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A generalized diffusion-limited aggregation (DLA) with reaction times that has been proposed by
Bunde and Miyazima [Phys. Rev. A 38, 2099 (1988)] is considered. Crossover from the DLA to the
diffusion-limited self-avoiding walk (DLSAW) is investigated by using the two-parameter position-
space renormalization-group method. The crossover exponent and the crossover radius are calcu-
lated. The geometrical phase transition between DLA and DLSAW found by Bunde and Miyajima
is analyzed by making use of the three-parameter position-space renormalization-group method. A
global flow diagram in the three-parameter space is obtained. Above the percolation threshold all
the renormalization flows are merged into the DLA point. Below the threshold all the renormaliza-
tion flows are merged into the DLSAW point. When the reaction time is large, the double-

crossover phenomenon occurs below the threshold.

I. INTRODUCTION

Fractal growth phenomena in pattern formation have
recently attracted considerable attention.! !' Examples
of pattern formation in diffusive systems include viscous
fingering, electrochemical deposition, crystal growth, and
dielectric breakdown. The fractal nature of the aggregate
has been analyzed by computational, experimental, and
analytic methods. Several approaches to simple generali-
zations of the diffusion-limited aggregation (DLA) model
have been carried out to take into account sticking prob-
ability, surface tension, particle drift, multiparticle
effects, and lifetime effects. The crossover phenomena
and the geometrical phase transition between the DLA
fractal and the nonfractals have been found by computa-
tional and experimental methods. The effect of the life-
time on the fractal nature of DLA has been studied by
the computer simulation.'*'> Miyajima et al.'> found
the crossover from the DLA fractal to the diffusion-
limited self-avoiding walk'* (DLSAW) in a generalized
DLA model where all the aggregate sites have a finite
radical time. Bunde and Miyajima'® furthermore found
the geometrical phase transition in the extended DLA
model in which each aggregate site is randomly assigned
an infinite reaction time (with probability P) or a finite re-
action time (with probability 1 —P). The extended DLA
model reduces to the Witten-Sander model' for P =1 and
to the model discussed by Miyajima et al.'? for P =0.
They found that the geometrical transition occurs at the
percolation threshold P =P,. The phase transition and
the crossover have never been analyzed by analytical
methods.

Very recently, Lee, Coniglio, and StanleylS succeeded
in analyzing the crossover from the DLA fractal to the
dense structure in viscous fingering at the finite viscosity
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ratio by using the two-parameter position-space
renormalization-group method. Nagatani'® analyzed the
effect of the sticking probability on the fractal nature of
the DLA. When the sticking probability is small, the ag-
gregate must eventually cross over to the DLA fractal.
Furthermore, the combined effect of the sticking proba-
bility and the finite viscosity ratio was analyzed by using
the three-parameter position-space renormalization-
group method.!” The double-crossover phenomena were
found from the dense pattern, through the DLA fractal,
to the dense structure. The renormalization-group ap-
proach will be a powerful tool in analyzing the morpho-
logical changes.

In this paper, we analyze the effect of the reaction time
on the DLA by using a position-space renormalization-
group method. We consider the two models proposed by
Miyajima et al.'? and Bunde and Miyajima.'? In the first
model, each aggregate particle has a finite reaction time
7: if a particle adheres to the aggregate at a certain time
to, then incoming Brownian particles can adhere to sites
adjacent to this particle only up to time ¢,+7. In the
second model, a fraction P of the particles has an infinite
reaction time (as in the Witten-Sander model), with the
remaining fraction 1—P having a finite reaction time.
We show that at P =0 the crossover from the DLA frac-
tal to the DLSAW occurs. We also show that at the per-
colation threshold the geometrical transition between the
DLA fractal and the DLSAW occurs.

