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We study the patterns formed when a reactive fluid with viscosity u is injected into a two-dimensional
porous medium filled with a nonreactive fluid with unit viscosity. We consider the “mass-transfer limit,”
where the time scale of chemical reaction between the injected fluid and porous medium is much smaller
than the time scale of reactant transport. Also, the surface tension between two fluids is ignored. We
formulate three-parameter position-space-renormalization-group equations for this system. We find two
crossovers: (i) from the first diffusion-limited-aggregation (DLA) fixed point to the Eden fixed point due
to finite viscosity, and (ii) from the Eden to the second DLA due to chemical dissolution. The time evo-
lution between patterns is independent of the injection rate following a trivial rescaling of time. These
results are checked by direct numerical simulations. The second crossover is characterized by the cross-
over radius 7, ~v ~'/P%, where v is the total volume of the injected fluid, and =3, $=1.63. We also
study the effect of consumption of the reactant, and find that it stabilizes the pattern from a DLA fractal
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to a compact shape.

PACS number(s): 68.70.+w, 05.40.+j, 47.70.Fw

I. INTRODUCTION

The formation of dissolution patterns by injecting a
reactive fluid into a soluble porous medium filled with a
nonreactive fluid has been investigated by both experi-
mental and computational methods [1,2]. Daccord and
Lenormand [1,2] have found that when high injection
rates are used, the pattern formed by the chemical-
dissolution process yields a diffusion-limited-aggregation
(DLA) fractal [3]. The underlying mechanism for the
formation of dissolution patterns couples (i) the flow of
the liquid into the porous medium with (ii) the chemical
reaction between the injected fluid and the medium.
Daccord [1] has proposed a simulation model that intro-
duces a cumulative erosion process, which broadens the
branches of the cluster. The patterns obtained from the
simulations are very similar to the experimental ones.
Questions that remain open include (i) the asymptotic be-
havior of the dissolution patterns and (ii) the relevance of
such parameters as injection rate, viscosity of the injected
fluid, and concentration of the reactant.

Very recently, the crossover from a DLA fractal to a
dense structure for viscous fingering with nonzero viscos-
ity ratio has been studied using a two-parameter
position-space-renormalization-group (PSRG) method
[4]. Also, Nagatani [5] analyzed the effect of the sticking
probability on the fractal structure of DLA. When the
sticking probability is not zero, the aggregate crosses
over to DLA as the mass approaches infinity. The com-
bined effect of the sticking probability and the finite
viscosity ratio was analyzed using a three-parameter
PSRG method [6]. A double-crossover phenomena was
found —from the dense pattern, through the DLA frac-
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tal, and finally to the dense structure. Furthermore, the
morphological changes of viscous fingering in porous
media were analyzed using the renormalization-group
method [7]. Two double-crossover phenomena were
found: (i) when pu <<(p —p.)<<1, the double crossover
occurs from DLA on an incipient percolation cluster
through DLA on the perfect lattice to the dense struc-
ture, and (i) when 1>>u>>(p —p.) the other double
crossover appears from DLA on an incipient percolation
cluster through invasion percolation to a dense structure,
where p, is the percolation threshold.

In a recent Letter [8], we reported preliminary results
on chemical dissolution in the mass-transfer limit by de-
veloping a three-parameter PSRG method. We con-
sidered the combined effect of finite viscosity ratio u and
chemical dissolution on the pattern. We found that the
asymptotic behavior in this problem is characterized by
two distinct crossovers: (i) one from DLA clusters to
compact clusters (due to the finite viscosity ratio), and (ii)
a second crossover from compact clusters to DLA clus-
ters (due to the chemical dissolution). It was also found
that the second crossover is characterized by the cross-
over radius 7, ~v /P4, with B=3 and ¢=1.63. Here we
present the details of the calculation. Specifically, we
show how to form the PSRG equations, and how to ana-
lyze the equations to obtain desired information (cross-
overs between the patterns and the crossover exponent).
Furthermore, we also present additional studies on the
effect of consumption of the reactant. We find that con-
sumption tends to stabilize the pattern and cause the
crossover from a DLA fractal to a compact pattern.

