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Abstract 

We review evidence supporting the idea that the DNA sequence in genes containing non-coding 
regions is correlated, and that the correlation is remarkably long range - indeed, nucleotides 
thousands of  base pairs distant are correlated. We do not find such a long-range correlation 
in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of 
the sequence of base pairs by applying a new algorithm called detrendedfluctuation analysis 
(DFA). We address the claim of Voss that there is no difference in the statistical properties of 
coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well 
as standard FFT analysis, to every DNA sequence (33 301 coding and 29 453 non-coding) in the 
entire GenBank database. Finally, we describe briefly some recent work showing that the non- 
coding sequences have certain statistical features in common with natural and artificial languages. 
Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical 
properties of non-coding sequences support the possibility that non-coding regions of DNA may 
carry biological information. 

1. Long-range power-law correlations 

In recent years long-range power-law correlations have been discovered in a remark- 

ably wide variety of  systems. Such long-range power-law correlations are a physical  fact 

that in turn gives rise to the increasingly appreciated "fractal geometry of  nature" [ 1,2]. 

Indeed, recognizing the ubiquity of  long-range power-law correlations can help us in 

our efforts to understand nature, since as soon as we find power-law correlations we can 

quantify them with a critical exponent. Quantification of  this kind of  scaling behavior 

for apparently unrelated systems allows us to recognize similarities between different 

systems, leading to underlying unifications that might otherwise have gone unnoticed. 
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Traditionally, investigators in many fields characterize processes by assuming that 
correlations decay exponentially. However, there is one major exception: at the critical 
point, the exponential decay turns into a power-law decay [ 3 ] 

Cr ~ ( 1 / r )  d-2+~. (1) 

Many systems drive themselves spontaneously toward critical points [2,3]. One of the 
simplest models exhibiting such "self-organized criticality" is invasion percolation, a 
generic model that has recently found applicability to describing anomalous behavior of 
rough interfaces. 

In the following sections we will attempt to summarize some recent findings (see 
Refs. [4-6], and references cited in [7] ) concerning the possibility that, under suitable 
conditions, the sequence of base pairs or "nucleotides" in DNA also displays power-law 
correlations. The underlying basis of such power-law correlations is not understood at 
present, but this discovery has intriguing implications for molecular evolution [8], as 
well as potential practical applications for distinguishing coding and non-coding regions 
in long nucleotide chains [9]. It also may be related to the presence of a "language" in 
non-coding DNA [ 10]. 

2. DNA and the "DNA walk" 

The role of genomic DNA sequences in coding for protein structure is well known 
[11]. The human genome contains information for approximately 100000 different 
proteins, which define all inheritable features of an individual. The genomic sequence 
is likely to be the most sophisticated information database created by nature through 
the dynamic process of evolution. Equally remarkable is the precise transformation of 
information (duplication, decoding, etc.) that occurs in a relatively short time interval. 

The building blocks for coding this information are called nucleotides. Each nu- 
cleotide contains a phosphate group, a deoxyribose sugar moiety and either a purine 

or a pyrimidine base. Two purines and two pyrimidines are found in DNA. The two 
purines are adenine (A) and guanine (G); the two pyrimidines are cytosine (C) and 
thymine (T). 

In the genomes of high eukaryotic organisms only a small portion of the total genome 
length is used for protein coding (as low as 3% in the human genome). The segments 
of the chromosomal DNA that are spliced out during the formation of a mature mRNA 
are called introns (for intervening sequences). The coding sequences are called exons 

(for expressive sequences). 
The role of introns and intergenomic sequences constituting large portions of the 

genome remains unknown. Furthermore, only a few quantitative methods are currently 
available for analyzing information which is possibly encrypted in the non-coding part 
of the genome. 

