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Crossover and thermodynamic representation in the extended 7 model for fractal growth
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The n model for the dielectric breakdown is extended to the case where double power laws apply.
It is shown that a crossover phenomenon between the diffusion-limited aggregation (DLA) fractal
and the 7 fractal occurs in the extended 1 model. Through the use of the dimensional analysis, a di-
mensionless parameter is found to govern the crossover. It is shown that when 1 <1 the crossover
from the DLA fractal to the 7 fractal occurs with increasing size, and if > 1 the inverse crossover
from the 7 fractal to the DLA fractal appears. It is also shown that the crossover radius is con-
trolled by changing the applied field. The global flow diagram in the two-parameter space is ob-
tained by using a two-parameter position-space renormalization-group approach. The crossover ex-
ponent and the crossover radius are calculated. The crossover phenomenon is described in terms of
a thermodynamic representation of the two-phase equilibrium.

I. INTRODUCTION

Fractal growth phenomena in pattern formation have
recently attracted considerable attention.'”'® Patterns
forming in diffusive systems all give rise to similar struc-
tures to the diffusion-limited aggregation (DLA) fractal
at specific conditions. Examples of pattern formation in
diffusive systems include viscous fingering, electrochemi-
cal deposition, crystal growth, and dielectric breakdown.
An approximation to these phenomena is provided by the
Laplacian growth model. The growth probability on the
interface of a pattern is determined by the harmonic mea-
sure, which is proportional to the current on the inter-
face. Niemeyer, Pietronero, and Wiesmann have pro-
posed an extended DLA model for the dielectric break-
down. The model is called the 7 model.!! The growth
probability p, at the point i on the interface is given by

E}
= S B ,

Pi (1)

where E; is the electric field at the point i on the interface
E;=—V® and & is the electrostatic potential satisfying
the Laplace equation. The fractal dimension of the pat-
tern formed in the dielectric breakdown model decreases
from 2 (dense pattern) to 1 (needle pattern) with increas-
ing 1. For =1 the resulting pattern becomes the DLA
fractal.!?

In real experimental situations, a variety of crossover
phenomena appear. For example, Grier et al.!* found
the crossover from the DLA fractal, through the dense
structure, to the dendrite in the electrodeposition experi-
ment. Lenormand'* found that by tuning the flow rate in
porous media made of interconnected channels, the pat-
tern of the injected fluid evolves continuously from in-
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vasion percolation to DLA. In computer simulations,
some crossovers were also found from the DLA fractal to
the dense structure or from the dense structure to the
DLA fractal.'> ™"

Very recently, Lee, Coniglio, and Stanley18 succeeded
in analyzing the crossover from the DLA fractal to the
dense structure in viscous fingering at a finite viscosity ra-
tio. They extended the position-space renormalization-
group method devised by Nagatani'® and developed a
two-parameter renormalization-group method to study
the crossover. They showed the global flow diagram in
the two-parameter space and calculated the crossover ex-
ponent and the crossover radius. Nagatani®® also suc-
ceeded in analyzing the effect of the sticking probability
on DLA by using the two-parameter position-space
renormalization-group method. It was found that when
the sticking probability was small the aggregate had to
cross over from the dense structure to the DLA fractal.
The crossover was consistent with the simulation by
Meakin.?!

In this paper, we propose an extended 7 model to show
crossover phenomena. We extend the 1 model to the
case where double power laws apply. The growth veloci-
ty in the normal direction on the interface is given by
n

kL , (2)
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where @ is the electrostatic potential satisfying the La-
place equation and 3% /9dr is the derivative normal to the
interface. The growth rate in this model is controlled by
two powers: 1 and 7. In the limiting case of o0 >0, the
growth rule (2) reduces to the DLA model. The pattern
becomes the DLA fractal. On the other hand, in the lim-
iting case of o << ,, the growth rule (2) reduces to the 7
model. The pattern becomes the 7 fractal determined by
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the  power. In this model one can expect that a cross-
over phenomenon occurs between the DLA fractal and
the 1 fractal. We investigate the crossover phenomena
by using dimensional analysis and the two-parameter
position-space renormalization-group method. We show
that the crossover phenomena are described in terms of a
thermodynamic representation of the two-phase equilibri-
um.

