearest neighbor of the node i, hi → hi + 1. Otherwise, if hi is not
a minimum, the node j with minimum h is incremented by one.
When the process reaches the steady state of the evolution with
this relaxation, we construct the gradient network and measure J
[6].

3. Results

We run our simulations for SF networks with kmin = 2 and
N = 30 000. We choose this value of N in order to avoid finite size
effects on r [17]. We define I = J U / JC as a factor of improvement,
where J U is the pressure congestion for the uncorrelated network
and JC for the correlated case. Then if I > 1 (I < 1) correlated
networks enhance (worsen) the transport. In Fig. 2 we plot I as
function of r for different values of λ. As can be seen in this fig-
ure, as r decreases, I increases, which means that a disassortative
correlation leads, after dynamics, to a lower value of congestion,

1 It is common to map this synchronization model into an interface growth
model.
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Fig. 1. Scheme for the substrate network and the gradient network. The solid lines indicates the connections in the original network, that do not change during the process.
The dash arrows indicate the connections in the gradient network and the self-loops. The numbers represent the scalar field of each node. Different colors represent different
clusters in the gradient network. These clusters change as the dynamical process evolves. Notice that each cluster has just one self-loop.

Fig. 2. I = J U / JC as function of r for different values of λ and N = 30 000. For r < 0
the correlated structure has a lower jamming than the uncorrelated one. On the
other hand, when r > 0 the jamming is lower in the uncorrelated case. In the inset
we plot JC as function of r for λ = 2.5. We can see that JC increases with r. We
observe this behavior for different values of λ, not shown in this plot.

compared to an assortative correlation. This effect is more pro-
nounced as λ decreases, implying that disassortative networks are
better for transport as λ decreases. This result could explain the
emergence of disassortative SF networks with small λ in commu-
nication networks and agree with the idea that networks naturally
develop certain correlation optimizing the process that evolves on
the top of them. To give a general picture of J C , in the inset of
Fig. 2 we plot JC as function of r for λ = 2.5. We can see that J C

increases with r. This behavior was observed for different values
of λ.

In order to understand the previous result, we are going to
consider an ideal situation where a gradient network, in an infi-
nite network, has every cluster configuration equally probable. For
cluster configuration we mean every different way to connect the
nodes of a cluster of size s as it is shown in Fig. 3 for some values
of cluster sizes. From Fig. 3 it can be seen that the average fraction
of nodes in the perimeter of a cluster πs is almost constant as a
function of s. More specifically, πs = 1/2 for s = 2,3,4 and then
decrease very slowly for larger sizes (for example, π7 = 0.482).

This implies that the average number of nodes in the perimeter
of a gradient network cluster is a growing function of its size s. As
a consequence, a gradient network with a large number of small
clusters will have a smaller congestion pressure J than a gradi-
ent network with a large number of big clusters. In a real network,
the number and sizes of the gradient network clusters depends on
the substrate network topology and on the relaxation process that
evolves on the top of it. Let’s consider two archetype cases: first
an assortative network where N nodes are fully connected, i.e., ev-
ery node has N − 1 neighbors. The gradient network in this case
is independent of the process and has just one cluster, with one
self-loop and N − 1 nodes in the perimeter. This example illustrate
that when big clusters are present one have to expect a large num-
ber of nodes in the perimeter and a large jamming, which in this
case is J = N − 1/N and tends to 1, i.e., maximum congestion. Sec-
ond, a disassortative network with a star-like configuration, where
one node is connected to the others N − 1 nodes. In this particular
case there will be more or less clusters in the gradient network
depending on the efficacy of the process decongesting the net-
work. For an optimal process we could obtain N − 2 self-loops
clusters (that means, clusters with s = 1) and 1 cluster of size
s = 2. This example illustrate that when many small clusters are
present one have to expect small number in the perimeter and a
low jamming, which in this case is J = 1/N and tends to 0, i.e.,
minimum congestion. Extrapolating the conclusions given by this
two toy networks, we expect smaller clusters and lower jamming
for a disassortative networks comparison with an assortative one.

In the following, we are going to analyze what actually occurs
with the process and the networks implemented in this work.

In Fig. 4 we plot the average number of clusters of the gra-
dient network for different values of r for our model. As can be
seen, as r decreases, there are more and consequently smaller clus-
ters. Following our conclusions for an infinite gradient network the
presence of smaller clusters indicates that a low number of nodes
are in the perimeter of them and therefore it explains the lowering
of the jamming observed in Fig. 2.

However, that conclusions were reached for infinite gradient
networks of equally probable clusters. In order to observe the ef-
fect introduced by the network correlation and by the relaxation
process favoring some specific graphs of Fig. 3 in detriment of oth-
ers, in Fig. 5 we plot the average diameter D(s) of the clusters as
function of the cluster size s. We define D(s) as the average dis-
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Fig. 3. Clusters configurations for different cluster size s (here we show just from s = 2 to s = 5). The white nodes are the nodes in the perimeter (� = 0) of every cluster. As
can be seen there are a finite number of configurations for each size s and as s increases there are more possible configurations, but some of them have the same number
of nodes in the perimeter. Notice that there is just one self-loop per cluster.

Fig. 4. Average number of clusters decreases as r increases for λ = 2.5 and N =
30 000. This result was obtained for other values of λ as well, observing the same
behavior.

tance from a perimeter node (� = 0) to the self-loop of the cluster
of size s (see Fig. 1). First, we observe that assortative networks
reach a given diameter D(s) for much bigger cluster sizes than
disassortative networks. But bigger clusters with the same diam-
eter is a clear indication that assortative networks have clusters
with larger perimeters than disassortative ones, which confirms
our previous conclusions based on infinite gradient networks. At
the same time, we find that for a given cluster size s dissortative
networks show cluster with larger diameter than assortative ones.
This is a new effect that cannot be inferred from our infinite gradi-
ent network analysis and is a consequence of the correlation in the
substrate networks. The relaxation process running over them gen-
erate gradient network clusters that, for a given size s, are more
elongated in the case of disassortative networks. More elongated
clusters for a given size corresponds to a lower perimeter and
hence to a lower congestion pressure J .