The organization of this paper is as follows. In Sec. II
we present the basic equations used in our models. In
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Sec. III we analyze the crossover phenomena in viscous
fingering with chemical dissolution using a three-
parameter PSRG method. In Sec. IV we examine how
the consumption of the reactant affects the pattern. In
Sec. V we show the results of the computer simulation.
In Sec. VI we present a brief summary.

II. MODEL AND BASIC EQUATIONS

We consider the formation of dissolution patterns by
injecting a reactive fluid of viscosity u into a soluble
porous medium filled with a nonreactive fluid of unit
viscosity. Pattern formation by reactive injection fluid
must be studied in two separate regimes [9]. One regime
is when the time scale of the chemical reaction is much
shorter than the time scales of the fluid motion (convec-
tion and diffusion). We call this regime the “mass-
transfer-limited” regime, since the speed of the chemical
reaction is controlled by the supply of the reactive fluid.
The other regime, where the time scale of the chemical
reaction is much larger, is called the ‘“‘reaction-limited”
regime.

In this paper we study only the mass-transfer-limited
regime. We also ignore the surface tension effects be-
tween the two fluids. The chemical dissolution is de-
scribed by the equations

MyViP,=0, (1a)
for the displaced fluid, and
V- [M;(x,t)VP;]=0, (1b)

for the injected fluid. Here P, and P; are the pressures
of the displaced fluid and the injected fluid, M the mo-
bility of the displaced fluid, and M,(x,¢) the mobility of
the injected fluid, which is dependent upon position and
time. The mobility of the injected fluid is governed by
the cumulative erosion process.

We propose that the time evolution of the mobility is
given by an equation similar to that used in Ref. [1],

M (x,t)=p (14 {q[t —t(x)]}P) . @)

Here ¢ is the time, 7y(x) the time when the injected fluid
touches a site at position x, u the viscosity of the injected
fluid, and g the flow rate. In Ref. [1] it is argued that the
parameter B is  if the dissolution kinetics is limited by
molecular diffusion. Equation (2) can be used to describe
a cumulative erosion process that broadens the branches
of the cluster. In general, g can be generalized to be
dependent on the concentration of the reactant and the
reaction rate. However, Eq. (2) is not the only choice for
the time development of M;. Consider that the reactant
is transferred by diffusion in laminar flow in a tube.

If we assume that a pore within a porous medium is a
tube with a radius R, the flux of the dissolving substance
is given by
173
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where D is the diffusion constant, ¢ is the concentration
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field of the reactant, ¢, the average concentration of reac-
tant, v,, the mean velocity, and / the distance from the in-
let [10]. We assumed here that the concentration at the
surface of the pore is always equal to zero because the
surface chemical reaction is much faster than the time
scale of the mass transfer. The time evolution of the pore
size is given by

dR _ j
dt  p,’

where p; is the density of the porous medium. The mo-
bility of the injected fluid is proportional to the square of
the pore size. The mobility of the injected fluid is given
by

2

1+A—R , (3)

M=
a RO

where a is the initial mobility of the injected fluid, R, the
initial radius of the pore, and AR the increment of the

pore radius. The initial mobility a is proportional to the
1

inverse ' of the viscosity. Using the above relations,
the mobility is described by
M=a(1+{q[t —t,(x)]}*?), 4)
with
co UmD2 1/3
q=0.89 |— 7
s R Ol

Here ¢ is time, and t,(x) dimensionless time when a tip of
the finger touches site x. The pore size of the cluster in-
creases with time after the injection fluid reaches point x.