The organization of the paper is as follows. In Sec. II
we present the dimensional analysis to describe the cross-
over qualitatively. In Sec. III we apply the two-
parameter position-space renormalization-group method
to the extended 7 model on the hierarchical diamond lat-
tice. We show the global flow diagram in two-parameter
space. In Sec. IV we describe the crossover phenomena
in terms of a thermodynamic representation of an equilib-
rium state of the two phases. In Sec. V we present the
summary.

II. MODEL AND DIMENSIONAL ANALYSIS

We extend the n model to the case with the two
powers. We consider a dielectric breakdown problem.
The electrostatic potential satisfies the Laplace equation

V2 =0. (3)

The boundary conditions on the interface and at far field
are given by the constant voltages

0 on the interface
®= ®, at far field . @

Here @, represents the applied voltage. The growth ve-
locity of the interface is assumed to be given by the
growth rule (2). The 7 model is extended to the case with
two power laws. We study the crossover between the
DLA fractal and the 7 fractal by using the dimensional
analysis. We can conjecture the crossover qualitatively
without solving the Laplace equation. For many electric
systems one can select a characteristic length and a
characteristic electrostatic potential. Thus the charac-
teristic length is usually taken to be the pattern size L
and the characteristic electrostatic potential ®,. Once
this choice has been made, we may define the following
dimensionless variables and differential operations:

x*=x/L, y*=y/L ;
D*=d/d, V*=LV.

(5)

We rewrite the Laplace equation (3) with the boundary
conditions (4) and the growth rule (2) in terms of the fore-
going dimensionless variables

V*d* =0, (3"

0 on the interface

®*=11 at far field @)
and

0F = (V*O*)+ Y (V*D*)7 @)
with
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)(=cr,]<l)(’)7_1/oL”‘l . (6)

Note that in the dimensionless form the ‘“‘scale factors,”
that is, those variables describing the overall size and the
applied voltage are concentrated in one dimensionless
group x. If x is sufficiently small, the growth rule (2')
reduces to the DLA model. On the other hand, when Y
is sufficiently large, the growth rule (2’) reduces to the 5
model. The dimensionless parameter Y governs the
crossover between the DLA fractal and the 7 factal. If
7 <1, the dimensionless parameter ¥ becomes larger and
larger with increasing length L. Also Y becomes smaller
and smaller with increasing applied voltage. The cross-
over from the DLA fractal to the 7 fractal occurs with
increasing size. The crossover is controlled by changing
the applied voltage. With increasing applied voltage, the
DLA fractal part increases and the 7 fractal part de-
creases. If 17> 1, the crossover between the DLA fractal
and the 7 fractal is inverted. The crossover from the 7
fractal to the DLA fractal occurs with increasing size.
With decreasing applied voltage, the 7 fractal part de-
creases and the DLA fractal part increases. We note that
this model has the characteristic property that the cross-
over radius depends on the applied voltage. The cross-
over radius between the DLA fractal and the 7 fractal
can be controlled by changing the applied voltage.

In order to quantify this crossover behavior, we define
a crossover exponent ¢ and a crossover radius r,. We
propose the scaling ansatz

P F(xr?) if n<l (7)

M(r,x)=
X rOE () i > 1 (1)

where M is the mass of the cluster, r the radius of gyra-
tion, d r the fractal dimension of the DLA fractal, d - the

fractal dimension of the 7  fractal, and
)(=an<D67_l/aL”_]. The scaling functions are assumed
as follows:
Flx) 1 if x <1 ®
x)= —
T e s R
Flo) 1 if x «<1 &
x)= ,;
x T e s

The crossover radius scales as r,~y '/%(n<1) and
r.~x'"® (n>1). Explicitly the crossover radius scales as
follows:

oM (n<1)

r.= q)é)nﬁl)/¢(n>1) (9)
at constant length,
LA(I*n)/ds (,'7<1)
= Lm0/ > 1) 1o

at constant voltage. We cannot obtain the crossover ex-
ponent ¢ by using dimensional analysis. The crossover
exponent is obtained by using the two-parameter
position-space renormalization-group method. Our scal-
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ing ansatz has a characteristic property depending upon
the applied voltage ¢, through y.