The organization of the paper is as follows. In Sec. II
we analyze the crossover phenomenon from the DLA
fractal to the DLSAW in a generalized DLA model pro-
posed by Miyajima et al.'? by using the two-parameter
position-space renormalization-group method. In Sec.
III we analyze the geometrical phase transition between
the DLA fractal and the DLSAW. In Sec. IV we present
the summary.
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II. CROSSOVER PHENOMENON

We consider a generalized DLA model where aggre-
gate sites have a finite radical time. The model was pro-
posed by Miyajima et al.'*> The crossover phenomenon
from the DLA fractal to the DLSAW was found by com-
puter simulation. We apply the position-space
renormalization-group method to the DLA model where
all the sites of the aggregate have a finite reaction time.
Each aggregate particle has a finite reaction time 7: if a
particle adheres to the aggregate at a certain time ¢, then
incoming Brownian particles can adhere to sites adjacent
to this particle only up to time t,+7. We define A, the
activity of the perimeter site i,

| L if(t—ty)/m=1 n
A=)/ TI= 00 it (1 —19) /7> 1,
where ¢, is the time in which a particle sticks on the per-
imeter site i, and 7 the reaction time. Furthermore, we
define the dimensionless time increment At * as follows:

At*=(t—1ty)/T . )

The growth probability p; on the perimeter site i is given
by

pleiﬁi/z Aipz ’ (3)

where p; is the growth probability on the perimeter site i
with an infinite reaction time. We describe the DLA
problem in terms of the dielectric breakdown model. We
consider the renormalization procedure on the diamond
hierarchical lattice.'® Each bond is occupied by a
resistor of unit conductance. A constant voltage is
applied between the bottom and the top on the diamond
hierarchical lattice. We shall derive the
renormalization-group equations for the surface conduc-
tance and the dimensionless time increment. See Ref. 18
for details of the renormalization-group method. We dis-
tinguish between three types of bonds on the lattice be-
fore and after a renormalization: (i) breakdown bonds
constructing the breakdown pattern, (ii) growth bonds on
the perimeter of the breakdown pattern, and (iii) unbro-
ken bonds consisting of the original resistor. The break-
down, growth, and unbroken bonds are, respectively, in-
dicated by the thick, wavy, and thin lines in the Fig. 1.
We partition all the space of the diamond lattice into
cells of size b =2 (b is the scale factor), each containing a
single generator. After a renormalization transformation
these cells play the role of “‘renormalized” bonds. The
nth generation of the diamond lattice is transformed to
the (n —1)th generation. The renormalized bonds are
then classified into the three types of bonds, similarly to
the bond before renormalization. The conductance of the
unbroken bond after renormalization remains a unit
value. The conductance of the renormalized bond as the
growth bond is transformed to a different value after re-
normalization. We assign an ‘“‘effective conductance” for
the growth bond on the perimeter. If the bond on the nth
generation is the growth bond, then the effective conduc-
tance is assigned to be o,. Then the conductance of the
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FIG. 1. All distinct configurations of the cell. The
configurations (a), (b), and (c) are renormalized to the growth
bonds. The configurations (1) and (2) are renormalized to the
breakdown bonds. The thick, wavy, and thin lines indicate
breakdown, growth, and unbroken bonds, respectively.

cell to be renormalized as the growth bond is renormal-
ized to o;. We call the conductance o, the surface con-
ductance. The renormalization transformation of the
surface conductance constitutes the first of the renormal-
ization equations:

o' =R,(0,,A1*) . @)

The breakdown process occurs one by one. The time in-
crement At is defined to be the time period between
breakdown of one bond and breakdown of the next bond.
The time increment Ar is renormalized to be the time
period At’ in which the breakdown proceeds from the
bottom to the top within the cell. The cell is a spanning
cluster in which the top is connected with the bottom by
the breakdown bonds. The cell is renormalized to the
breakdown bond. The renormalization transformation of
the dimensionless time increment constitutes the second
of the renormalization equations:

At*' =R, (o, At*) . (5)