The form of the mobility presented in Eq. (4) can also
be used to describe a cumulative erosion process. The
mobility of the injected fluid increases with time z. Al-
though we assume that the concentration c, of the reac-
tive fluid is constant, in the later stages of the dissolution
process, the dissolving power is actually limited by the
finite concentration of the reactant. The pore size of the
branches is not able to increase for very long due to con-
sumption of the reactant. This effect of the finite concen-
tration is discussed in Sec. IV. Logically, we would ex-
pect that a finite concentration would stabilize the pat-
tern, i.e., favor the Eden limit. The boundary conditions
on the interface are given by

v,=—Mpn-VPp
=—M1n'VP1 )

where v,, is the normal velocity of the interface and n the
unit vector normal to the interface. Without loss of gen-
erality, we set M, =1. The models given in Egs. (2) and
(4) [model A and model B, respectively] can be applied to
the mass-transfer-limited regime. In the reaction-limited
regime, the time scale of the chemical reaction is much
larger than those of the fluid motions (convection and
diffusion). Therefore, after the viscous finger grows
sufficiently, the chemical dissolution process occurs in the
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area occupied by the reactive injection fluid. The pores
occupied by the reactive injection fluid become larger.

III. RENORMALIZATION-GROUP APPROACH

In both models A and B, we study pattern formation in
viscous fingering caused by chemical dissolution by
means of the position-space-renormalization-group
method. Using the resistor-network model to describe
the viscous-fingering problem (pressure, flow rate, and
mobility in viscous fingering corresponding to voltage,
current, and conductance in a resistor network), we in-
duce morphological change by varying the viscosity of
the injected fluid and the rate of injection. For simplici-
ty, we consider the renormalization procedure on a dia-
mond hierarchical lattice: each bond is occupied by a
resistor of unit conductance, and a constant current g is
applied across the diamond hierarchical lattice. We dis-
tinguish the following three types of bonds (Fig. 1): (1)
injected fluid bonds (thick lines that form clusters); (2)
growth bonds (wavy lines on the perimeter of the cluster);
and (3) displaced fluid bonds (thin lines).

The conductances of the injected, growth, and dis-
placed bonds are o, 0, and 1, respectively. We now
shall derive the renormalization-group equations for the
conductances of the surface and injected bonds, for the
total current, and for the time increment.

We partition the whole cluster into cells of size 2, and
replace these cells with “renormalized” bonds. The nth
generation of the diamond lattice is transformed into an
(n —1)th generation. When the injected bonds span the

(7) 4) (5) (6)

FIG. 1. All distinct configurations of the cell. The
configurations (a), (b), and (c) are renormalized to the growth
bonds. The configurations (1)-(7) are renormalized to the in-
jected bonds. The thick, wavy, and thin lines indicate, respec-
tively, the injected, growth, and displaced bonds.
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cell, we renormalize into an injected bond. When the in-
jected bonds do not span the cell, we renormalize into a
growth bond. If a cell does not contain an injected and
growth bond, we renormalize into a displaced bond. The
renormalization transformation of the surface bonds con-
stitutes the first of the renormalization equations,

O”C;':ﬁG(UG’oI’At’q) . (6)

R is calculated as the average conductance of all the
nonspanning configurations that contain injected bonds.
The time increment At is defined as the time period for
the displacement of one injected bond. The second renor-
malization equation is the renormalization transforma-
tion for the conductance of injected bonds,

0}27{1(06,01,At,q) . (7)

R; is calculated as the average conductance of all the
spanning configurations that contain injected bonds.
Furthermore, the time increment At is renormalized to be
a time period At’ during which the breakdown within the
cell proceeds from the bottom to the top. The third
equation is the renormalization transformation of the
time increment,

At'=R,(0g,0,ALq) . (8)

Also, the renormalization equation for the total current is
q'=2q.