In order to see this effect in more detail, next we study the
contribution of every cluster type (see Fig. 3) to the pressure con-
gestion. Every cluster of size s > 1 can have from 1 to s − 1 nodes
in the perimeter, and of course this result does not depend on the
correlation or the degree distribution of the network (see Fig. 3).
What does depend on the degree correlation is the number of
times that every configuration appears.

Fig. 5. D as function of s for different values of r: disassortative (©, r = −0.198),
uncorrelated (∗, r = 0.004) and assortative (+, r = 0.309), for λ = 2.5 and N =
30 000.

We observe that depending on the correlation of the substrate
network, there are certain structures favored against others: for
r < 0 there are more self-loops clusters (s = 1) than for r > 0.
We compute the number of clusters with s = 1, for the values
of r in Table 1 before and after applying the relaxational process.
We found that, in average, before the dynamics there are 3561.07,
2.524 and 1336.75 self-loops clusters for r = −0.198, r = −0.004
and r = 0.309 respectively. After the dynamics we find 7282.47,
3960.96 and 1391.51 self-loops for the same values of r. This re-
sult means that disassortative correlations in combination with the
relaxational process contribute to the decrease in the congestion.
Something similar occurs for others values of s showed in the Ta-
ble 1. Besides from Table 1 for any value of r, for a given s (s = 7
as example) it can be seen that the cluster configurations with
1 and s − 1 nodes in the perimeter are less frequent than the
others configurations. This result is due to there are different clus-
ters configuration which lead to the same number of nodes in the
perimeter, but for extreme cases (1 and s − 1) there is only one
possible configuration.

From Table 1 we can also see that, after the dynamics, the
pressure congestion has its main contribution from the smaller
clusters. Computing the contribution to J of the clusters from size
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Table 1
For different values of r we compute the number of every possible configuration, before and after (in italics) applying the dynamics, for different values of s for N = 30 000
and λ = 2.5. In this table we are only showing some values of s.

s Nodes in the perimeter

1 2 3 4 5 6

r = −0.198 2 1538.29
2909.09

3 228.13 481.05
759.39 624.12

5 0.65 38.72 154.35 45.39
13.12 195.73 237.28 1.17

7 0.01 0.34 8.8 46.39 57.03 8.01
0.13 8.75 60.06 87.93 31.07 0.74

r = −0.004 2 1979.30
2925.49

3 286.29 829.57
666.95 961.39

5 1.66 71.69 188.85 48.1
14.39 249.5 250.96 20.11

7 0.01 1.08 17.13 58.82 50.99 6.41
0.14 13.64 79.80 97.14 28.28 0.8

r = 0.309 2 1879.64
1932.18

3 326.62 1443.89
426.59 1263.94

5 4.29 170.1 271.22 59.48
12.16 316.10 260.68 32.30

7 0.01 5.94 44.32 83.14 81.43 4.45
0.17 27.41 97.84 94.68 27.94 1.91

s = 1 to s = 7 and we find that the nodes in the perimeter of
these clusters represents more than the 75% of the total perimeter
for any value of r in Table 1.

The results presented in this Letter do not depend on the al-
gorithm used to build the substrate network (BA model or config-
urational model) neither the dynamical process, but some effects
could be due to small features depending on the algorithm used to
correlate the networks.

Finally, we want to show that our findings are reproducible in
real-world networks. Here we present results for an Internet net-
work [29] sample, the protein–protein interaction network of yeast,
and the actor movie database [8]. We choose these networks be-
cause they are undirected and have a SF degree distribution: the
Internet network has r = −0.198 and λ = 2.1, the protein interac-
tion network has r = −0.156 and λ = 2.4, and the actors network
has r = 0.208 and λ = 2.3 [30], so we have disassortative and as-
sortative networks to compare with the uncorrelated case. In order
to measure the pressure congestion in this real networks we assign
a non-degenerated scalar field to each node, and then we construct
the gradient networks as it was explained previously in this Letter,
and perform the relaxation process. In order to compute the im-
provement factor I , we uncorrelate the real networks applying the
following algorithm: at each step we choose two links connecting
four different nodes and then we reconnect them at random avoid-
ing self-loops and multiple connections. We found the following
improvement factors I Internet = 1.84 ± 0.02 Iprotein = 1.1 ± 0.02 and
Iactors = 0.86 ± 0.02 which agree with our results found for model
networks as function of the Pearson coefficient r and the power-
law exponent α.

4. Conclusions

In the present work we studied the effects of the degree corre-
lations to the congestion on SF complex networks when a dynamic
process is applied. As a result we found that disassortative net-
works are better for transport compared to uncorrelated networks.
This result could explain why real world networks of transport
have r < 0.

We also showed that the same relaxational dynamics has a big-
ger effect reducing the congestion in networks with lower values
of λ. This result agree with the fact that real transportation net-
works evolve to structures with 2 < λ < 3 and r < 0.

We explained our results showing that for r < 0 the clusters in
the gradient network turn out to be as much elongated as pos-
sible, reducing the perimeter and hence the pressure congestion
J and observing the opposite behavior for r > 0. We showed this
computing the times that every cluster configuration appeared for
some values of s.

Finally we applied our model to some real networks and the re-
sults show that these networks evolve to topologies that optimize
certain processes.
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