One interesting question that may be asked by statistical physicists would be whether 
the sequence of the nucleotides A, C, G and T behaves like a one-dimensional "ideal 
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gas", where the fluctuations of density of certain particles obey a Gaussian law, or if 
there exist long-range correlations in nucleotide content (as in the vicinity of a critical 
point). These result in domains of all sizes with different nucleotide concentrations. 
Such domains of various sizes were known for a long time but their origin and sta- 
tistical properties remain unexplained. A natural language to describe heterogeneous 
DNA structure is long-range correlation analysis, borrowed from the theory of critical 

phenomena [3]. 
In order to study the scale-invariant long-range correlations of a DNA sequence, we 

first introduced a graphical representation of DNA sequences, which we term a fractal 

landscape or DNA walk [4]. For the conventional one-dimensional random walk model 
[ 12], a walker moves either "up" [u(i)  = +1] or "down" [u(i)  = - 1 ]  one unit length 
for each step i of the walk. For the case of an uncorrelated walk, the direction of each 
step is independent of the previous steps. For the case of a correlated random walk, the 
direction of each step depends on the history ("memory") of the walker. 

One definition of the DNA walk is that the walker steps "up" if a pyrimidine (C or T) 
occurs at position i along the DNA chain, while the walker steps "down" if a purine (A 
or G) occurs at position i (see Fig. 1). The question we asked was whether such a walk 
displays only short-range correlations (as in a Markov chain) or long-range correlations 
(as in critical phenomena and other scale-free "fractal" phenomena). A different type 
of DNA walk was introduced earlier by Azbel [ 13]. 

There have also been attempts to map DNA sequence onto multi-dimensional DNA 
walks [5,14]. However, recent work [9] indicates that the original purine-pyrimidine 
rule provides the most robust results, probably due to the purine-pyrimidine chemical 
complementarity. 

3. Correlations and self-similar processes 

The concept of self-similar processes was first proposed by Kolmogorov [ 15] in 
theoretical physics and later introduced into mathematics through the influential work 
of Mandelbrot on fractals [ 16]. An object is self-similar if its subsets can be rescaled 
to resemble (statistically) the original object itself. A scaling exponent (also called 
the self-similarity parameter) can be defined by this rescaling process. A stationary 
sequence with long-range correlations can be integrated, i.e. form an accumulated sum, 
to form a self-similar process. Therefore, measurement of the self-similarity scaling 
exponent of the integrated series can tell us the long-range correlation properties of 
the original sequence. Hurst analysis [ 17] and our DNA walk analysis are both based 
on this concept. Fig. ld shows a typical example of a gene that contains a significant 
fraction of base pairs that do not code for amino acids. It is immediately apparent that 
the DNA walk has an extremely jagged contour. 

An important statistical quantity characterizing any walk is the root mean square 
fluctuation F(g)  about the average of the displacement of a quantity Ay(g) defined by 
Ay(e) = y(e0 + e) - y(e0), where 



y( g) =_ E u( i). 
i=1 
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(2) 

If there is no characteristic length (i.e. if the correlations were "infinite-range"), then 
fluctuations will also be described by a power law 

F(g) ~ga, (3) 

with c~ 4: 1/2. The exponent ot is the self-similarity parameter mentioned above and 
therefore is directly related to long-range correlations in the sequence. 

The fact that data for intron-containing and intergenic (i.e. non-coding) sequences 
are linear on this double logarithmic plot confirms that F(g) ~ g". A least-squares 
fit produces a straight line with slope ot substantially larger than the prediction for an 
uncorrelated walk, a = 1/2, thus providing direct experimental evidence for the presence 

of long-range correlations. 
On the other hand, the dependence of F(g) for coding sequences is not linear on 

the log-log plot: its slope undergoes a crossover from 0.5 for small g to 1 for large 
g. However, if a single patch is analyzed separately, the log-log plot of F(g) is again 
a straight line with the slope close to 0.5. This suggests that within a large patch the 
coding sequence is almost uncorrelated. 

