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A combined effect of sticking probability and finite viscosity ratio is studied on the pattern forma-
tion in Laplacian growth. A renormalization-group theory is developed to study the crossover phe-
nomena between the diffusion-limited aggregation (DLA) and nonfractal structure. A two-stage
crossover phenomenon is analyzed by using a three-parameter position-space renormalization-
group method. A global flow diagram in three-parameter space is obtained. It is found that there
are three nontrivial fixed points, the first Eden point, the DLA point and the second Eden point.
The second Eden point corresponding to the dense structure is stable in all directions, while the first
Eden point and the DLA point are saddle points. When the sticking probability P is small and the
viscosity ratio is finite, the aggregate must cross over from the dense structure, through the DLA

fractal, finally to the dense aggregate.

I. INTRODUCTION

Fractal growth phenomena in pattern formation' ™ !!

have recently attracted considerable attention. Examples
of pattern formation in diffusive systems include viscous
fingering, electrochemical deposition, crystal growth, and
dielectric breakdown. The diffusion-limited aggrega-
tion2 (DLA) model is one of the nonequilibrium growth
models. Patterns forming in the diffusive systems are iso-
morphic to DLA, since the Laplace equation underlies
the diffusive systems.'> The pattern formation in the
viscous fingering at an infinite viscosity ratio is a good ex-
ample.!" The fractal nature of the aggregate has been an-
alyzed by computational, experimental, and analytical
methods.  Several analytical attempts, including
mean-field theories'>" !¢ and renormalization-group
methods,'”?? have been made to calculate the fractal di-
mension and the multifractal structure?>?* of the growth
probability distribution. Several approaches to simple
generalizations of the DLA model have been carried out
to take into account the finite viscosity ratio,?>2° sticking
probability,?>?” surface tension,?®3° particle drift,’'~3’
multiparticle effects,3* and lifetime effects.’®> The cross-
over phenomena between DLA fractal and nonfractal
structures were found by computational and experimen-
tal methods. By computer simulation, Meakin?’ found
the crossover from the dense structure to the DLA frac-
tal by introducing the sticking probability. The scaling
form was presented,

M (r,P)=r>"1£(pPr088) (1)

where M is the mass of the cluster, r the radius of gyra-
tion, and P the sticking probability. By computer simula-
tion Sherwood” and King?® found independently the
crossover from the DLA fractal to the dense structure by

41

considering the finite viscosity ratio. Very recently, Lee,
Coniglio, and Stanley>® succeeded in analyzing the cross-
over from the DLA fractal to the dense structure in
viscous fingering at the finite viscosity ratio. They ex-
tended the position-space renormalization-group method
devised by Nagatani'® and developed the two-parameter
renormalization-group method to study the crossover.
They showed the global flow diagram in the two-
parameter space and calculated the crossover exponent
and crossover radius.

Nagatani®’ also succeeded in analyzing the effect of
sticking probability on DLA by using the two-parameter
position-space renormalization-group method. It was
found that when the sticking probability was small the
aggregate had to cross over from the dense structure to
the DLA fractal. The crossover from the dense structure
to the DLA fractal was consistent with the simulated pat-
terns which were thicker near the starting point than
near the periphery and above a characteristic radius that
showed up in the fractal structure.’® Consequently, it
was shown that the theoretical result and the computer
simulation result for the crossover exponent and cross-
over radius were consistent with each other.

In this paper, we consider a combined effect of sticking
probability and finite viscosity ratio upon the pattern for-
mation in Laplacian growth. By introducing a small
sticking probability, the crossover from the dense struc-
ture to the DLA fractal occurs. In contrast to the stick-
ing probability, the finite viscosity ratio induces the cross-
over from the DLA fractal to the dense structure. Thus
an open question concerns the internal structure and the
asymptotic behavior of DLA in which both sticking
probability and finite viscosity ratio are introduced. We
study the crossover phenomena between the DLA fractal
and the nonfractal structures by using a three-parameter
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position-space renormalization-group method. We show
a global flow diagram in three-parameter space. With a
small sticking probability and a finite viscosity ratio, the
system crosses over from the dense structure, through the
DLA fractal, finally to the dense structure.

