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In dealing with critical phenomena of complex systems that simulate realistic materials,
the full structure of the renormalization group is often unnecessarily cumbersome. For ap-
proximate calculations and for systems with special properties, specialized generators are
simpler to apply. We derive several such exact and approximate differential generators and
solve a number of interesting practical problems to illustrate this approach: (i) We derive a
new approximate differential generator based on the Wilson incomplete-integration generator.
Using this generator we calculate for an n-component spin system the eigenvalues (critical-
point exponents) associated with a critical point of arbitrary order © and “propagator expo-
nent” G to first order in the expansion parameter €g(0) =d + &G —d); this extends previous work
for =2, @arbitrary; 6=2, ©=2 (long-rang forces); and =4, O©=2 (the “Lifshitz point’”). Our
results agree with those obtainable using an approximate generator based on the Wegner-
Houghton equation. The cases 6=2L (L a positive integer =2) describe the onset of helical
ordering for which |k| ~ (-p) %, where 8,=1/2(L ~1) +0(€}(2L)) and p parametrizes the hyper-
surface of critical points. For p>0, the ordered phase is uniform; for p <0 there is spiral
order. The point p=0, at which such nonuniform ordering commences, we term a generalized
Lifshitz point of Lifschitz character L. (ii) We consider the full Wilson and Wegner-Houghton
generators in the paired spin-momenta limit and the n =« limit for even-order critical points.
These limiting generators are identical for both full generators. This demonstrates that at
least in these cases the Wilson and Wegner-Houghton generators agree exactly, without re-
course to perturbation theory. These simple exact generators should provide “anchors” for
calculations of exponents for higher-order critical points. (iii) We derive approximate gener-
ators which are suitable for compressible magnetic systems and more general systems with
constraints for which the spin momenta are grouped in any arbitrary manner. We apply this
to the case of a simple compressible magnet model and obtain the exact renormalization-
group trajectories to order € with €= ¢,(2) =4 —d.

I. INTRODUCTION

The use of differential generators for the renor-
malization group'+? has several advantages over
finite or recursive formulations: (i) In a recur-
sive renormalization-group approach, the recur-
sion relations contain the renormalization factor
b explicitly. The eventually-calculated critical-
point exponents are, of course, found to be inde-
pendent of b; it therefore represents an unneces-
sary complication that is avoided with a differen-
tial generator. (ii) The differential equations ob-
tained from a differential generator are, in gener-
al, far simpler in form than the corresponding
recursion relations. This is the case because the
recursion relations must exhibit all the feedback
that results from the finite amount of renormaliza-
tion. (iii) Differential equations are amenable to
more analytic solution techniques than recursion
relations. This is particularly true of the non-
linear study of renormalization-group equations.®-®

For many renormalization-group studies the full
structure of the exact renormalization-group equa-
tions is not needed. The location and stability
analysis of fixed points can be carried out to low-
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est order in perturbation theory with an approxi-
mate renormalization group. Studies of aniso-
tropic systems,” metamagnets,® spin-flop and dis-
placive transitions,® tricritical points,!° critical
points of arbitrary order,'*-!® coupled order pa-
rameters,*'!* and nonlinear effects,®~ to name a
few, can be made by ineans of approximations to
the renormalization group. (Detailed calculations
of higher-order corrections to critical-point ex-
ponents such as the calculation of'*''® n may re-
quire the full exact equations.) In many cases, the
essential physics is obtained in the lowest-order
expansion. Many of the above results were ob-
tained with the approximate recursion formula of
Wilson?:!7; they all can be discussed with an ap-
proximate differential generator. In addition, we
will demonstrate (Secs. IV-VI) that exact differ-
ential generators of form much simpler than the
full generator can be utilized when special or
limiting features of the system Hamiltonian are
incorporated into the formulation at the outset.