Equations (4) and (5) give the renormalization-group
equations. We derive the renormalization functions (4)
and (5) explicitly. Figure 1 shows the breakdown process
within the cell. We assume that the breakdown process
occurs stepwise: the breakdown proceeds one by one,
and only one bond breaks at a time (there is no simultane-
ous bond breaking). The configuration in Fig. 1(a) shows
the cell in which the breakdown just reaches at the bot-
tom. The configuration in Fig. 1(b) is constructed by
adding a breakdown bond onto the growth bonds 1 or 2
in configuration (a). The probability with which a break-
down bond adds onto the growth bonds 1 or 2 in
configuration (a) is given by the growth probabilities p, ,
or p, , of the growth bonds 1 or 2 in configuration (a). In
addition, by adding a breakdown bond to configuration
(b), the configurations (c) and (1) occur. Furthermore, by
proceeding to the breakdown, the configuration (2)
occurs. The configurations (a)-(c) in Fig. 1 show all the
configurations of the cell for which it is possible to renor-
malize as the growth bond. The configurations (1) and (2)
show the spanning clusters to be renormalized as the
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breakdown bond. Parts (1) and (2) in Fig. 1 give all the
configurations of the spanning cluster. Let us consider
the configurational probability C, with which a particu-
lar configuration a appears. The distinct configurations
are labeled by a (a¢=a,b,c,1,2) in Fig. 1. Here the
configurational probabilities are normalized, respectively,
as 1 for the renormalized growth bonds and the renor-
malized breakdown bonds. The configurational probabil-
ities C, (@ =a,b,c) are given by (see Ref. 8 for details)

C,=1—-C,—C,,
Co=C,(p,1tPa2) s (6)
C.=CpPy >

where p,, ; is the growth probability of the growth bond i
within the cell a. the growth probability p,; on the
growth bond i within the cell a is proportional to the
current multiplied by the activity A,; on the growth
bond. They are given by

— —1
Pa1™Pa2" 7>

Po,1= Ab1Pv,1/ 2 Av,iPb,i =Pb,1 /(Po, 1+ APp,2) »

Pv2=1=Dy1, (7)
Per=Ac P/ D AeiPe,i= AP 1 /(AP TP 2) s
i

pc,2:1—pc,l ’

where  p, =0, /[o,+(1+0, 7], Py =1—Py1s
Pe1 =% Pe2=1, and A= A(At/7). Here At indicates
the time period between the breakdown of one bond and
the breakdown of the next bond. The configurations (1)
and (2) in Fig. 1 show all the spanning clusters. Con-
figurations (1) and (2) of the spanning cluster on the bot-
tom side are constructed from the configurations of the
growth cell on the top side. The configuration (1) is con-
structed by adding the breakdown bond onto the growth
bond 1 in the configuration (b). The configurational
probability C, of configuration (1) is given by

C,=Cypy1Cy - (8)

The configuration (2) is constructed by adding the break-
down bond onto the growth bonds 1 or 2 in the
configuration (c). The configurational probability C, is
given by

C,=GC, - 9

The unknown constant C; is determined by the normali-
zation condition

C,+C,=1. (10)

The surface conductance o, of the cell with the
configuration «a is renormalized as follows:

o,,=20,/(1+0y),
o,=0o,+o /(1+0,), (11)

[
o, . =20, .

TAKASHI NAGATANI AND H. EUGENE STANLEY 42

The renormalized conductance o of the growth bond
will be assumed to be given by the most probable value

o;=exp(C,lno; ,+Cylno;,+C.lno; ) . (12)

Relationships (11) and (12) present the renormalization
equation (4). In the limit of the infinite reaction time
(A4=1), Egs. (11) and (12) reduce to those of the
Witten-Sander model.!® We consider the renormaliza-
tion of the dimensionless time increment. The time incre-
ment At is renormalized to be the time period At¢’ in
which the breakdown proceeds from the bottom to the
top within the cell. Here the time increment is defined to
be the time period between the breakdown of one bond
and the breakdown of the next bond. The renormalized
dimensionless time increments for the configurations (1)
and (2) in Fig. 1 are given by

At} =2At*
Aty =3Ar* .