The organization of the paper is as follows. In Sec. II
we present the dielectric breakdown model on the dia-
mond hierarchial lattice for DLA with both sticking
probability and finite viscosity ratio. In Sec. III we apply
the three-parameter position-space renormalization-
group method to the dielectric breakdown model. In Sec.
IV we show the global flow diagram in the three-
parameter space. A two-stage crossover phenomenon is
found. In Sec. V we present the summary.

II. MODEL

We consider the basic equations for the viscous finger-
ing problem at a finite viscosity ratio by introducing the
sticking probability. In order to simplify the problem, we
assume that both fluids are Newtonian with zero interfa-
cial tension. The basic equations governing the viscous
fingering are given by

k,Vzp,=0 (for injected fluid) ,
()
kpV?p, =0 (for displaced fluid) ,

where p, k, and V? represent the pressure, permeability,
and Laplacian, respectively, and the indices I and D indi-
cate the injected fluid and the dispalced fluid. The veloci-
ty field is given by

b= —k-2L . (3)
ox;

The permeability is proportional to the inverse of the
viscosity.  The  viscosity ratio is defined as
Np/M;(=k;/kp). The two boundary conditions at the
interface must be satisfied. The first boundary condition
is given by the continuity property of the velocity,

v;=v;, (on the interface) . (4)
Without the sticking probability, the second boundary
condition is given by the condition that the pressure field
must be continuous across the interface. We extend the
second boundary condition to the case with the sticking
probability. In the limit of an infinite viscosity ratio, the
extended version of DLA introducing the sticking proba-
bility P is equivalent to the Laplacian growth model with
the third boundary condition (1—P)3dp,, /dn — Pp, =0,
where dp /dn is the derivative normal to the interface.
The second boundary condition with the sticking proba-
bility is given by
pp .

(I—P)a—n—P(pD —p;)=0 (on the interface) . (5)
The limiting case of P =1 represents the ordinary viscous
fingering with p,=p,;. The pressure field is continuous
across the interface. In the limit of P—0, it gives the
perfectly reflecting boundary and the Eden model is
reproduced since the probability visiting the surface be-
comes uniform over all the surface sites.

We use an .electrostatic analogy to transform the
viscous finger problem into a specific type of resistor net-
work problem. We describe the viscous fingering in the
dielectric breakdown language. The dielectric break-
down model is isomorphic to the viscous fingering, since
both systems are governed by the Laplace equation. For
simplicity, we consider the problem on the diamond
hierarchial lattice. The position-space renormalization-
group approach applied to the hierarchial lattice is com-
paratively accurate to derive the critical behavior of the
system. The diamond hierarchial lattice is constructed
by an iterative generation of the base set. Each bond is
occupied by the resistor of unit conductance. A constant
voltage is applied between the bottom and the top on the
diamond hierarchial lattice. The dielectric breakdown
proceeds from the bottom to the top. Figure 1 shows the
illustration of the breakdown model on the diamond lat-
tice. The thick lines indicate breakdown bonds which
construct the breakdown pattern. The bonds on the per-
imeter of the breakdown pattern are represented by the
wavy lines. The thin lines indicate unbroken bonds
which are resistors of unit conductance. So the resistor
network problem is solved under discrete versions of
boundary conditions (4) and (5). Across the interface,
current is continuous,

I,=I; (on the interface) , (6)

where I, is the current flowing through the bond of the
breakdown pattern on the perimeter bond, and I, the
current on the perimeter bond. The discrete version of
the second boundary condition is given by

(1—P)(®,, —D,)—P(d,—D,)=0

(on the perimeter bond) , (7)

where @ is the potential of a site on the surface of the
breakdown pattern, @, the potential of a site that is the
nearest neighbor to the breakdown pattern, and ®, the
potential of a site just below the interface. The potential
gap ®,— P, is interpreted as the voltage drop which

FIG. 1. Illustration of the dielectric breakdown model with
the contact resistance. A constant voltage is applied between
the bottom and the top. The thick, wavy, and thin lines indi-
cate, respectively, break, growth, and unbroken bonds.
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occurs from the contact resistance on the interface. A
growth probability proportional to the current is then as-
signed to the perimeter bond. The breakdown occurs on
the perimeter bond according to the growth probability.
The interface proceeds to the top just after breaking
down. The breakdown process of bonds is assumed to
occur one by one. The growth probability p; at the
growing-perimeter bond i is given by

pi~1;, (8)

where I; is the local current on the growth bond i. Thus
we can describe the viscous fingering at a finite viscosity
ratio with the sticking probability in terms of the break-
down model on the resistor network with a contact resis-
tance.

