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We study the evolution of patterns formed by injecting a reactive fluid with viscosity u into a two-
dimensional porous medium filled with a nonreactive fluid of unit viscosity. We treat the “mass-transfer
limit,” in which the time scale of the chemical reaction between the injected fluid and the porous media
is much faster than the time scale of reactant transport. We formulate a three-parameter position-space
renormalization group and find two crossovers: (1) from the first diffusion-limited-aggregation (DLA)
to the Eden point—due to finite viscosity, and (2) from the Eden to the second DLA point—due to
chemical dissolution. We also calculate the crossover exponent and the crossover radius.

PACS numbers: 68.70.+w, 05.40.+j, 47.70.Fw

The formation of dissolution patterns, by injecting a
reactive fluid into a soluble porous medium filled with a
nonreactive fluid, has been studied experimentally and
computationally by Daccord and Lenormand."? They
noted the connection between this process and the vis-
cous fingering phenomenon, and also found that the pat-
terns formed at high injection rate by the chemical disso-
lution process have the same form—and fractal dimen-
sion—as diffusion-limited aggregation (DLA).? The un-
derlying mechanism for the formation of dissolution pat-
terns involves the flow of liquid in the porous medium
coupled with the chemical reaction between the injected
fluid and the medium. Daccord' has proposed a simula-
tion model that introduces a cumulative erosion process
which broadens the branches of the cluster. The pat-
terns obtained from the simulation are similar to the ex-
perimental ones.

Open questions include the asymptotic behavior of the
dissolution patterns and their dependence upon such pa-
rameters as injection pressure and viscosity of the inject-
ed fluid. Chemical dissolution phenomena may be of
particular interest in the domain of biological physics,
where recently patterns have been discovered—such as
the retinal vasculature and retinal neuron morphology
— which resemble DLA both qualitatively and quantita-
tively.*

Here we address these open questions by developing a
three-parameter position-space renormalization-group
(PSRG) method. We find that the asymptotic behavior
in this problem is characterized by two distinct cross-
overs: (1) one from DLA clusters to compact clusters
(due to the finite viscosity ratio), and (2) another from
compact clusters to DLA clusters (due to the chemical
dissolution). Moreover, we find that the crossover phe-
nomena depend on the injection rate.

Pattern formation by reactive injection fluid must be
studied in two separate regimes.® The regime treated
here is when the time scale of the chemical reaction is
much smaller than those of the fluid motion (convection
and diffusion). We call this regime the “‘mass-transfer-
limited regime,” since the speed of the chemical reaction
is dominated by the supply of the reactive fluid. The
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other regime, where the time scale of the chemical reac-
tion is much larger, is called “the reaction-limited re-
gime.”

The basic equations that describe the system are

V- [MpVPp1=0 (1a)
for the displaced fluid, and
V- [M,(x,t)VP1]=0 (1b)

for the injected fluid, where Pp and P, indicate the pres-
sures, and M), and M; the mobilities of the displaced
and the injected fluids. The mobility of the injected
fluid, M;(x,t), depends on position and time, and is
governed by the cumulative erosion process. In the situ-
ation when the chemical reaction is much faster than the
time scale of reactant transport, this erosion is controlled
by the mass transfer.

We propose that the time evolution of the mobility is
given by an equation similar to that used in Ref. 1,

MCe,t)=p A +{glt —1o(x)1}7) . )

Here ¢ is the total time, #o(x) the time when the injected
fluid touches a site at position x, u the viscosity of the in-
jected fluid, and g the flow rate. In Ref. 1, it is argued
that the parameter B is 3 if the dissolution kinetics is
limited by molecular diffusion. Equation (2) can be used
to describe a cumulative erosion process that broadens
the branches of the cluster. The pore size of the cluster
increases with time after the injection fluid reaches point
x. However, at the late stages of the dissolution process,
the dissolving power is limited by the finite concentration
of the reactant—the width of the branches cannot in-
crease forever, due to the “spending” of the reactant.
This effect can be studied by modifying the flow rate g in
Eq. (2). In general, q is dependent not only on the flow
rate, but also on the concentration of the reactant. The
effect of a finite reactant concentration is not taken into
account in the present model, but we expect that a finite
concentration may serve to stabilize the pattern—fa-
voring the Eden limit.

The boundary conditions on the interface are given by

Pp=P;, L’n=_MDﬁ‘VPD="M[ﬁ'VP[, 3)
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where v, is the normal velocity of the interface and i the
unit vector normal to the interface. Without losing gen-
erality, we set Mp=1. It is convenient to describe the
system using the language of the dielectric breakdown
model. In this language, the conductance of the injected
(displaced) fluid bond corresponds to the mobility of the
injected (displaced) bond. Also, the electric field corre-
sponds to the pressure field.