III. RENORMALIZATION-GROUP APPROACH

We analyze the crossover between the DLA fractal and
the n fractal by using the two-parameter position-space
renormalization-group method. For simplicity, we con-
sider the dielectric breakdown problem on the diamond
hierarchical lattice. The position-space renormalization-
group approach to the hierarchical lattice is comparative-
ly accurate to derive the critical behavior of the system.
The diamond hierarchical lattice is constructed by an
iterative generation of the base set. Each bond is occu-
pied by the resistor of unit conductance. A constant volt-
age is applied between the bottom and the top on the dia-
mond hierarchical lattice. The dielectric breakdown
proceeds from the bottom to the top. Figure 1 shows the
illustration of the breakdown model on the diamond lat-
tice. The thick lines indicate breakdown bonds which
construct the breakdown pattern. The bonds on the per-
imeter of the breakdown pattern are represented by the
wavy lines. The thin lines indicate unbroken bonds,
which are resistors of unit conductance. The resistor net-
work problem is solved under the boundary conditions of
the constant applied voltage. A growth probability is as-
signed to the perimeter bond following the growth rule
(2). The growth probability p; at the growth-perimeter
bond i is given by

pi=(aI/,-+anV,-”)/ [E(aVi-Fa,,Vi”) , (11)

1

where V; is the voltage on the perimeter bond i. The
breakdown occurs on the perimeter bond according to
the growth probability. The interface proceeds to the top
just after breaking down. The breakdown process of
bonds is assumed to occur one by one.

We consider the renormalization procedure for deriv-

FIG. 1. Illustration of the dielectric breakdown model on the
diamond hierarchical lattice. A constant voltage is applied be-
tween the top and the bottom. The thick, wavy, and thin lines
indicate, respectively, breakdown, growth, and unbroken bonds.
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ing the two-parameter position-space renormalization-
group equations. We derive the renormalization trans-
formations for the linear conductance o and the non-
linear conductance o, of the perimeter bond. We will
show that the two-parameter renormalization-group

equations are given by
o'=R,(0,0,), (12)

0,=R,(0,0,) . (13)

n n n

We distinguish between three types of bonds on the lat-
tice before and after a renormalization procedure: (a)
breakdown bonds that are occupied by superconducting
bonds and construct the breakdown pattern, (b) growth
bonds that are on the surface of the breakdown pattern
and can be successively grown, and (c) unbroken bonds
that construct the electric field in the exterior of the
breakdown pattern and are not the growth bond. The
breakdown, growth, and unbroken bonds are respectively
indicated by the thick, wavy, and thin lines in the figures.
We partition all the space of the diamond hierarchical
lattice into cells of size b =2 (b is the scale factor), each
containing a single generator. After a renormalization
transformation these cells play the role of “renormalized”
bonds. The nth generation of the hierarchical lattice is
transformed to the (n —1)th generation. The renormal-
ized bonds are then classified into the three types of
bonds, similarly to bonds before the renormalization. If a
cell is spanned with the bonds occupied by the break-
down bond, then the cell is renormalized as a breakdown
bond. If the cell is not spanned with the breakdown bond
and is nearest neighbor to the breakdown pattern, then
the cell is renormalized as the growth bond on the inter-
face. When the cell is constructed only by unbroken
bonds and is not nearest neighbor to the breakdown pat-
tern, then the cell is renormalized as an unbroken bond.
Since the resistor-network problem is the discrete version
of the Laplace equation, the voltage at each node is given
by solving the linear resistor network. The linear con-
ductance of the breakdown bond remains an infinite value
after renormalization. The linear conductance of the un-
broken bond after renormalization also remains a unit
value. The linear and nonlinear conductances of the
growth bond are respectively transformed to different
values after renormalization. We shall derive the renor-
malization transformations of the linear and nonlinear
conductances. We assume that breakdown process
occurs stepwise: the breakdown proceeds one by one, and
only one bond breaks at a time (there is no simultaneous
bond breaking). Figure 2 shows all the configurations of
the cell for which it is possible to renormalize as the
growth bond. Let us consider the configurational proba-
bility C, with which a particular configuration a ap-
pears. The distinct configurations are labeled by «a
(a=a,b,c) on the left-hand side in Fig. 2. Each cell on
the left-hand side is renormalized to the growth bond on
the right-hand side. The configuration (b) is constructed
by adding a breakdown bond onto the growth bonds 1 or
2 in the configuration (a). The probability with which a
breakdown bond adds onto the growth bonds 1 or 2 in
the configuration (a) is given by the growth probabilities
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FIG. 2. All distinct configurations (a), (b), and (c) of the cell
that are possible to renormalize as the growth bond. Each cell
on the left-hand side is renormalized to the growth bond on the
right-hand side.