III. RENORMALIZATION-GROUP APPROACH

We develop the position-space renormalization-group
method to study both effects of the sticking probability
and finite viscosity ratio upon a growth pattern. We con-
sider the renormalization procedure for deriving the
three-parameter position-space renormalization-group
equations. We derive the renormalization transforma-
tions for the sticking probability P, the conductance o,
of the breakdown bond, and the surface conductance o
of the perimeter bond. We will show that the three-
parameter renormalization-group equations are given by

P':RP(P,O'H,US) 5 (9)
0,=R,(P,0,,0,), (10)
o.=R,(P,o,,0,). (11)

We distinguish between three types of bonds on the lat-
tice before and after a renormalization procedure: (a)
breakdown bonds which construct the breakdown pat-
tern, (b) growth bonds which are on the surface of the
breakdown pattern and can be successively grown, and (c)
unbroken bonds which are in the exterior of the break-
down pattern. The breakdown, growth, and unbroken
bonds are, respectively, indicated by the thick, wavy, and
thin lines in the figures. We partition all the space of the
diamond hierarchial lattice into cells of size b =2, (b is
the scale factor), each containing a single generator.
After a renormalization transformation these cells play
the role of “renormalized” bonds. The nth generation of
the hierarchial lattice is transformed to the (n — 1)th gen-
eration. The renormalization bonds are then classified
into the three types of bonds, similarly to bonds before
the renormalization. Figure 2 shows the renormalization
procedure. The cell configurations on the upper side are
renormalized to the bonds on the bottom side. If the cell
is spanned with the bonds occupied by the breakdown
bond, then the cell is renormalized as the breakdown
bond [Fig. 2(a)]. If the cell is not spanned with the break-
down bond and is the nearest neighbor to the breakdown
pattern, then the cell is renormalized, as is the growth
bond on the surface [Fig. 2(b)]. When the cell is con-
structed only by the unbroken bonds and is not the
nearest neighbor of the breakdown bond, then the cell is
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FIG. 2. Renormalization procedure. The cells in the upper
side are renormalized to the bonds in the bottom side. There
are three types of cells. These cells are, respectively, renormal-
ized as (a) breakdown bond, (b) growth bond, and (c) unbroken
bond.

renormalized as the unbroken bond [Fig. 2(c)]. The con-
ductance of the unbroken bond after renormalization
remains to be unit value. The conductances of the break-
down bond and the growth bond are transformed to
different values from initial values after renormalization.
We call the conductance of the growth bond the surface
conductance. The sticking probability P is also
transformed to a different value P’ after renormalization.
We shall first derive the renormalization-group equa-
tions for the sticking probability P and the surface con-
ductance o,. Figure 3 shows all the configurations of the
cell for which it is possible to renormalize as the growth
bond. Let us consider the configurational probability C,
with which a particular configuration a appears. The
distinct configurations are labeled by a (¢=0,1,2) in Fig.
3. Configuration (1) is constructed by adding a break-
down bond onto the growth bonds 1 or 2 in configuration
(0). The probability with which a breakdown bond adds
onto the growth bonds 1 or 2 in configuration (0) is given
by the growth probabilities py; or p,, of the growth
bonds 1 or 2 in configuration (0). In addition, by adding
a breakdown bond to configuration (1), configuration (2)
occurs. We here assume that the breakdown proceeds
one by one. The configurational probabilities C, are

given by

Ci=Co(po,1 tPo2) >
(12)
C=Cipis >

where po | =p,, =1. The configurational probability C,
is determined from the normalization condition

3$C,=Co+C,+C,=1. (13)
a

Consider the resistor network problem for cells which
can be renormalized as the growth bond. The electric
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FIG. 3. All distinct configurations of the cell that are possi-
ble to renormalize as the growth bond. The circuit on the left-
hand side is renormalized to that on the right-hand side in such
a way that they are electrically equivalent.

fields within the cell are determined by the sticking prob-
ability P, the surface conductance o, and the conductivi-
ty o, of the breakdown bond. We solve the resistor net-
work problem for deriving the renormalization functions
(9) and (11) of the sticking probability P and the surface
conductance o,. We apply the unit voltage between the
top and the bottom for each cell. Figure 3 shows the
resistor network problem for configuration (0). The resis-
tor network consisting of the four bonds on the left-hand
side is transformed to the single resistor with the
equivalent electric property. By using the boundary con-
dition (7), the voltages and the currents within the cell
are determined. The total current and the total conduc-
tance of the cell are given by

I,=2Po,/(14+Pc,)
00=20,/(1+0y) .