Equations (6)—(8) give the renormalization-group equa-
tions, which have been derived explicitly. Figure 1 shows
the growth process within a cell, which we assume to be
stepwise: the growth proceeds one step at a time, and at
any given time only one bond is growing (there is no
simultaneous bond growth). The configuration in Fig.
1(a) shows a cell in which the growth has just reached the
bottom. Configuration 1(b) is constructed by replacing a
growth bond in configuration 1(a) with an injected bond 1
or 2. The probability of an injected bond adding to the
growth bonds 1 or 2 in configuration 1(a) is given by the
growth probabilities p, , or p, , of the growth bonds 1 or
2 in configuration 1(a). In like fashion, if an injected
bond is added to configuration 1(b), configurations 1(c)
and (1) result. The time increases by time increment At.
The conductance of the fully grown bond (injected bond)
then increases [see Egs. (2) and (4)],

o;—o;[1+(gAt)?], (9a)
o;—a,[1+(gAt)P?)? . (9b)

We actually show two expressions for models A and B
[(9a) and (9b)] only when the results are different. As the
growth continues, either configuration (2) or
configuration (3) occurs. As the time increases, the con-
ductances of the fully grown bond (injected bond) in-
crease as

o;—0o[1+(gAP >0, [1+(29A1)F] , (10a)

o;—0[1+ (gAY’ 5o, [1+(2gA)P212 . (10b)

In Fig. 1 each injected bond is labeled by a number
(1,2,3,4) that designates its order in the growth process,
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and each grows according to these numbers. As the
step-by-step growth process continues, the conductance
of the injected bond—described by either Eq. (2) or Eq.
(4)—increases with time.

Cell configurations (a)-(c) in Fig. 1 are all the
configurations that can be renormalized as growth bonds.
Configurations (1)—(7) are all that can be renormalized as
injected bonds. Configurations (1)-(7) of Fig. 1 give all
possible configurations of the spanning cluster.

Let us consider C, (a=a,b,c,1-7), the probability
that a particular configuration a will appear. Here, the
configurational probabilities are normalized, respectively,
as 1 for renormalized growth bonds and for renormalized
injected bonds. The configurational probabilities C,
(a=a,b,c) are given by (see Refs. [4]-[6] for details)

c,=1-C,—C,, (11a)
Co=C,(pg,11Pg7) > (11b)
C.=Cypp> » (11c)

where p, ; is the transition probability of the growth bond
i to become an injected bond i within a cell (a). Growth
probability p,; is proportional to the current passing
through growth bond i, and is given by

Pa1=Pa2=7 > (12)
Po1=7 > (13)
Pb2=1=DPp1 » (14)
Pe1=% s (15)
Pe2=17pg - (16)

The surface conductance o , of a cell with configuration
a is renormalized as follows:

0g.=2(1+ag"H ™, (17)
ogo=(1+og) '+(o; +agh™!, (18)

(g =1~
oG, =(0] +ogh™!

+{o [1+(gAnP) 45!} !, (19a)
og.=(or'+oghH™!
+{o;[1+(gAP ) 2 +og!} 7. (19b)

The renormalized conductance o of the growth bond
can be given as either an algebraic or a geometric aver-
age; the difference between the two averages not having a
qualitative effect on crossover phenomena [4]. Here, we
choose the algebraic average [11] for the renormalized
conductance of the growth bond,

06=C,05,+Cpo5,+C.06, - (20)

Relationships (17)—(20) present the renormalization equa-
tion (6). In the limit of infinite-viscosity ratio (o ;— ),
Egs. (17)-(20) reduce to those of an injected fluid with
Zero viscosity.

We now consider the renormalization of conductance
o, for the spanning cluster to be renormalized as the in-
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jected bond. Configurations (1)-(7) in Fig. 1 show all the
spanning clusters. Configurations (1)—(7) of the spanning
cluster are constructed from the configurations of the
growth cell on the top side. Configuration (1) in Fig. 1 is
constructed by adding an injected bond onto a growth
bond 1 in configuration 1(b). The configurational proba-
bility C, of configuration (1) is given by

C,=Copp,1Cp - 2D

Configurations (2) and (3) of Fig. 1 are constructed by
adding an injected bond to growth bonds 1 or 2 in
configuration 1(c). The configurational probabilities C,
and C; are given by

C,=Cop.,:C.
C3 = COPC,2CC .