(13)

The renormalized dimensionless time increment Az* will
be assumed to be given by the mean value

At*' =C,At} +C,At%" . (14)

Relationships (13) and (14) give the renormalization
function At* =R,(o,,At*). Equations (6)—(14) are
simultaneously solved. We find the two nontrivial fixed
points (1/0p1a,0) and (1/0pgaw,1) in the parameter
space (1/0,,At* /(1+Ar*)) where o 5 (=2.123) is the
value of the fixed point in the limiting case of an infinite
reaction time, and op saw (=1.732) is the value of the
fixed point in the limiting case of At*— co. In the limit
of At*— o, the DLSAW fractal is reproduced. The
fixed point (1/0;4,0) corresponds to the ordinary DLA
model. It is called the DLA point. The fixed point
(1/0pisaw>1) gives the DLSAW. It is called the
DLSAW point. We study the stability of the fixed points
in the two-parameter space (1/0,,At*/(1+Azt*)). To
find the global flow diagram in the two-parameter space,
we choose a point in the parameter space and calculate
the renormalized surface conductance and the renormal-
ized dimensionless time increment by using Eq. (4) and (5)
to find a new point (l/a;,At*'/(1+At*')). We repeat
this process to find the next point, and continue until we
approach a stable fixed point. Figure 2 shows the renor-
malization flows. We can determine the stabilities of the
two fixed points: the DLA point and the DLSAW point.
The DLA point is an unstable fixed point. The DLSAW
point is stable in every direction. All the renormalization
flows eventually merge into the DLSAW point. It is
found from the flow diagram that the crossover
phenomenon occurs from the DLA fractal to the
DLSAW fractal.

We propose the scaling ansatz along the crossover line

M(r,Ar*)=r A (Ar*r9) | (15)
with
1 if x <1
FOO= 1 oisaw o e oy e
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FIG. 2. Global flow diagram in the two-parameter space
(1/0,,At* /(1+At*)). There are two fixed points: the DLA
point and the DLSAW point. All the renormalization flows are
eventually merged into the DLSAW point. The crossover
occurs from the DLA fractal to the DLSAW fractal.

where M is the mass of the cluster, F(x) is the scaling
function, and dp;, and dp gaw indicate, respectively,
the fractal dimensions of the DLA and the DLSAW. By
using the Turkevich-Scher relation,!® the fractal dimen-
sions are given by

dpia=1+1Inp, ., pra/Inb=1.40,
(17)
dprsaw =1 tInp . prsaw /Inb =1,

where p..pra and po..prsaw are, respectively, the
highest growth probabilities at the DLA point and at the
DLSAW. The crossover radius r, scales as

ro=(At*) Ve (18)

The crossover exponent ¢ can be found by linearzing the
renormalization equations (4) and (5) and calculating the
eigenvalues. We obtain ¢=1.165. For comparison with
the computational result by Miyajima et al.,'? we set
At =1 and obtain the scaling of the crossover time

d

tomriotA < 2P b d L /6=1.20 . (19)
Miyajima et al.'* found the following scaling form

from the computer simulation
=T (20)

This should be compared to the result (19). The theoreti-
cal result is smaller than the computer simulation result.
This may be due to the small-cell renormalization.

We shall consider the other type of the activity of the
perimeter site: the activity of each aggregate particle de-
creasing exponentially with increasing time. The activity
A, of the perimeter site i is defined as follows:

A ((t —ty)/T)=exp(—(t —14) /7). (21)

Similarly, we can obtain the renormalization equations
for the surface conductance and the dimensionless time
increment. We find the same scaling form and the same
exponent. However, the scaling function F(x) in (15) is
different. The renormalization flows in the global flow di-

agram are a little different from each other, but the fixed
points are the same. Qualitatively, the global flow dia-
gram is consistent with Fig. 2. We find that the crossover
phenomenon from DLA to DLSAW is universally in-
dependent upon the details of the activity.