(14)

The voltage ¥ on the surface of the renormalized bond is
determined from

(1—P))(1—V)—PyV!=0, (15)

where P is the renormalized sticking probability. The
total current flowing in the cell is equal to the current
flowing through the renormalized bond

Iy=0ay(1—V!) . (16)
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By using Eqgs. (14)-(16), the renormalized sticking proba-
bility Py is obtained

Py=(1+0,)P/(1+Pc,) . (17)

Similarly to configuration (0), we solve the resistor net-
work problem for the configuration (1) (see Fig. 3). The
total current flowing within the cell is given by

_ Po,0(1tPo)+Poyo,+Po;)

I,= 18
! (0,+Po)(1+Poy) (18
The total conductance of the cell is given by
oo,+20,+t0,0,)
0_,1= s a a-s (19)

(1+o, Mo, t0y)

By using the condition that the total current flowing
within the cell equals that which is carried through the
renormalized bond, the renormalized sticking probability
P is given by

P(1+o o, to)o,(1+Po,)+(o,+Po,)]

pP,=
! (0,+20,+0,0,)(0,+Po,)(1+Po,)

(20)

The growth probabilities p; ; and p, , within the cell are
given by

_ o,(1+Poy)

P 20,+Po,+Po,o, "’

Pr2=1=py, - 2D
Similarly, the conductance o5 of the cell with
configuration (2) is obtained,

20,0,
= 22
72 o,to, @2

Figure 3 (bottom) shows the resistor network problem for
configuration (2). The renormalized sticking probability
P/, of the cell is given by

P'—P(U”Jra‘) (23)
2 g,+Po,
The growth probabilities p, ; and p, , are given by

P21 =P22= % - 24)

The renormalized conductance o; of the gorwth bond
will be assumed to be given by the most probable value

o;=exp [3C,lno,, (25)

Relationship (25), with (14), (19), and (22), presents the
renormalization function o, =R (P,0,,0,) for the sur-
face conductance. The renormalized sticking probability
P’ will be assumed to be given by the mean value

P'=3C,P., . (26)
a

Relationship (26), with (17), (20), and (23), presents the
renormalization function P'=Rp(P,0,,0,) for the stick-
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ing probability.

We shall consider here the renormalization for the
spanning cluster. The spanning cluster is renormalized as
the breakdown bond. Figure 4 shows all the config-
urations of the spanning cluster. Configurations (1) and
(2) of the spanning cluster on the bottom side are con-
structed from the configurations of the growth cell on the
top side. Configuration (1) in Fig. 4 is constructed by
adding the breakdown bond onto the growth bond 1 in
configuration (1) in Fig. 3. The configurational probabili-
ty C, of configuration (1) is given by

Co1=CooP1,1Cy - 27)

Configuration (2) in Fig. 4 is constructed by adding the
breakdown bond onto the growth bonds 1 or 2 in
configuration (2) in Fig. 3. The configurational probabili-
ty C, , of configuration (2) is given by

C.2=C,holpy,11P2,)C, . (28)

The unknown constant C,  is determined by the normali-
zation condition

C,1+C,,=1. (29)
The conductance o ; of the cell in Fig. 4(1) is given by

0,,=(1+0,)/2. (30
The conductance o, , of the cell in Fig. 4(2) is given by

0,,=0,/2+0,/(1+0a,) . (3D

The renormalized conductance o, of the breakdown
bond will be assumed to be given by the most probable
value

o,=exp(C, lno, ,+C,,lna,,) . (32)
Relationship (32), with (30) and (31), presents the re-

O

l l

VY

(2)