(22)

Furthermore, the cluster grows and configurations (4)—(7)
in Fig. 1 occur. The configurational probabilities C,—C,
are given by

c,=C,, (23a)
Ccs=C, , (23b)
Ce=C, , (23c)
c,=C, . (23d)

The unknown constant C, is determined by the normali-
zation condition

7
S C=1.

i=1

(23e)

Conductances 07;-07; of the cell in configurations
(1)=(7) in Fig. 1 are given by

1 gr

o= , (24a)
PUoideg!t 14 [1+(gAnP] !
1 g
o= , (24b)
" l4eg!  1+[14(gAnB2) 2
, g
0' ==
b2 o +[1+(gAP] !
g
+ L (252)
1+[1+(2gAr)8)
' g
0' —
"2 005 +[1+(gAnp2) 2
g
+ - — (25b)
1+[14(2gAnP/2]72
, g
a' =
B o0 1+ (2gA0P) 7!
2 (262)

+ ,
1+[1+(gAP]!
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or

o7 3=
b o5 +[1+(2qAnP2] 72
g
+ B/21—2
1+[1+(gAt7?]
1
og'taor!

(26b)
O14=

oy
+ ,
[1+(gA’) 1+ [1+(2gA1)P] !

, 1
Jr4

(27a)

+ o
(14 (gAf2 ]2+ [1+(2gAr)P72]72
— 01
1+[14(2gAF] !
gr
+ [1+(gADP " +[1+(3gAnB]~1 °
g
14+ [1+(2qA)f?]72
+ k
[1+(gAtf2 72+ [1+(3qAt)P2]72
- 91
C1+[1+(3gAr)P] !

(27b)

’
ors

(28a)

’

15—

(28b)

’

Or6

op
+ ;
[1+(gADPI '+ [1+(g2A1)P] !
- 91
1+[1+(3gA)PF2] 2

(29a)

0'1,6
+ o1
[1+(gADP2) 2+ [14+(2qA1)P?]72
— 91
C14[1+(gArF] !
+ o
[1+(g2Af]1 ' +[1+(3gA)P] !’
g
1+[1+(gAr)P2]72
+ il
[14+(2gAt)P2) 2+ [1+(3gAt)F2]72 °

We assume the renormalized conductance o of the clus-
ter bond to be given by the algebraic average

(29b)

’
o7

(30a)

’
11—

(30b)

7
0’1': 2 CiU’I,i . (31)

i=1

Relationships (24)—(31) present the renormalization func-
tion o;=R;(0s,0,,At,q) for the conductance of the
cluster bond.

The time increment At is renormalized to be the time
period At' in which the growth proceeds from the bottom
to the top within the cell. Here the time increment is
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defined to be the time period between the growth of one
bond and the growth of the next bond. The renormalized
time increments for the configurations (1)-(7) in Fig. 1
are given by

2At7 =2At
2At5=3At ,
2At3=3At ,
2At,=3At , (32)
2At5=4At ,
2Atg=4At
2At5=4At .