4. Detrended fluctuation analysis (DFA) 

The initial report [4] on long-range (scale-invariant) correlations only in non-coding 
DNA sequences has generated contradicting responses. For details see the work of 
Buldyrev et al. [7]. The source of these contradicting claims may arise from the fact 
that, in addition to normal statistical fluctuations expected for analysis of rather short 
sequences, coding regions typically consist of several lengthy regions of alternating 
strand bias - and so we have non-stationarity. Hence conventional scaling analyses 
cannot be applied reliably to the entire sequence but only to sub-sequences where it is 
homogeneous. Fig. 1 shows a collection of DNA walks for artificial and actual DNA 

sequences. 
Peng et ai. [ 18] have recently applied the "bridge method" to DNA, and have also 

developed a similar method specifically adapted to handle problems associated with 

non-stationary sequences which they term detrended fluctuation analysis (DFA). 
The basic idea underlying the DFA method is to compute the dependence of the stan- 

dard error of a linear interpolation of a DNA walk Fa(g) on the size of the interpolation 
segment g. The method takes into account differences in local nucleotide content and 
may be applied to the entire sequence which has lengthy patches. In contrast with the 
original F(g) function, which has spurious crossovers even for g much smaller than a 
typical patch size, the detrended function Fd(g) shows linear behavior on the log-log 
plot for all length scales up to the characteristic patch size, which is of the order of 
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Fig. 1. (a) DNA walk for a control sequence obtained by stitching together biased random walks; the 
characteristic length for the patches is 2500. (b) DNA walk for a control sequence obtained from building 
in a long-range correlation into a set of 100,000 "nucleotides" which are correlated with power-law exponent 
ot = 0.61. (c) DNA walk for a genomic fragment containing mostly coding regions [E. coli K12 genome, 
0-2.4 min. region, GenBank name: ECO110K, 111401 bp]. (d) DNA walk for a typical intron-containing 
chromosomal region of a comparable length (human T-cell receptor alpha/delta locus, GenBank name: 
HUMTCRADCV, 97634 bp). Large sub-regions ("patches") of uniform overall slope ("strand bias") reflect 
the mosaic structure. To facilitate the comparison of  subtle fluctuations, each landscape is plotted so that the 
end point has the same vertical displacement as the starting point, i.e., the overall bias has been removed. 
After Ref. [ 18]. 
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Fig. 2. DFA analysis of the four landscapes shown in Fig. 1. The uncorrelated biased random walk (a) ( × ) 
is similar to the E. coli genomic coding fragment (c) (1:]), while the correlated control sequence (b) (+) is 
quite similar to the highly non-coding human T-cell receptor alpha/delta locus (d) (o). The lower solid line, 
the best fit for E. coli data from e = 4 to 861, has slope 0.51. The upper solid line, the best fit for human data 
from g = 4 to 8192, has slope 0.61. The arrow denoting the crossover phenomenon is explained in the text. 
After Ref. [ 18]. 

a thousand nucleotides in the coding sequences. For ~ close to the characteristic patch 

size the log- log plot of  Fa(~) has an abrupt change in its slope. (See Fig. 2.) 

The DFA method clearly supports the difference between coding and non-coding 

sequences, showing that the coding sequences are less correlated than non-coding se- 

quences for the length scales less than 1000, which is close to characteristic patch size 

in the coding regions. 

5. Systematic analysis of the GenBank database 

An open question in computational molecular biology is whether long-range correla- 

tions are present in both coding and non-coding DNA (as claimed by Voss [6] ) or only 

in the latter (as we originally reported). To answer this question, Buldyrev et al. [20] 

recently analyzed all 33 301 coding and all 29453 non-coding eukaryotic sequences - 

each of  length larger than 512 base pairs (bp) - in the present release of  the GenBank 
to determine whether there is any statistically significant distinction in their long-range 

correlation properties. 
Buldyrev et al. find that standard fast Fourier transform (FFT) analysis indicates that 

coding sequences have practically no correlations in the range from 10 bp to 100 bp 
(spectral exponent /3 4 -2SD = 0.00 ± 0.04).  Here /3 is defined through the relation 

S ( f )  ~ 1 / f  13, where S ( f )  is the Fourier transform of  the correlation function, and 
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/3 is related to the long-range correlation exponent a by /3 = 2a - 1 so that a = 1/2 
corresponds to/3 = 0 (white noise). 