FIG. 4. All distinct configurations of the spanning cluster,
which are renormalized as the breakdown bond, are shown on
the bottom side. Configurations (1) and (2) are, respectively,
constructed from the configurations of the growth bonds shown
on the top side.
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normalization function o, =R,(P,0,,0,) for the conduc-
tance of the breakdown bond. Equations (25), (26), and
(32) give the renormalization equations for three parame-
ters. In the limit of P =1, Eqgs. (25) and (32) reduce to the
result of the viscous fingering at a finite viscosity ratio.
In the limit of 0,— «, Egs. (25) and (26) are consistent
with the two-parameter renormalization-group equations
for DLA with the sticking probability P. Equations (12),
(13), (14), (17), and (19)-(32) are simultaneously solved.
We find the three nontrivial fixed points (0,1/0F,0),
(1,1/0B14,0), and (1,1,1) in the three-parameter space
(P,1/0,,1/0,) where 0 =2.611 and op,=2.123. At
the fixed point (0,1/0%,0), the growth probabilities p,, ;
give 1 for all the growth bonds in configurations (0), (1),
and (2) in Fig. 3. The growth probability over the whole
system becomes uniform over all the surface bonds. The
fixed point (0,1/0%,0) corresponds to the Eden model.
It is called the first Eden point. The fixed point
(1,1/0p514,0) gives the ordinary DLA. It is called the
DLA point. The fixed point (1,1,1) gives the result of the
viscous fingering at the viscosity ratio 1. The fixed point
also corresponds to the Eden model. It is called the
second Eden point. In Sec. IV we study the stability of
the fixed points in the three-parameter space
(P,1/04,1/0,). The global flow in the three-parameter
space will be obtained. The crossover phenomena will be
investigated.

IV. CROSSOVER BETWEEN THE DLA FRACTAL
AND NONFRACTAL

We consider the crossover phenomena between the
Eden model and the DLA fractal. First we consider the
two limiting cases o,— « and P =1. The case of P=1
reproduces the viscous fingering at a finite viscosity ratio.
The problem has been analyzed by Lee, Coniglio, and
Stanley.’® The case of o,— o reproduces the DLA
while introducing the sticking probability. Nagatani®’
has presented the renormalizarion-group approach to the
problem. We present the results of the two limiting cases
for later convenience. Figure S indicates the global flow

1/0,
0.5

FIG. 5. Global flow diagram in two-parameter space
(P,1/0;) in the limiting case of o,— «. There are two fixed
points: the first Eden point and the DLA point. All the renor-
malization flows are eventually sucked into the DLA point. The
crossover line from the Eden to the DLA is indicated by the
thick line.
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diagram in the two-parameter space (P,1/0) in the lim-
iting case of o, — . The renormalization flows indicat-
ed in Fig. 5 are obtained by using (25) and (26) with
0,— . From the renormalization flow, we can deter-
mine the stabilities of the two fixed points: the first Eden
point and the DLA point. The first Eden point is a sad-
dle point. The DLA point is stable. All the renormaliza-
tion flows are eventually sucked into the DLA point. It
is found from the flow diagrams that there exists a cross-
over from the dense cluster (the first Eden point) to the
DLA fractal (the DLA point). In order to quantify this
crossover behavior, we define a crossover exponent ¢,
and a crossover radius ;. The scaling ansatz along the
crossover line is proposed:

M(r,P)=rF,(Pr’), (33)

where M is the mass of the cluster, r the radius of gyra-
tion, d the embedding dimension, P the sticking probabli-
ty, and

1 if x «<1
Fi(x)~ (d,;—d)/8,
X

if x>1.

The d; is the fractal dimension of DLA. The crossover
exponent ¢, is found by linearizing the renormalization
equations and calculating the eigenvalues.”’” The cross-
over radius scales as

ri~p 0, (34)
where ¢, =1.18.