It is assumed that the renormalized time increment Az’ is
given by the mean value

,
At'=S CAt] . (33)

i=1

Relationships (32) and (33) give the renormalization func-
tion At'=R,(0,0,At,q) for the time increment. Equa-
tions (6)—(8) are solved simultaneously. We find three
fixed points (1/0¢,0,0), (1,1,0), and (1/0¢§,0,1) in the
parameter space [1/0g,1/0,,v/(1+v)]. In the limit of
v—0 (the early stage of development), viscous fingering
at a finite viscosity ratio is reproduced. The crossover
occurs from the DLA fractal to the dense pattern [4]. At
the fixed point (1,1,0), the growth probability becomes
uniform over all the surface bonds. The fixed point
(1,1,0) corresponds to the Eden model, and is designated
the Eden point. Fixed point (1/0§,0,0)—the first DLA
point—gives the viscous finger at an infinite viscosity ra-
tio with no chemical dissolution. Fixed point
(1/0&,0,1)—the second DLA point—gives the viscous
finger at an infinite viscosity ratio with chemical dissolu-
tion. This second DLA point can be obtained after a
sufficiently long period of time. As time is increased, the
chemical dissolution causes the pore size to become
larger. After an infinite period of time, the mobility ratio
between the two fluids becomes infinity. Therefore, the
second DLA point is due to the chemical dissolution, and
is different from the first DLA point. The first DLA
point is the usual fixed point in viscous fingering at a
finite viscosity ratio. The pore size of branches in a
porous medium remains a constant value with increasing
time. However, at the second DLA point, the pore size
of branches in a porous medium is large when compared
to that of the initial stage.

We study the stability of the fixed points in a three-
parameter space [1/04,1/0,,v/(14+v)]. To find the
global flow diagram in the three-parameter space, we
choose a point in the parameter space and, using (6)—(8),
calculate the renormalized surface conductance, the re-
normalized conductance of the cluster bond, and the re-
normalized time increment. This produces a new point
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[1/0G,1/07,v'/(1+v')]. We repeat this process to find
the next point, and continue until we approach a stable
fixed point. Figs. 2 and 3 show, respectively, the renor-
malization flows for models A and B. The fixed points
coincide in models A and B. The renormalization flows
show a similar behavior in models A and B qualitatively.
Quantitatively, the renormalization flows in models A
and B differ somewhat. We can determine the stabilities
of the three fixed points: the first DLA point, the Eden
point, and the second DLA point. The first DLA point
and the Eden point are unstable fixed points. The second
DLA point is stable in every direction. All the renormal-
ization flows eventually merge into the second DLA
point. Figure 4 shows the global flow diagram of the case
with the same viscosity in the two-parameter space
[1/0;,v/(14v)]. There are two fixed points: the Eden
point (1,0) and the second DLA point (0,1). Due to
chemical dissolution, a crossover occurs from the dense
cluster to the DLA pattern. By introducing chemical dis-
solution into viscous fingering, the Eden point becomes
unstable—allowing a crossover from the Eden point to
the second DLA point.

We propose the following scaling ansatz along the
crossover lines:

d
M (rp,0)=r" Fy(ur®)F, 05" (34a)
with
(x) P ix <<l (34b)
Fi(x)=1 @-d,1/
! x i x>>1 ,
and
©1,1 a1
I i
v ’ ’ ! s
’ 1 ’/
l+v 7 ' .
’ | s
’ '2nd DLA
(0,0,1) (1,0,1)

1/0@

(0,0,0) 1st DLA (1,0,0)

FIG. 2. Global flow diagram of model A in three-parameter
space [1/0¢,1/0,v/(1+v)]. There are three fixed points: the
first DLA point, the Eden point, and the second DLA point.
All the renormalization flows are eventually sucked into the
second DLA point. In the limit of v —O0, viscous fingering at a
finite viscosity ratio is reproduced.
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B it

)

(0,0,1)

(0,0,0) 1st DLA (1,0,0) loe

FIG. 3. Global flow diagram of model B in the three-
parameter space [1/0¢,1/0,v/(1+v)].

1 if x «1

Fyx)= 1| 4, as, (34¢)
X

if x>1,

where F| is the scaling function for the first stage of the
crossover (from the first DLA point to the Eden point),
F, the scaling function for the second stage of the cross-
over (from the Eden point to the second DLA point), M
the mass of the cluster, r the radius of gyration, u the ini-
tial viscosity of the injected fluid, d the embedding di-
mensions, and d 5 the fractal dimension of the DLA pat-
tern. The scaling function for the first stage of the cross-
over corresponds to that of viscous fingering at a finite
viscosity ratio.