III. PHASE TRANSITION
BETWEEN DLA AND DLSAW

We consider here a model for DLA proposed by Bunde
and Miyajima,'? in which a fraction P of the particles
have an infinite reaction time (as in the Witten-Sander
model), with the remaining fraction 1—P having a finite
reaction time 7, i.e.,

oo with probability P

To with probability 1—P . (22)
This model reduces to the Witten-Sander model for P =1
and to the model discussed by Miyajima et al.'? for
P =0. We consider the bond percolation. Each bond is
randomly assigned an infinite reaction time (with proba-
bility P) or a finite reaction time (with probability 1—P).
The activity A4, on the perimeter bond i is given by

[1 with probability P

4= | 4,(Ar*) with probability 1—P , @3)
where A4;(At*) is given by Eq. (1). The growth probabili-
ty p; on the perimeter bond i is given by Eq. (3) with Eq.
(23).

Similarly to Sec. II, we describe the DLA problem in
terms of the dielectric breakdown model. We consider
the renormalization procedure on the diamond hierarchi-
cal lattice. We make use of a three-parameter
renormalization-group method. We can derive the three
renormalization-group equations for the surface conduc-
tance o, the dimensionless time increment At*, and the
probability P:

o'=R o,,At*P), 24)
At* =R, (o,,At*P), (25)
P'=Rp(o,,At*,P) . (26)

We consider the renormalization of the probability P.
The renormalized probability P’ is given by the probabili-
ty in which a cell is connected by bonds of the infinite re-
action time between the bottom and the top. The proba-
bility P is consistent with the occupation probability in
the bond percolation. The renormalized probability P’ is
given by’

P'=R,(P)=2P’—P*. (26")

As in Sec. II, we can derive the renormalization-group
equations (24) and (25). The renormalization equations
(24) an (25) are almost the same except for the following.
The configurational probability C,, is replaced with

C.=Cy[Pp,,+(1=Plp,,], (6")

where py, , and p, , are, respectively, the growth proba-
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bilities with the infinite and the finite reaction times. The
growth probabilities of Eqs. (7) are given by replacing Eq.
(3) with Eq. (23). The configurational probability C, is
replaced with

CI=C0[PI_,b,l+(1_P)pb,1]Cb . (8')

Thus we can obtain the three-parameter
renormalization-group equations (24)-(26) explicitly. We
find the six nontrivial fixed points (0,1/0pigaws 1),
(1,1/0ppas1), (P, 1/0p14,0), (P.,1/0.,1), (0,1/
Opra,0), and (1,1/0p;4,0) in the three-parameter space
(P,1/0,,At*/(1+At*)), where opsaw> OpLar and o,
are, respectively, the values of the surface conductance at
the fixed points. We call the six fixed points the DLSAW
point, the DLA point, the percolation point, the pseudo-
percolation-point, and the two pseudo-DLA-points, re-
spectively. To find the global flow diagram in the two-
parameter space (P,At* /(1+At*)), we choose a point in
the parameter space, and calculate the renormalized sur-
face conductance, the renormalized dimensionless time
increment, and the renormalized fraction by using
(24)-(26) to find a new point (P',At* /(1+At*)). We
repeat this process to find the next point, and continue
until we approach a stable fixed point. Figure 3 shows
the renormalization flows. The crossover lines can be
determined by following the renormalization flows, which
start from initial points very close to the percolation
point. Figure 4 shows the crossover lines and the six
fixed points in the three-parameter  space
(P,1/0,,At*/(1+At*)). We can determine the stability
of the six fixed points in the three-parameter space. The
DLSAW point and the DLA point are stable in every
direction. The percolation point, the pseudo-
percolation-point, and the two pseudo-DLA-points are
unstable fixed points. Above the percolation threshold,
all the renormalization flows are merged into the DLA
point. Below the threshold, all the renormalization flows
are merged into the DLSAW point. We find the morpho-