Da,1 OT P, ; of the growth bonds 1 or 2 in the configuration
(a). In addition, by adding a breakdown bond to the
configuration (b), the configuration (c) occurs. The
configurational probabilities C, are given by

Co=Co(pa1tpa2)s C.=Cypp,, (14)

where p, 1=p,,=+. The configurational probability C,
is determined from the normalization condition

3C,=C,+C,+C.=1. (15)

The voltages on the nodes within the cells are deter-
mined by the linear-resistor-network problem. Consider
the resistor-network problem for each cell that can be re-
normalized as a growth bond. We apply the constant
voltage V between the top and the bottom for each cell.
We solve the linear resistor network to obtain the voltage
at each node. The currents I, ; flowing on the growth
bonds of each cell are given by

I, =1,,=[c/(1+V,
Ly=oV, I,,=[o/(1+]V, (16)
IC,1=IL‘,2:UV .

By using the above relations (16), the renormalized
growth velocities v, for each cell are obtained

ua’z[20/(1+U)]V+20,,(1+0)_”V” '
vy=lo+o/(1+a)V+o,[1+(14+0) P, (17)
U‘szUV'Jf‘ZU,’V".

The renormalized linear conductances and the renor-
malized nonlinear conductances for the cells are given by

0,=20/(1+0), 0, ,=20,(1+0)7",

o,=o0+o/(1+0), o,

=0 [1+(1+0)77], (18)

’

L—
o.=20, oy

=20, .
The linear conductances of each cell agree with those of
the ordinary DLA. The growth probabilities p,, ; within
the cell a are given by
Pa1=Pa2 =7 >
py=(o+0o,)/[o+a/(1+0o)+0,+0,(1+0)" "],
Po2=17DPp1» (19)
pc,l:pc,ZZ% .

When the nonlinear conductance equals zero, the growth
probabilities are consistent with the ordinary DLA. The
renormalized linear conductance and the renormalized
nonlinear conductance of the growth bond will be as-
sumed to be given by the most probable values

o'=exp [2 Calna;] , (20)

[
0,= exp

ECalno',,’a] . (21)

The relationships (20) and (21) with (14), (15), (18), and
(19) present the renormalization-group equations (12) and
(13). Equations (14), (15), and (18)—(21) are simultaneous-
ly solved. We find the two nontrivial fixed points
(0*=2.123,05=0) and (0*=c, o,=oo) where c is a
constant depending upon the parameter 7. The fixed
point (0*=2.123, 07 =0) gives the ordinary DLA. It is
called the DLA point. On the other hand, the fixed point
(0*=c,0,=) gives the 7 model. It is called the 7
point. We study the stability of the fixed point. We ob-
tain the global flow diagram in the two-parameter space.