We consider the diamond hierarchical lattice (Fig. 1),
and apply a constant current ¢ =g between the bottom
and the top of the lattice. We distinguish three types of
bonds: (1) injected fluid bonds (thick lines which form
clusters), (2) displaced fluid bonds (thin lines), and (3)
growth bonds (wavy lines on the perimeter of the clus-
ter).

The conductances of the injected fluid, displaced fluid,
and growth bonds are oy, 1, and og, respectively. We
now shall present the renormalization-group equations
for the conductances of the surface and cluster bonds, for
the total current, and for the time increment; the full
derivation, which will be presented in a future publica-
tion, follows the method outlined in Ref. 6.

We partition the whole cluster into cells of size 2, and
replace these cells with “renormalized” bonds. Thereby,
generation n is renormalized to generation n —1. When
the injected fluid bonds span the cell, we renormalize
into injected fluid bonds. If a cell does not contain an
injected fluid bond, we renormalize into a displaced fluid
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FIG. 1. All distinct configurations of the cell. The con-
figurations (a), (b), and (c) are renormalized to growth bonds.
Configurations (1)-(7) are renormalized to the injected fluid
bonds. The thick, thin, and wavy lines indicate injected fluid,
displaced fluid, and growth bonds, respectively.

bond. When the injected fluid bonds do not span the
cell, we renormalize into growth bonds.

There are three renormalization transformations. The
first is for the conductance of the growth bonds,

o6 =R¢(og,01,At,q0) . (4a)

Here the renormalization function R is the average
conductance of all the nonspanning configurations that
contain injected fluid bonds. The growth conductance
o can be interpreted as an effective conductance of a
surface layer. The time increment At is the time period
for the displacement of one injected bond.

The second renormalization transformation is for the
conductance of injected fluid bonds,

o; =R (og,01,At,q0) . (4b)

Here R, is the average conductance of all the spanning
configurations that contain injected fluid bonds.

The third renormalization equation is for the time in-
crement Af. In the coarse-graining procedure, A¢ (the
time needed for the invading fluid to span the bond) is
replaced by Az’ (the time needed for the fluid to span the
cell),

At'=ﬁ,(o‘G,O'I,At,qO). (40)

Also, the renormalization equation for the total current
is 0 =2qo.

Next we discuss the renormalization functions (4a)-
(4¢c). Figure 1 shows the breakdown process within the
cell. We assume that the breakdown process occurs step-
wise, with only one bond breaking at a time (no bonds
break simultaneously). Configuration (a) shows a cell in
which the breakdown has just reached the bottom. In
configuration (b), an injected fluid bond has been added
onto growth bonds 1 or 2 in configuration (a); the proba-
bility of an injected fluid bond attaching itself to these
growth bonds is given by growth probabilities p,; and
Pa>. The weight of configuration (b) is simply the
growth probability p,; multiplied by the weight of the
initial configuration (a). In general, the weight of a
configuration is given by the product of the growth prob-
ability.

As a first-order approximation, we assume that the
currents on both sides of the diamond lattice have the
same value go/2. When an injected fluid bond is added
to configuration (b), configurations (c) and (1) occur.
The time increases only by increment Az. At that point,
the conductance of the injected fluid bond increases,

or— o;(1+1[qAtl?), (5a)
where g, the current flowing on the bond, is go/2 and
p= 3 . If we allow the breakdown to continue, the result
is configuration (2) or (3). As time increases, the con-
ductances of the injected fluid bonds increase,

o;— o;(1+[gAt]?)— o, (1+[2gA11P) . (5b)

Configurations (a)-(c) in Fig. 1 show all configurations
617
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of the cell that can be renormalized as growth bonds.

Solving Egs. (4a)-(4c) simultaneously, we find the
three nontrivial fixed points (1/6¢,0,0), (1,1,0), and
(1/6¢,0,1) in the three-parameter space (1/og,1/0y,
v/(1+v)), where ¢ is the fixed-point value in the limit-
ing case of an infinite viscosity ratio, and where v =goAt.
At fixed point (1,1,0), the growth probability becomes
uniform over all the surface bonds, so the fixed point
(1,1,0) corresponds to the Eden model; we call it the
Eden point. The fixed point (1/0¢,0,0) gives a viscous
finger at infinite viscosity ratio with no chemical dissolu-
tion, and is called the first DLA point. The fixed point
(1/6¢,0,1) gives a viscous finger at infinite viscosity ra-
tio with chemical dissolution, and is called the second
DLA point.