In contrast, for non-coding sequences, the average value of the spectral exponent 
/3 is positive (0.16 + 0.05), which unambiguously shows the presence of long-range 
correlations. They also separately analyzed the 874 coding and 1157 non-coding se- 
quences which have more than 4096 bp, and found a larger region of power-law be- 
havior. Buldyrev et al. calculated the probability that these two data sets (coding and 
non-coding) were drawn from the same distribution, and found that it is less than 
10 -l°.  Buldyrev et al. also obtained independent confirmation of these findings using 
the DFA method, which is designed to treat sequences with statistical heterogeneity 
such as DNA's known mosaic structure ("patchiness") arising from non-stationarity of 
nucleotide concentration. The near-perfect agreement between the two independent anal- 
ysis methods, FFT and DFA, increases the confidence in the reliability of the conclusion 
that long-range correlation properties of coding and non-coding sequences. 

From a practical viewpoint, the statistically significant difference in long-range power- 
law correlations between coding and non-coding DNA regions that we observe supports 
the development of gene finding algorithms based on these distinct scaling properties 
(see Section 6). 

Very recently Arneodo et al. [21 ] studied long-range correlation in DNA sequences 
using wavelet analysis. The wavelet transform can be made blind to "patchiness" of 

genomic qenomic sequences. They found the existence of long-range correlations in non- 
coding regimes, and no long-range correlations in coding regimes in excellent agreement 
with Buldyrev et al. [20]. 

Finally, we note that although the scaling exponents a and /3 have potential use in 
quantifying changes in genome complexity with evolution, the current GenBank database 
does not allow us to address the important question of whether unique values of these 
exponents can be assigned to different species or to related groups of organisms. At 
present, the GenBank data have been collected such that particular organisms tend to 
be represented more frequently than others. For example, about 80% of the sequences 
from birds are from Gallus gallus (the chicken) and about 2/3 of the insect sequences 
are from Drosophila melanogaster. The results indicate the importance of sequencing 
not only coding but also non-coding DNA from a wider variety of species. 

6. Additional application: Coding sequence finder (CSF) algorithm 

To provide an "unbiased" test of the thesis that non-coding regions possess but 
coding regions lack long-range correlations, Ossadnik et al. [9] analyzed several artificial 
uncorrelated and correlated "control sequences" of size 105 nucleotides using the GRAIL 
neural net algorithm [ 19]. The GRAIL algorithm identified about 60 putative exons in 
the uncorrelated sequences, but only about 5 putative exons in the correlated sequences. 

Using the DFA method, we can measure the local value of the correlation exponent 
along the sequence (see Fig. 3) and find that the local minima of ot as a function 
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Fig. 3. Analysis of section of Yeast Chromosome Ill using the sliding box Coding Sequence Finder "CSF' 
algorithm. The value of the long-range correlation exponent a is shown as a function of position along the 
DNA chain. In this figure, the results for about 10% of the DNA are shown (from base pair #30000 to base 
pair #60000). Shown as vertical bars are the putative genes and open reading frames; denoted by the letter 
"G" are those genes that have been more firmly identified (March 1993 version of GenBank). Note that the 
local value of ot displays minima where genes are suspected, while between the genes a displays maxima. This 
behavior corresponds to the fact that the DNA sequence of genes lacks long-range correlations (a = 0.5 in 
the idealized limit), while the DNA sequence in between genes possesses long-range correlations (o~ ,,~ 0.6). 

of a nucleotide position usually correspond to coding regions, while the local maxima 

correspond to non-coding regions. Statistical analysis using the DFA technique of the 

nucleotide sequence data for yeast chromosome III (315338 nucleotides) shows that 

the probability that the observed correspondence between the positions of minima and 

coding regions is due to random coincidence is less than 0.0014. Thus, this method 

- which we called the "coding sequence finder" (CSF) algorithm - can be used for 

finding coding regions in the newly sequenced DNA, a potentially important application 

of DNA walk analysis. 