We transform the parameter o, to the following:
A=o0,/(1t0,) . (22)

We consider the crossover phenomena between the
DLA fractal and the 7 fractal. To find the global flow di-
agram in the two-parameter space (o, 4), we randomly
choose a point in the parameter space (o, 4) and calcu-
late the renormalized linear conductance and the renor-
malized nonlinear conductance using (20) and (21) to find
a new point (o', A’). We repeat this process to find next
point ("', A”'), and continue until we approach a stable
fixed point. We use some initial points and plot the re-
normalization flow in the phase space for representative
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FIG. 3. Global flow diagram in two-parameter space (o, 4)
for n=0.2. There are two fixed points: the DLA point and the
n point. All the renormalization flows eventually merge into
the 1 point. The crossover occurs from the DLA fractal to the
n fractal. The crossover line from the DLA fractal to the 7
fractal is indicated by the thick line.

initial points. Figures 3-5 show the global flow diagrams
for n=0.2, 2, and 4. From the renormalization flow, we
can determine the stabilities of the two fixed points: the
DLA point and the 7 point. First, we consider the case
of =0.2. The DLA point is a saddle point. The 7 point
is stable in every direction. All the renormalization flows
eventually merge into the 7 point. It is found from the
flow diagram that there exists a crossover from the DLA
fractal to the dense 7 fractal. The crossover line can be
determined by following the renormalization flow, which
starts from an initial point very close to the DLA point.
It is indicated by the thick line in Fig. 3. Second, we con-
sider the cases of =2 and 4. The 7 point is a saddle
point. The DLA point is stable in every direction. All
the renormalization flows eventually merge into the DLA
point. It is found that there exists a crossover from the
lean 7 fractal to the DLA fractal. The direction of the
crossover for > 1 is inverse to that for n<1. We show
the structures of the breakdown pattern for <1 and
n>1 in Figs. 6(a) and 6(b). We consider the breakdown

o I T R W 1

0 0.5 1
A

FIG. 4. Global flow diagram for n=2. There are two fixed
points: the DLA point and the % point. All the renormaliza-
tion flows eventually merge into the DLA point. The crossover
occurs from the 7 fractal to the DLA fractal.
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FIG. 5. Global flow diagram for 7=4. All the renormaliza-
tion flows eventually merge into the DLA point. The crossover
occurs from the 7 fractal to the DLA fractal.

pattern starting from a single seed. For 7 <1, the inside
structure of the breakdown pattern is the DLA fractal,
and the outside structure the dense 7 fractal. For > 1,
the inside structure of the pattern is the lean 7 fractal and

T fractal

%

(b)

FIG. 6. Illustration of the breakdown structures. (a) The
structure of the breakdown pattern for 7 < 1. The inside struc-
ture of the breakdown pattern is the DLA fractal, and the out-
side structure the dense 7 fractal. The part of the DLA fractal
increases with increasing applied voltage. (b) The structure of
the breakdown pattern for > 1. The inside structure of the
pattern is the lean 7 fractal, and the outside structure the DLA
fractal. The part of the lean 7 fractal increases with increasing
applied voltage.
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the outside structure the DLA fractal.

We shall derive the crossover exponent ¢. The cross-
over radius scales as (p<1) and
VCZ(I/O'U)_I/‘t (7>1). The crossover exponent can be
found by linearizing the renormalization equations at the
fixed points and calculating the eigenvalues. The linear-
ized relation of the renormalization equations is given by

~g /¢
re=o,

oR, OR,
S0’ do 80,, So
do, | dR, OR, o, for n<1, (23)
do 80,1 DLA
S’ do  d(1/o,) So
6(1/0,7)' E)R77 aR,] &(1/0,)
do 8(1/0,7) .

forp>1. (24)

Here the matrix is evaluated at the DLA point for 7 <1
and at the 7 point for > 1. The values of the matrix ele-
ments are numerically calculated from the renormaliza-
tion functions (20) and (21). We obtain the crossover ex-
ponents $=0.79 (=0.2), $=0.86 (n=2), and ¢$=2.39
(n=4). The exponent ¢ is dependent upon the parameter
7.