At present, there are two exact differential gen-
erators for the full renormalization group. The
Wegner-Houghton generator represents the differ-
ential limit of the recursive formulation of Wilson.!
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It gives the differential change of the Hamiltonian
in terms of an integral over an infinitesimal shell
of spin-fluctuation wave vectors (or momenta).
The Wilson differential generator' represents an
incomplete integration in which large wave vec-
tors are more completely integrated than small
wave vectors. To compare and contrast these
generators, we reformulate the Wilson generator
in such a way that it more closely resembles the
Wegner-Houghton generator. We may then solve
a large class of problems to show agreement be-
tween the two generators. For some of the prob-
lems we utilize approximate generators derived
from the full generators and show agreement to
first order in perturbation theory. For other
problems we consider specific exact limiting forms
of the two full generators and show they are iden-
tical to all orders.

Recently, we introduced'® an approximate differ-
ential generator based on the full Wegner-Houghton
generator. We wrote it in a form suitable for iso-
tropically interacting systems; it is easily gener-
alized to describe anisotropic systems with propa-
gator exponent ¢ (see discussion below),

G-d). = < 32 H )
D) §VH +trln 50{B+W s (1.1)

oH
a—l~dH+

where H ($, 1) is a function of an n-component spin
vector § on a d-dimensional lattice, and [ is the
renormalization parameter. - For the case of long-
range forces,'® with interaction strength «1/7*%,
0=0 for 0 <2, and G =2 otherwise. In the case of
the Lifshitz point'® G=4. We generalize such Lif-
shitz systems to those at which ¢ is an even inte-
ger, 0=2L; the imposition of a long-range force
on such systems allows any 0 < 2L.2°

A similar approximate generator is derived in
Sec. III from the Wilson incomplete integration
generator. The result is

3H G -d)

57 H +— 5-VH +VH -VH-VH . (1.2)

The two generators have the same linear structure,
but very different nonlinear structures; for exam-
ple, (1.2) lacks the propagator factors of (1 +7)!
characteristic of (1.1).

In Sec. II, we introduce an ee(c-r) expansion for
critical points of order © (o phases simultaneously
critical) with propagator exponent 0. This gener-
alizes previous work for arbitrary order © with
0=2,% 0=2 with 6 <2,'® and 0=2, 0=4."° (Cf. Fig.
1.) These calculations, which are exact to order
€6(0), agree for generators (1.1) and (1.2). We
derive a generating function for the eigenvalue cor-
rections which gives each correction as a sum of
at most [0/2] positive terms (1 >0). Explicit, sin-
gle-term expressions are given for n=1 and n=.

One finds by the method of Ref. 16 that for G# 2L,
7 “sticks” to the value ny=2L -0, for all @ to
order €3(0), in agreement with the ©=2 result of
Ref. 18.2°

In Sec. III, we derive the approximate Wilson
generator from a reformulation of the exact Wil-
son generator. This reformulation simplifies the
renormalization-group equation when expanded
around the Gaussian fixed-point solution. This
facilitates the comparison with the Wegner-
Houghton generator and is also the starting point
of the exact calculations of Sec. IV.

In Sec. IV, we use the full generators to discuss
the n—= = limit of critical points for © even. We
show that, in this limit, the spin fluctuations oc-
cur only in the paired momentum form: fs}ts_k*
=fsz(x) [in Feynman-diagram terms, all dia-
grams are tree diagrams (cf. Sec. IV)]. The gen-
erators, although extremely dissimilar for finite
n, become identical for » =« and are equal to the
common limit of the approximate generators. We
also show that the full generators become identical
[and equal to the appropriate limit of the approxi-
mate generators (cf. Sec. V)] if we make the weak-
er assumption that the spin momenta are paired.
This limiting generator is, of course, identical to
the n =~ generator for isotropically interacting
systems.