In an experiment with the same viscosity (x=1), only

DLA

<

05—

| Eden
0 0.5 1

l/UG

FIG. 4. Global flow diagram of model A in the two-
parameter space [1/0,,v/(1+v)] when the viscosity of the in-
jected fluid is the same as that of the displaced fluid. The cross-
over occurs from the Eden fixed point from the second DLA
fixed point.
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Eden
1/o;

DLA ] |
0 0.5 1
1/ocg

FIG. 5. Global flow diagram in the two-parameter space
(1/06,1/0;) in the no-reaction regime. The global flow dia-
gram corresponds to viscous fingering at a finite viscosity ratio.

the second stage of the crossover occurs. In order to
quantify this crossover behavior, we define a crossover ¢
and a crossover radius r,. We propose the scaling ansatz
along the crossover line from the Eden point to the
second DLA point,

M (r,v)=rF (v /B?) (35a)

with

1 if x «<1

F(x)z (d"df)/¢ (35b)
X

if x>1,

where the subscript 2 drops out for both the scaling func-
tion and the crossover exponent. The crossover radius r,
scales as

r.~@B)~1/¢ (36)

The crossover exponent ¢ is found by linearizing the re-
normalization equations and calculating the eigenvalues.
We obtain ¢=1.63, and find that the crossover radius de-
pends on the total volume v of the injected fluid. Because
the crossover radius decreases with v, the evolution from
fingering pattern to DLA fractal accelerates as the flow
rate increases. The crossover from dense pattern to DLA
pattern will begin earlier if the flow rate is increased. It
has been proven that the pattern formed by chemical dis-
solution evolves to a DLA fractal as the flow rate in-
creases [1,2]. The chemical dissolution reverses the direc-
tion of the crossover in the viscous fingering at a finite
viscosity ratio. Figure 5 shows the renormalization flows
without the reaction. The crossover occurs from DLA
fractal to dense structure. The scaling form of the cross-
over is that for viscous fingering at a finite viscosity ratio
(see Ref. [4]).

IV. EFFECT OF FINITE CONCENTRATION

We examine how the finite concentration of the reac-
tant affects the pattern. At a late stage of the dissolution
process, the dissolving power becomes limited by the
finite concentration of the reactant. Because of consump-
tion of the reactant, the pore size of the branches cannot
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continue to increase. One would expect that a finite con-
centration would stabilize the pattern, i.e., would favor
the Eden limit. Let us examine how finite concentration
of reactant affects the workings of model B. The concen-
tration c of the reactant decreases as the reactant is spent.
We assume the following relationship between reactant
concentration and time:

c=coexp[—b(t —1ty)], (37)

where c is the initial concentration of the reactant and
1/b the time constant that characterizes the spending of
the reactant. By substituting back into Eq. (4), replacing
C, with C of (37), we obtain an expression of mobility
that takes into account the finite concentration effect.

We study how finite concentration affects pattern for-
mation by using the above renormalization-group
method. For simplicity’s sake, we consider a case with
the same viscosity p=1, i.e., the viscosity of the reactive
injection fluid equals that of the displaced fluid. Figure 6
shows the fixed points and the renormalization flows in
the two-parameter space [1/0,,v/(1+v)]. We find the
three nontrivial fixed points (1,0), (0,1), and (1,1). The
fixed point (1,0) corresponds to the first Eden point and
represents a dense structure. The fixed point (0,1) corre-
sponds to the second DLA point and represents a DLA
fractal caused by chemical dissolution. The fixed point
(1,1) is the new point that is generated by the finite con-
centration effect of the reactant. The fixed point (1,1)
represents a dense structure because the mobility o; of
the reactive injection fluid has become one. We call this
fixed point the second Eden point.