IV. THERMODYNAMIC REPRESENTATION
OF THE CROSSOVER

In Secs. II and III we find that if 1 <1, the crossover
from the DLA fractal to the dense 7 fractal occurs, and if
1> 1 the inverse crossover from the lean 7 fractal to the
DLA fractal appears. The crossover radius between the
DLA fractal and the 7 fractal is controlled by changing
the applied voltage. We try to formulate the crossover in
terms of a thermodynamic representation of two-phase
equilibrium. We define, respectively, the DLA fractal
and the 7 fractal as the DLA phase and the 7 phase. The
pattern showing the crossover between the DLA fractal
and the 7 fractal is presumed to be in a equilibrium state
of the two phases. We define the volume fraction x by
the crossover radius

x=(L4—rd)/L%=1—(r,/L)?, (25)

where L is the size of the pattern and d the dimension of
space. When 7 <1, the volume fraction x gives the ratio
of the volume of the DLA fractal to the total volume of
the pattern. With increasing the applied voltage, the
volume fraction x increases. The part of the DLA fractal
increases. Following to the thermodynamic formalism
for the multifractal of the growth probability distribu-
tion,”>%* the spectrum 7(q)=(q —1)D(g) of moments
describing the growth probability distribution is inter-
preted as the free energy. The order g of the moment is
interpreted as the inverse (1/7) of temperature. In gen-
eral, the thermodynamic potential in an equilibrium state
of two phases is given by the sum of the two potentials
multiplied by the volume fraction of each phase. Thus
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the spectrum of the pattern is given by
x(qg —1)D(g)+(1—x)(g —1)D,(q)
for n<1
(g—1)D(q)= (26)
x(g—1)D,(g)+(1—x)(g —1)D(q)
for p>1

where D,(q) and D,(q) indicate, respectively, the gen-
eralized dimensions of the DLA fractal and the 7 fractal.
Figure 7 shows the diagram of D(q) against g !
schematically. The diagrams (a) and (b) indicate the cases
of <1 and p>1. The two curves in each figure show
the saturation line of each phase. The pattern showing
the crossover is interpreted as a thermodynamic equilibri-
um state of two phases. The internal energy a and the
entropy f of the pattern are also given by the sum of the

two phases

a=xa,+(1—x)a,, f=xf+(1-x)f, forn<l,
(27)

a=xa,t(1=x)a,, f=xf,+(1=x)f forn>1,

n

where a; and a, are the internal energies of the DLA
fractal and the 7 fractal, and f, and f, are the entropies
of the DLA fractal and the 7 fractal. Thus we can obtain
the generalized dimension D (g) and the a-f spectrum of
the pattern showing the crossover by interpreting the
crossover pattern as the thermodynamic equilibrium state
of two phases.

S .

DLA fractal

n fractal

df-1 d n“1
0 /|
0 D(Q) 1
(a)
Thoommm e o= - - :
n fractal |
NN :
DLA: fractal
0 At [ :
0 D(Qq) 1

(b)

FIG. 7. Schematic diagram of D(q)[E,/(q —1)] where E,
represents the free energy, against ¢ ' (the temperature). (a)
n <1, (b) > 1. The pattern showing the crossover is interpret-
ed as a thermodynamic equilibrium state of two phases. The re-
gion between two curves represents the mixture of the two
phases in a equilibrium states.
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V. SUMMARY

We propose an extended 1 model showing crossover
phenomena between the DLA fractal and the 7 fractal.
We analyze the crossover phenomena by using the di-
mensional analysis and the position-space renormal-
ization-group method. We find that when 7n<1 the
crossover from the DLA fractal to the 7 fractal occurs

TAKASHI NAGATANI AND H. EUGENE STANLEY 42

with increasing size, and when 7> 1 the inverse crossover
from the 7 fractal to the DLA fractal appears. We also
show that the crossover radius is controlled by changing
the applied field. The global flow diagram in the two-
parameter space and the crossover exponent are obtained
by the renormalization-group method. We show that the
crossover phenomena can be described in terms of a ther-
modynamic representation of the two-phase equilibrium.
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