In Sec. V, we generalize the approximate gener-

FIG. 1. Schematic plot of order © (defined in Sec. I) vs
propagator exponent & (where the critical propagator
varies with momentum as |k|°%). For the case of long-
range forces with interaction strength 1/7¢%°, =0 for
o=2, and 0=2 otherwise; the case §=2L (L a positive
integer =2) corresponds to a “generalized Lifshitz
point.” The heavy lines and solid circle correspond to
previously treated special cases: (a) The vertical line
indicates case 0=2 and O arbitrary (Ref. 13); (b) the
horizontal line indicates the case ©=2, ¢ =2 (Ref. 18);
and (c) the heavy circle indicates the Lifschitz point
o=4 (Ref. 19). In Sec. II this previous work is extended
to all meaningful values of both ¢ and © (shown shaded).
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ators (1.1) and (1.2) to render them applicable to
systems with arbitrary groupings of spin momenta.
This allows the generators to be useful, for ex-
ample, in the study of compressible ferromag-
nets 222

In Sec. VI, we solve exactly to order €,, €,=4
—d, the nonlinear renormalization-group trajec-
tories for a compressible ferromagnet.?!

Il eg(0) EXPANSION

Recently,* it has been shown that the full Wilson
differential generator reproduces the earlier re-
sults in the 4 —d expansion,'® at least to lowest
order. Subsequently, several authors?*-2® have
shown that at least the correlation-function ex-
ponent 7, (0 =2) is correctly given to second order
with this generator [n, = (4 — d)?/54 for Ising n=1
systems|. With the approximate generator (1.2),
we will show agreement between the Wilson and
other renormalization-group formulations for a
wide class of systems.

In this section we will calculate the critical
eigenvalues for a special class of critical points
of higher order. Critical points of order o (9> 4)
were initially proposed for systems with symmet-
rically (or symmetrizable) competing order pa-
rameters.?” Because of the symmetrical nature
of the competing interactions, such types of criti-
cal behavior (cf. Ref. 9) are more easily achieved
in the laboratory. Global features of such types
of higher-order critical points have been consid-
ered in detail in Ref. 4.

Critical points of higher order can also be real-
ized in systems representable by a single order
parameter. At such a critical point of order O, the
mean-field values of the scaling powers®® of the
Gibbs potential are given by (20 -p)/20, with p
=1,...,20~-2."2:2% Using renormalization-group
recursion relations, it was suggested (and shown
for ©=3, 4) that below the borderline dimension d,
=20/(0-1), the scaling powers will deviate from
the classical mean-field values.'?>'*® The nonclas-
sical corrections in terms of the general ¢g
[=d +©(2 — d)] expansion were calculated to first
order'? using Gaussian eigenoperator expansions,
while the correlation function exponents 7, were
calculated to order €3.'¢

In this work, we will calculate the generalized
€o(0)[=d + ©(G — d)] expansions for critical points of
order @, whose Hamiltoniandensity in Fourier space
is of the form (s -+ |B|%+ c +7)sgs_g+++; we
choose our spin rescaling factor in such a way
as to keep the coefficient of [k|® constant. For
0<2, these represent the generalizations to arbi-
trary order o of Ref. 18 for systems with long-
range interactions (~»~(%*?)), For 0 =2L (L a posi-

tive integer), these are the oth-order critical
eigenvalues for systems exhibiting a “Lifshitz
point of character L.”

We consider a Hamiltonian with momentum de-
pendence in the term quadratic in the spins,

= 3 (T B )spsg e @D
I i=1

We can obtain, in principle, many coexisting
phases with different helicity vectors k (that is,
each ordered phase is a “frozen” spin wave of
wave vector K). As in the usual Landau expansion
for the order parameter, the character of the
helicity at a critical point is determined by the
lowest-order positive term in the wave-vector ex-
pansion. Thus, if A,>0, we can ignore the k* and
higher terms. The L=2 Lifshitz point!® is pre-
cisely that point at which A, =0. In general, there
is a complicated competition among L possible he-
licity states if A,=A,=+++=A4,;,_,=0, A,;>0. By
including a long-range interaction, we have addi-
tional competition between the £° term and the k*f
terms, with 6 =min(o,2L). For L>1, a detailed
renormalization-group treatment of (2.1) shows
that the renormalized values of the A,, (j<L-1)
cannot generally be kept equal to zero.?° This non-
linear competition occurs, however, only at order
€3(0). In the field-theoretic counterpart to this dis-
cussion, this apparent difficulty does not arise.
The form of the propagator is preserved by the use
of the appropriate counterterms.