The three renormalization flows 1, 2, and 3 are the ini-
tial conditions (b =0, At=10"% ¢,=1), (b=0.2,
At=10"% c,=1), and (b=0.5, At =10"% ¢,=1), re-
spectively. The renormalization flow 1 corresponds to

2nd DLA

2nd Eden

v/(1+v)

| Ist Eden

0 0.5 1
1/o;

FIG. 6. Global flow diagram in the two-parameter space
[1/0},v/(1+4v)] for the finite concentration effect of the reac-
tant when the viscosity of the injected fluid is consistent with
that of the displaced fluid. The two-stage crossover phenomena
occur from the Eden fixed point, through the DLA fractal fixed
point, to the Eden fixed point.
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the case in which the finite concentration effect is not tak-
en into account. The renormalization flows 2 and 3 are
eventually collapsed into the second Eden point. As the
time constant 1/b is decreased, i.e., as the reactant is
consumed more rapidly, the renormalization flow devi-

1.6 - 1
&
1.3 - 1
[ 1
1.0 -
1 1 ! L ) I—
0 10 20 30 40 50 60

R
g

FIG. 7. Simulations for (a) P,=10"3 and (b) P,=1 for a
128 X 64 square lattice, and 1000 Monte Carlo steps. (c) The
dependence on cluster size of the fractal dimension d, with
Py=10"3,
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ates from the second DLA point, and it becomes increas-
ingly unlikely that a DLA fractal caused by chemical dis-
solution will appear. If there is an appropriate time con-
stant 1/b (b=0.2), the two-stage crossover (from Eden,
through DLA fractal, to Eden) will occur. We find that a
finite concentration of the reactant stabilizes the pattern,
i.e., favors the Eden limit.

V. SIMULATION

We have checked the results of the present PSRG ap-
proach for the case p=1 by direct numerical simulation.
We find (i) that the asymptotic pattern is DLA, and (ii)
that the pattern obtained is independent of injection pres-
sure. Our simulations were performed for a 128X 64
square lattice with periodic boundary conditions in the
vertical direction (Fig. 7). The pressure on the left edge is
fixed at zero, and on the right edge at P,. At each time
step, we solve Egs. (1) by the over-relaxation method.
For each interface bond i, we calculate the current g;; we
then occupy bond i with probability ¢,/ ¥ ; g;, where the
index j runs over all the interface bonds. The first Monte
Carlo step is completed by updating the mobility using
Eq. (2). Figures 7(a) and 7(b) show the pattern after 1000
Monte Carlo steps for the cases P,=10"2 and 1, respec-
tively. We see no essential difference between these two
patterns. As predicted by the PSRG, the injection pres-
sure changes only the time scale of the pattern develop-
ment. We also notice that the pattern resembles DLA.
To check this possibility, we calculated the fractal dimen-
sion d; of the pattern using the box-counting method.
We find (Fig. 7(c)] that d, approaches 1.7, which is con-
sistent with known results for DLA.

VI. SUMMARY

Using three-parameter PSRG equations, we have ana-
lyzed the morphological changes that take place in
viscous fingers when a reactive injection fluid brings on
chemical dissolution. In the mass-transfer-limit regime,
we find that two-stage crossover phenomena occur at an
increasing rate when the viscosity of the injection fluid is
low, i.e., (i) from DLA pattern to dense pattern due to
finite viscosity effect, and (ii) from dense pattern to DLA
pattern due to chemical dissolution. We have presented
the scaling forms for two-stage crossovers and have cal-
culated crossover exponent ¢ and crossover radius r..
We have also studied how a finite concentration of the
reactant affects the pattern. We find that a finite concen-
tration stabilizes the pattern, i.e., favors the Eden limit,
and, because of chemical dissolution, crossover from
DLA fractal to dense structure occurs.
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