The second DLA point can be obtained after suf-
ficiently large time. After an infinite time, the pore size
of branches in porous media becomes sufficiently large
by chemical dissolution. Then the mobility of the inject-
ed fluid becomes sufficiently large. By chemical dissolu-
tion, an infinite mobility ratio can be obtained after an
infinite time. Therefore the second DLA point is due to
chemical dissolution, and is different from the first DLA
point, which is the usual viscous fingering fixed point for
a nonreactive injected fluid. The pore size of the
branches in a porous medium remains at a constant
value as time increases. However, at the second DLA
point, the pore size of the branches is sufficiently large
compared with that of the initial stages. We note that
the second DLA point is distinct from the first DLA
point. '

We now study the stability of the fixed points in the
three-parameter space. To find the global flow diagram,

01,1 (11,1

v
1+

2nd DLA

(0,0, > — (1,'0,1)
1o
01,0 Eden
(1,1,0)
A
d 1l/oa
(0,0,0) st DLA 1,0,0

FIG. 2. Global flow diagram in three-parameter space
(1/66,1/01,0/(1+v)). There are three fixed points: the first
DLA point, the Eden point, and the second DLA point. All the
renormalization flows are eventually sucked into the second
DLA point. In the limit v— 0, viscous fingering at a finite
viscosity ratio is reproduced.
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we choose a point in the parameter space and calculate
the renormalized surface conductance, the renormalized
conductance of the cluster bond, and the renormalized
time increment. By using (4a)-(4c), we find a new
point. We repeat this process to find the next point, and
continue until we approach a stable fixed point. The re-
normalization flows we obtain are shown in Fig. 2. We
find that the first DLA point and the Eden point are un-
stable fixed points, while the second DLA point is stable
in all directions. All renormalization flows eventually
merge into the second DLA point. From the flow dia-
gram, we find that the double-crossover phenomena
occur from the DLA fractal, through the dense pattern,
and finally to the DLA fractal. The first crossover phe-
nomena occur only when the viscosity of the reactive in-
jection fluid is smaller than 1. In the experiment of Ref.
2, the viscosity of the reactive injection fluid is the same
as that of the displaced fluid, so only the second stage of
the double crossover is seen. Note that chemical dissolu-
tion inverts the direction of the crossover in the viscous
fingering.

For an arbitrary viscosity ratio, we propose a scaling
ansatz along the crossover lines,

M(r,/,t,qo,At)=rdfF1(r¢'//l)F2(ul/ﬂr¢z) , (6)
with

Frix) 1if x<1,
x)~ -
: x @m0 x>1,

£ lif x<1,
R MULL LT

Here F, is the scaling function for the first stage of the
crossover, F» the scaling function for the second stage of
the crossover, M the mass of the cluster, r the radius of
gyration, and d the embedding dimension. The scaling
function for the first stage of the crossover corresponds
to that of viscous fingering at a finite viscosity ratio. In
an experiment with unity viscosity ratio, only the second
stage of the crossover is predicted to occur.

In order to quantify this crossover behavior, we define
a crossover exponent ¢ and a crossover radius r.. We
propose the following scaling ansatz along the crossover
line from the Eden point to the second DLA point:

M(r,0) =riF ("), @)

with
1if xK1,
x GO x> 1 ,

F(x)~{

where the subscript 2 drops out for the scaling function
and the crossover exponent. The crossover radius r,
scales as

re~(pV/B)=Veo, (8)
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FIG. 3. Simulations for (a) Po=10"3 and (b) Po=1 for a
128 x 64 square lattice, and 1000 Monte Carlo steps. (c) The
dependence on cluster size of the fractal dimension d,.

The crossover exponent ¢ is obtained by making the re-
normalization equations linear and calculating the eigen-
values. We obtain ¢==1.63. ‘

We have checked the results of the present PSRG ap-
proach for the case u =1 by direct numerical simulation.
We find (1) that the asymptotic pattern is DLA, and (2)
that the pattern obtained is independent of injection
pressure. Our simulations were performed for a 128 X 64
square lattice with periodic boundary conditions in the
vertical direction (Fig. 3). The pressure on the left edge
is fixed at zero, and the right edge is fixed at a constant
value of the applied pressure Py. At each time step, we
solve Eq. (1) by the over-relaxation method. For each
interface bond i, we calculate the current g;; we then oc-
cupy bond i with probability q;/2;q;, where the index j
runs over all the interface bonds. The first Monte Carlo
step is completed by updating the mobility using Eq. (2).

Figures 3(a) and 3(b) show the pattern after 1000
Monte Carlo steps for the cases Po=10 "3 and 1, respec-
tively. We see no essential difference between these two
patterns. As predicted by the PSRG, the injection pres-
sure changes only the time scale of the pattern develop-
ment. We also notice that the pattern resembles DLA.
To check this possibility, we calculated the fractal di-
mension dy of the pattern using the box-counting
method. We find [Fig. 3(c)] that d, approaches 1.7,
consistent with known results for DLA.
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