We will evaluate the eigenvalues analytically to
order €4(0) using our approximate generators
(1.1) and (1.2). The procedure follows closely the
eigenoperator-expansion technique developed in
Ref. 13. The renormalization-group treatment of
such systems® is closely related to the “Gaussian”
eigenfunctions of the renormalization-group equa-
tion; in the case of (1.1) and (1.2), these are the
eigenfunctions when the equations are linearized
around H =0. As noted in the context of the Wilson
approximate recursion formula,”(®) these eigen-
functions are products of generalized Laguerre
polynomials and harmonic polynomials,

Qpm= Ly~ @%‘ls) Pn(8), (2.2)

with eigenvalues A, ,=d+(G —d)(p +m/2). Thus

for d< G there are an infinite number of relevant
Gaussian eigenvalues. The (2m +n=2)(m +n—=3)!
m!(n-2)! P,(S) are degenerate with respect to the
linearized renormalization-group equations. These
eigenfunctions are also eigenfunctions of the full
Wegner-Houghton and Wilson differential genera-
tors when linearized around the Gaussian func-
tional (cf. Sec. III).
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We restrict our attention to isotropic systems
(m =0). The renormalization-group study of an
order-0 system is simplified if the eigenvalue of
the Laguerre polynomials of order @ is small. We
therefore define an expansion parameter €4(0) by

69(6)=Ae_o=d+e(6—d). (2.3)

For 0=2, this is the € of Ref. 18; for & =2, this
is the expansion parameter for higher-order crit-
ical points discussed in Refs. 12 and 13. For this
case, d, is given by the solution of €4(&)=0, or
d,=60/(0 -1).

We first locate the fixed-point Hamiltonian H *.
We write

H*=0a€g(0)Qg+€3(0)H P + 2+ | (2.4)
and substitute this into the fixed-point equation

8H*/81=0. To the order required we may repre-
sent both generators (1.1) and (1.2) in the form

2]
o = OH 4D (y(H,H), m=1,2 (2.5)

where £ is the linear differential operator common
to both generators and D, and D, are the quad-
ratic parts of generators (1.1) and (1.2), respec-
tively. Upon inserting (2.4) into (2.5) we find

0= aQg+@*D(m)(Qp, Qo) + LH P+ 4+~ . (2.6)

To determine a, we choose H ?) orthogonal to Qg
and take the inner product of (2.6) with @,

0=(Qol Qo) + A D(m(Qe, Qo) | Qo) - (2.7a)
It is convenient to define [i, j; k] by

[4,73; k](m) =(D(m)(Q1, Q)| @) /Q,1Qx) . (2.T0)
Then we may write (2.7a) as

1=-d[0,0;0|m- (2.7¢)

We now determine the eigenvalues of the new
eigenfunctions when the generators are linearized
around H *. Since the fixed-point Hamiltonian H *
differs from the Gaussian fixed point H =0 only
slightly, we expect the eigenfunctions and eigen-
values to be changed only by order €(G) amounts.
We set

Q,=Q, +€g(0)a, (2.8a)
and

X, = A, +€6(0)02, . (2.8b)
Inserting H =H * + @, into (2.4) and linearizing, we
find that

0N Qp = £y +2aD 1) (Qgy @p) +*** . (2.9)

Choosing ¢, orthogonal to @, and taking the inner
product of (2.9) with @, gives

0xp =2a[0, ;P |(m) - (2.10a)

Eliminating the quantity ¢, we have
Np=d+p (@ - d) - 2¢5(0)[0, p; 2l (my/10, 0; Ol(m) -
(2.10Db)

Although the expressions which define [e, [; /]
differ for generators (1.1) and (1.2), the ratio
which appears in (2.10b) is the same. We write

[0,0;0)m) _(®,0;P)