PLSAW DLA

at

1+at™

FIG. 3. Global flow diagram in the two-parameter space
(P,At*/(1+At*)). Above the percolation threshold, all the re-
normalization flows are merged into the DLA point. Below the
threshold, all the renormalization flows are merged into the
DLSAW point. The geometrical phase transition between the
DLA and DLSAW occurs at the percolation threshold.
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FIG. 4. Crossover lines and the six fixed points in the three-
parameter space (P,1/0,,At*/(1+At*)). The DLSAW point
and the DLA point are stable in every direction. The percola-
tion point, the pseudo-percolation-point, and the two pseudo-
DLA-points are unstable fixed points.

logical phase transition between the DLA fractal and the
DLSAW fractal at the percolation threshold. The fractal
dimensions of the DLA fractal and the DLSAW fractal
are given by Eq. (17). The structure of the aggregate
forming at the percolation threshold consists of the mix-
ture which is constructed by the DLA fractal on the inci-
pient infinite cluster and the DLSAW on the remaining
finite clusters. The fractal dimension of the aggregate at
the percolation threshold is given by

dc‘:PCdDLA+(1—PC)dDLSAW:1'25 5 (27)

where P, =0.618 is the critical percolation probability on
the diamond hierarchical lattice.?’ We call the aggregate
at the percolation threshold the critical fractal. Above
the percolation threshold there is a characteristic length

Ep~(P—P,) ", (28)

where v is the correlation length exponent of the percola-
tion and v=1.63 on the diamond hierarchical lattice.?
The structure of the aggregate becomes the critical frac-
tal on smaller length scales r <&p, and the DLA fractal
on larger length scales r >£,. We propose the scaling
ansatz above the threshold,

M(r,(P—P)=r"“F((P—P)r'"*)if P>P, , (29)
with
1 if x <1
F(x)= (30)

(d —d v .
x PHA T i x>>1 .

Below the threshold, there are two characteristic lengths
Ep=(P.—P) ",

e 31

c

If £p >>r,, the crossover occurs from the critical fractal
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to the DLSAW fractal. However, if £, <<r, the double-
crossover phenomenon occurs from the critical fractal,
through the DLA fractal, to the DLSAW fractal. The
double crossover is represented by the crossover line
below the percolation threshold in Fig. 4. In the three-
parameter space, the crossover line is shown by the curve
from the percolation point, through the pseudo-DLA-
point, to the DLSAW point. Physically, the double-
crossover phenomenon will appear in the condition that
the reaction time 7 is large and the fraction P is just
below the percolation threshold. We propose the scaling
ansatz along the crossover line

M(r,(P,—P),r)=r"F (P, — P)r'/*)F,(rr%)
ifP<P., (2

with
1 if x <1
F,(x)= {r(dDLA‘dCW if x>1,
1, if x <1
Fz(x)z {r(dDLSAWdDLA)/é ifx>1.

The geometrical phase transition between DLA and
DLSAW agrees with the simulation result by Bunde and
Miyajima. The double-crossover phenomenon below the

percolation threshold is not found in the computer simu-
lation by Bunde and Miyajima. We find that the morpho-
logical transition between the DLA fractal and the
DLSAW fractal is induced by the percolation transition.

IV. SUMMARY

We apply the position-space renormalization-group
method to the crossover and the geometrical phase tran-
sition in the extended diffusion-limited aggregation mod-
els with reaction times which were proposed by Miyajima
et al.'? and Bunde and Miyajima.'> We show the cross-
over from the DLA fractal to the DLSAW by the global
flow diagram. We calculate the crossover exponent and
compare with the simulation result by Miyajima et al.'?
Furthermore, we analyze the geometrical phase transi-
tion between the DLA fractal and the DLSAW fractal
by using the three-parameter renormalization-group
method. We show that the morphological transition is
induced by the percolation transition. We present the
scaling forms for the geometrical phase transition near
the percolation threshold.
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