Figure 6 indicates the global flow diagram in the two-
parameter space (1/0,,1/0,) in the limiting case of
P =1. The renormalization flows indicated in Fig. 6 are
obtained by using (25) and (32) with P =1. From the re-
normalization flow, we can determine the stabilities of
the two fixed points: the second Eden point and the
DLA point. The DLA point is a saddle point. The
second Eden point is stable. All the renormalization
flows are eventually sucked into the second Eden point.
It is found from the flow diagram that there exists a

15
Eden point
1 S
1/0,
05
DLA point
DL poin
/ .
0 1
0 0.5 1 15
1/0;

FIG. 6. Global flow diagram in two-parameter space
(1/0,1/0,) in the limiting case of P =1. There are two fixed
points: the DLA point and the second Eden point. All the re-
normalization flows are eventually sucked into the Eden point.
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crossover from the DLA fractal (the DLA point) to the
dense structure (the second Eden point). The crossover
from the DLA fractal to the dense structure is in contrast
to that found above: the crossover from the dense cluster
to the DLA fractal. In order to quantify this crossover
behavior, we define a crossover exponent ¢, and a cross-
over radius r,,. The scaling ansatz along the crossover
line is proposed:

M(r,(1/0, ) =r"Fy((1/0,r") , (35)
where

1 if x <1
Fylx)~ (d—d,)/é,
X

if x>>1.

The crossover exponent ¢, is found by linearizing the re-
normalization equations and the eigenvalues. The cross-
over radius scales as

rax ~(1/0,) /%, (36)
where ¢,=1.0.

We study the combined effect of the sticking probablity
and the finite viscosity on the cluster structure. To find
the global flow diagram in the three-parameter space
(P,1/0,,1/0,), we choose a representative point in the
parameter space, and calculate the renormalized sticking
probability, the renormalized surface conductance, and
the renormalized conductance of the breakdown bond us-
ing (26), (25), and (32) to find a new point (P’,1/0;,
1/0’), We repeat this process to find the next point
(P",1/a}, 1/0)), and continue until we approach a
stable fixed point. We use some initial points and plot the
renormalization flow in the phase space for representative
initial points. Figure 7 shows the renormalization flow,
obtained by using (25), (26), and (32). From the renor-
malization flow, we can determine the stabilities of the
three fixed points: the first Eden point, the DLA point,
and the second Eden point. The first Eden point and the
DLA point are unstable saddle points. The second Eden

170,
(0,0,

2nd Eden point

a1
(0.0.0) 1st Eden point 0
4 = — 010
7
Paoo DLA point 11,0
FIG. 7. Global flow diagram in three-parameter space
(P,1/0,1/0,). There are three fixed points: the first Eden

point, the DLA point, and the second Eden point. A two-stage
crossover phenomenon occurs from the dense cluster, through
the DLA fractal, finally to the dense structure. The crossover
line is indicated by the thick line.
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point is stable in every direction. All the renormalization
flows are eventually sucked into the second Eden point.
The crossover line can be determined by following the re-
normalization flow which starts from an initial point very
close to the first Eden point. It is indicated by the thick
line in Fig. 7. Three representative renormalization flows
are indicated in Fig. 7. The renormalization flows labeled
by 1, 2, and 3 are started from the initial points (0.1, 1,
107%), (0.001, 1, 107%), and (0.1, 1, 0.01). It is found from
the flow diagram that there exists a two-stage crossover
from the dense cluster (the first Eden point), through the
DLA fractal (the DLA point), finally to the dense struc-
ture (the second Eden point). In order to quantify the
double-crossover behavior, we define two crossover ex-
ponents ¢; and ¢,. We propose the scaling ansatz along
the crossover line,

M(r,P,(1/0 N =riF(Pr"F,((1/0,r") . (37

Here we-assume the scaling functions F, and F, given by
(33) and (35). When the sticking probability is small and
the finite viscosity ratio is large, the double-crossover
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phenomena occur from the dense structure, through the
DLA fractal, finally to the dense structure. There are al-
ready some experimental indications® that the qualita-
tive results of our approach may be correct; e.g., the mea-
sured finger patterns are thicker near the injection point
than near the periphery, and the higher-pressure injection
produces the dense pattern.

V. SUMMARY

We propose a Laplacian growth model to study the
combined effect of the sticking probability and the finite
viscosity ratio upon the cluster structure. We develop a
set of position-space renormalization-group equations for
DLA with the sticking probability and the finite viscosity
ratio. By using the three-parameter position-space
renormalization-group method, we find that a two-stage
crossover occurs from the dense structure, through the
DLA fractal, finally to the dense structure, when the
sticking probability is small and the finite viscosity ratio
is large.
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