[0,0;0]m, (0,0;@)"° (2.11a)
where
[o/2] .
Y = p p+n/2-1>(2p_2j)
(.50 Z%(J)( j 0-2j /"
(2.11b)

For n=1 and n=«, (2.11b) can be simplified to
give for (2.10b)

X,=d+p(&—d)—2¢o(6)<zé’> /(2:) (2.12a)

for n=1, and

X,=d+p(C —d)

~2666)([(9.1)/2)) /([(e+?)/2]>
(2.12b)

for n=w,

Unsymmetric Landau expansions without rota-
tional symmetry for Ising systems have been uti-
lized to describe higher-order critical behavior
in fluid mixtures.?**® The nonclassical correc-
tions for a,=2X,/d are given by (2.12a) with p
=31,3,...,20-1,

To derive (2.11), we first postulate that
[0, p; 2]y =4(@=1)0,p;P](2). In terms of
Laguerre-polynomial integrals, this reads

fwe“x"‘f[(a +1)f'g’ +x(f'g’) +2x2f"g" ] dx
0

- (0-1) f T e gt dy | (2.13a)
0

where we have set a=n/2 -1, f=L{(x), and g
=Lg(x). Using that fact that g’ = Lg'} eliminates
the explicit appearance of ©. Integrating by parts
twice, we have

fe-xxang/[f(f_f/ —xf" = (@ +2 —x)f")
+f'(f(@+2-x) —xf")]=0.

The bracketed quantity vanishes for all f= L.
Since the two generators agree, we will use the
Wilson-based generator (1.2) to calculate the

(2.13b)
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eigenvalue corrections. Consider the integral

1(e,0)= f e LE ([ LS ()P dx,  (2.14a)

We form a generating function for I(o, p) by de-
fining G,(¢) =2 (~t)®/(0, p). Using a generating
function for Laguerre polynomials, we can write

Gy(t) = J’ e~ L

where A=1+¢. Expressing Lj(\x) in terms of a
sum of L%(x), we perform the integrals to obtain

6s0= 3 (2) (1) aspreinemn.

m=0

Ax)LE (\x) dx (2.14b)

(2.14¢)

Equation (2.11b) immediately follows.

Equations (2.11) and (2.12) give the lowest-order
corrections to most critical-point exponents. How-
ever, the shift of the critical-point exponent 7,
(equivalently, the shift in the propagator exponent)
cannot be calculated from the approximate genera-
tors. In Ref. 16, 74 is calculated by a field-theo-
retic technique for critical points of order © and
0=2. The result is

=4f[€3(2)] /<20°>3, (2.15a)
H L(n+2j) (€0,0;0)n- |2
(26 D1 <<0,0;0>"> . (2.15b)

Thus, f=1 for n=1. For large n, we can extract
the leading dependence of 7, from (2.12b) and write

4€°(2/< /2> +°<%>’

for © even, and

no=4e§(2/((e_el)/2 )3(E)+1)3 +O<%),

for © odd. By an extension of the method used in
Ref. 16, one can show that for ¢ # 2L there is no
shift in the value of n4 at least to order 60(6')2, as
found in Ref. 18 for the special case 9=2.2°

(2.16a)

III. DERIVATION OF THE APPROXIMATE DIFFERENTIAL
GENERATOR (1.2) FROM THE FULL WILSON EQUATIONS

To derive (1.2) from the Wilson partial-integra-
tion generator, we put the full Wilson equation into
a form more closely resembling the full Wegner-
Houghton equation. This reformulation is more
convenient for perturbation expansions from the
Gaussian fixed-point solution as illustrated below.
We begin with the full Wilson equation for Ising-
like systems (n=1),

3¢ _ G=on=d o 1)@
8l—d3€+/;sk( 5 +B(k)—kak 5,

§-on )( 5%e 8 asc)
+f( 7 P\ 5555 2 "85, 554 )’

(3.1)

where 0 is the propagator exponent. Here 67 is
the shift in the propagator exponent; e.g., in the
case of non-Lifshitz systems with long-range-
force exponent 0, =0 and 6n=7n-2+0. For com-
pactness, we write & instead of K whenever it is
not confusing. This expression differs from that
given in Ref. 1(b), since in (3.1) the operator

k9 /0k does not act on the s, or momentum con-
serving & functions in the expansion of 3¢, while in
Ref. 1(b) £8/8k acts only on the s,. The difference
is simply an integration by parts. The function B
is an arbitrary (increasing) function of £* (com-
monly, B=Fk?%).