7. Linguistic analysis of DNA sequences 

Long-range correlations have been found recently in human writings [22-24] .  A 

novel, a piece of music or a computer program can be regarded as a one-dimensional 

string of symbols. These strings can be mapped to a one-dimensional random walk 



188 C-K. Peng et al./Physica A 221 (1995) 180-192 

model similar to the DNA walk allowing calculation of the correlation exponent a. 
Values of a between 0.6 and 0.9 were found for various texts. 

An interesting hierarchical feature of languages was found by Zipf [ 25 ]. He observed 
that the frequency of words as a function of the word order ("rank") decays as a power 
law (with a power ( close to - 1  ) for more than four orders of magnitude. 

In order to adapt the Zipf analysis to DNA, the concept of word must first be defined. 
In the case of coding regions, the words are the 64 3-tuples ("triplets") which code 
for the amino acids, AAA, AAT . . . . .  GGG. However for non-coding regions, the words 
are not known. Therefore Mantegna et al. [ 10,26] consider the word length n as a free 
parameter, and perform analyses not only for n = 3 but also for all values of n in the 
range 3 through 8. The different n-tuples are obtained for the DNA sequence by shifting 
progressively by 1 base a window of length n; hence, for a DNA sequence containing 
L base pairs, we obtain L - n + 1 different words. 

Before we discuss the results from actual DNA sequences, let us first consider ex- 
amples of artificial language. A compiled computer program and a computer data file 
can both be treated as sequences of binary code. Although, they both contain useful 
information, the structure of the information are very different. A computer program 
that can execute series of instructions and decisions should bear more resemblance to 
natural language than a binary data file which only stores information. We do not expect 
the binary sequence of a data file to exhibit long-range correlations or any hierarchical 
structure. Indeed, the DFA and Zipf analyses confirm the above assumption (see Fig. 4). 

The results of the Zipf analysis for all 40 DNA sequences analyzed are summarized 
by Mantegna et al. [ 10]. The averages for each category support the observation that 
( is consistently larger for the non-coding sequences, suggesting that the non-coding 
sequences bear more resemblance to a natural language than the coding sequences 
(Fig. 5). Moreover, the "words" used in coding and non-coding sequences appear in 
quite different orders. Furthermore, it is shown that the n-tuples usage is significantly 
different for different species. This difference may be related to the underlying evolu- 
tionary process such that a phylogenetic tree can be generated by studying the similarity 
and difference of n-tuples usage [ 27 ]. 

It is known that in different organisms (and within the same organism in different 
regions of the same genome) the DNA has different C+G content and different first 
order Markovian matrices [i.e. different probabilities P ( i , j ) ]  - see, e.g., Ref. [28]. 
A possible explanation of the difference in functional form observed in the Zipf plot 
could be due to the differences in the CG content and/or in the Markovian matrices 
characterizing the investigated sequences and their coding and non-coding regions. See 
Refs. [26,29] for details. 

It appears that the linearity of a Zipf plot is generally indicative of hierarchical 
ordering. For example, it is possible that a wide range of systems result in straight-line 
behavior when subjected to a Zipf analysis and some understanding of the implications 
of the Zipf analysis is now emerging [30,31]. 
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Fig. 4. (a) DFA analysis of the compiled version of the UNIX Operating System and a computer data file, 
both comprising ~ 106 binary bits. The best fit lines have slope 0.65 for UNIX code and 0.51 for binary data 
file. (b) n-tuple Zipf analysis for the same binary sequences shown in (a) with n = 12. For the compiled 
Unix code, a power-law behavior is observed for a rank interval of more than two decades. In the power-law 
region (rank 10 to 1000), the best linear fit of the log-log plot gives the value of ~" = 0.89. Similar behavior 
is obtained when n = 8, 10 and 14. However, for the binary data file, the Zipf plot shows a very flat line, 
indicating, as expected, no hierarchical structure exist. 
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