The presence of 3 in the first integral in (3.1) as
well as in the second integral is an inconvenience
for some calculations. If we make the change of
variable

_ . (@G =0m)/2+p(k?) |2
Sk Sk<T> ) (3.2)

Eq. (3.1) can be rewritten as

9 F—d—
_sc=d3(3+fsk<_o__‘£_6_n+q(k2) k—)ﬁ
(]

al 2 3k /Bsy
2) 6°%¢ 83 65(3)
fc k <Gskés . 55, 05 » (3.32)

where ¢ is related to 8 and C by

k8. ((6-06n)/2+pk)
Zakhl(_-—C(T). (33b)

The function C(?) is a cutoff function in the usual
sense; for example, C =6(1 —%?*), a Brillouin-zone
cutoff, or C =e"'2, a smooth cutoff. In passing
from (3.1) to (3.3) we have increased the number
of arbitrary functions from one (8) to two (¢ and
C). We reduce the number to one again by examin-
ing the Gaussian fixed-point solution.

The Gaussian solution is defined as the fixed-
point solution of the form

q(F*)=B(k*) +

1
3o =5 [ wlkDsus (3.42)
for 6n=0. The function w satisfies
(o +2g9 -k k)w =2C(R*w? . (3.4b)

If we expand around the Gaussian solution, 3C=3C;
+3C’, we have
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o3C’ G—d-— 5 ’ ’ ’ ’
sn:fcﬂic—:dscwfsk(3——‘12——5’1+q-2wc(k2)-k55>@—+fC(k2)< orC  _BiC oic ) (3.5)
k k

ol 0Sy 05,08 _p (Ss,2 0s_p
r
Equation (3.5) is simplified if ¢ and C are re- oH_ +<o d) oH o°H <8Li>2 (3.8)
lated by ¢ =2wC. Combining this with (3.4b) we Y 2 s Tas? \ds/’ ’
have - where we have normalized C by fd"kc(kz):l. The
|kl (3.6) linearized eigenfunctions of (3.8) are eigenfunc-

W=Ta @22 .
sz Cx)x@2)2ayx tions of (3.7) if we identify s™ with

In (3.6) the upper limit of the integral has been fk '.:.'kf O+ + s +Kn)Sy, o Suy

chosen so that ¢ and B8 are increasing functions of The above discussion may be repeated for gen-
|#| for large |%|. eral n, leading to the approximate generator (1.2).
In this formulation, the generator (3.5) when The reformulated equation (3.5), just as the
linearized around the Gaussian fixed point has the original generator (3.1), may be used for momen-
same form as the similarly linearized Wegner- tum-dependent calculations. As discussed in
Houghton generator Refs. 23-26, at least the leading contribution to
. 1, (for @=2,0=2) is independent of the function 3
Zﬁ:dgmLfsk(U__d_kﬁ).@E in (3.1). Thus it is to be expected that 7, is inde-
ol 2 %/ bSp pendent of the choice of C in (3.5).
5 0%C This is somewhat easier to demonstrate than the
*/’;C(k )581:53_;2 : 3.7 independence of 38 because of the simplification of
the equation given by the constraint g =2wC used
For the Wegner-Houghton generator, the cutoff in (3.5). It is straightforward to express 7, in
function C =6(|k| =1). Equation (3.7) admits solu- terms of the function C. The method is similar to
tions with momentum-independent expansion coef- that of Ref. 23 and will not be detailed here. The
ficients, in contrast with the usual formulations result is
of the Wilson generator.?-2*-2¢ 2/ e -3
If we now set 67=0 in (3.5) and neglect momen- Ny = —%—([ C(x)dx) I, (3.9a)
tum dependence by considering the limit of all °
k’s=0, we have the following equation for H (s, I): where
J
I= f dtf p? dpf qquf =sin?0d6 C(p?)C(q?)C’(p° +tq® + 2pqt*/? cosb) (3.9b)

with C’(x) =dC/dx.
To compute /, we rewrite the multiple integrals of (3.9b) in terms of the Fourier transform of C, C(z)
=fomC(x)e"z" dx. Performing the angular integration gives a Bessel function and (3.9b) becomes

. © 1 o . . . 1/2
1=(—2—;—)—3f dzldzzdzaf dl_/ dxdyc(zl)c(zz)c(za)<%> J1(22,(txy) /%) expli[xz, + vz, + (x +£Y)z,]},
-0 0 0

(3.10)
where x=%, y=¢*. We now assume (as in Ref. 26) that the z integrals can be deformed off the real axis
so that each z has a small positive imaginary part. With the aid of this convergence factor, the integral
over x gives

2

Ner )3f dzldz2d23f dtjo‘ dy C(2,)C(2,)C(z, )y(z——)gexp <iy22+(2:3’j1::)> . (3.11)

The y and ¢ integrations are now elementary and we obtain (after symmetrizing in z,, z,, and z,)

s ([ 500)"

Because C(x)=0 for x<0, C(z) is analytic in the lower half plane. We may, therefore, close the contour
down and write /=- +£3(0). However, C(0) = fo“’c(x) dx. Hence, from (3.9), we find n, =€2/54, independent
of the cutoff function C.
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IV. EXACTNESS OF THE APPROXIMATE GENERATORS FOR PAIRED SPIN MOMENTA AND FOR EVEN-ORDER
CRITICAL POINTS IN THE n - LIMITS

In this section we will show that in some circumstances (in particular, the even-order critical points) the
n = limit of the full Wilson and Wegner-Houghton differential generators can be written in simpler form.
This exact limiting form is the same for both generators, demonstrating their equivalence to all orders of
perturbation theory. This limiting generator is also identical to that obtained from either of the approxi-
mate generators, showing that the approximate generators become exact in the n =« limit, © even. A simi-
lar exact limit is obtained when all the spins are paired, j¢=3¢( [ sis®,

If we assume spin isotropy, we can write the full Wilson generator as

83C f f <- 3 > 63C
3Cr +—=dIC x, |0 —d- p—-— i
on LAY A Pa on - ap 934 aq éxp_q

53C 5%3C 63C 63C
+2nf02 +4fffc2 ,———————-4fffc 2)xp o0 . (40)
3 (¢ )5x,,‘_,, > Je et (P 0Xp 10X _p pr o Je Jur (P 0%p,0 0% _p pr (

where x, ,=8§,°8, and 3; is the Gaussian functional defined in (3.4)-(3.6). Consider the transformation

B 2nC(p2)5(§+ﬁ)><d—5—61})1/2
Zh,a - <xp,a - d—7 — 677 8n . (423.)

This transformation is suggested by an examination of the approximate generators; in the large-» limit,
it proves convenient to use the Laguerre polynomial expansion,

s () [ 5582 o).

where H, is the pth Hermite polynomial. In terms of the variables z, ,, the generator (4.1) becomes

83C - b3C 5%3C 10416 53C
513C +———=d3€+ffz 0-d-5 +ffc( 2)0(42)< - )
e 51 b Ja p'Q[ nJézp,a b Ja 4 02y 02 _p _q 02p402_p g

- [ Jtea oo r@n ) (b5 ) o0l (@.3)
! Bp 521’,0
The Gaussian functional term is
5?73Cc:(2n)”25nfw(lkl)zk e fw(lkl)C(kz), (4.4)
(] ! -0-0n J

where Q is the volume of the system. The second term in (4.4) is just a constant which we may ignore.

The coefficients of the momentum derivatives and the remaining 6n term in 3¢; are apparently O(n'/?). We
cannot directly take the limit n—~« unless 57 and the momentum derivatives are O(n-'/2) or smaller. From
(2.16) we expect that this is the case for even-order critical points (we at least know that it cannot be true
for odd-order points). As an ansatz, we assume that the troublesome terms are O(n~'). With this assump-
tion we obtain from (4.3)

Ty - d)ffzpqaz ffC(p () — 2 ffc(p )Clq )mC o3¢ —+0(™).

062,402 _p, _q a0z, _
(4.5)
T
All reference to n is absorbed in the transforma- In terms of this variable, the generator (4.5) be-
tion (4.2). Hence, there can be no momentum de- comes
pendence in the expansion coefficients of 3(z, ,).
Equation (4.5) is inconsistent with this momentum —dH 4G - d)zﬁ 9%H _oH aH' @7
independence unless JC is a functional of only the al T92% "oz 0z
paired momentum spins, z, _,. We therefore de-
fine This is precisely the limiting form of the approxi-
fz,, , mate generator (1.2) under the transformation z

=T AT (4.6) =[s? = 2n/(d -5)][(d - 5)/8n]' 2.
k A similar analysis of the full Wegner-Houghton
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equation again leads to the pairing of spin momenta
and (4.7). It can be obtained from the correspond-
ing approximate generator (1.1) by the matrix
transformation 2%8=[s%s® - 26,5/(d-6)][(d - &)/
8n)'/2 (2=, 2%%) and a change of scale of H,
H—4H/(d - §).

The limiting generator (4.7) is obviously not
exact for odd-order critical points since for &
=2L, n has a finite limit as n—=.2° It is also not
the correct approximate generator in this limit
for such fixed points. The nonlinear term in (4.7)
has the wrong parity for odd-order points to pro-
duce the O(eg) corrections. [In this respect, it
resembles the “odd-dominated” Hamiltonians
treating in Ref. 13. It is possible to obtain the cor-
rect first-order corrections by retaining the
O(n~'/?) corrections in the approximate genera-
tors.] This failure is also related to the fact that
for even-order critical points, the fixed-point
Hamiltonians (2.3) have a finite limit as n— (in
terms of the variable z), while for odd-order
points, the fixed point grows like n!/2. In the de-
rivation above, no n-dependent scaling of the Ham-
iltonian was utilized.

Equation (4.7) differs greatly from the expression
derived in Ref. 1 and obtained by simply setting
n= in Eq. (1) of Ref. 13:

Z—?=d}7+(6—d)x—:—g+ln (1 +g—[:>, (4.8)
where x=s/n and H =2H/n. This form is inade-
quate for general even-order fixed points. First,
it presumes that the Hamiltonian H is O(r), rather
than O(1) as shown above. Second, the use of s?>/n
as a variable, while it properly treats the gross
behavior of s?, loses the O(xn!/2) character of the
fluctuations. This corresponds to taking the n—
limit of Laguerre polynomials with fixed argu-
ment,

»
R (4.9)
rather than the Hermite-polynomial limit (4.2b).
These functions are the eigenfunctions of (4.8) when
linearized around H =0. Although complete, these
functions do not have any convenient orthogonality
relations. This results in the loss of the €4 ex-
pansion for all ©#2. In Ref. 1(a), it was in fact
shown that (4.9) has only one fixed-point solution,
corresponding to ©=2, the spherical model.?® The
change of variables used in this work preserves
the second-order character of the linearized equa-
tions in the n— « limit. In this manner, the eigen-
functions of the limiting generator are still orthog-
onal polynomials.

Since Eq. (4.7) is exact, it provides an “anchor”
for calculations of exponents for higher-order

critical points, much as the spherical model has
been used to test the accuracy of high-temperature
series and 4 - d expansions for ordinary critical
points. Perturbational or exact solutions of (4.7)
will be vastly simpler to achieve than the corres-
ponding solutions of the full renormalization-group
equations for finite » and can therefore be carried
to higher order and used to check finite-n results.
In the special case of the spherical model, =2,
(4.7) can easily be solved exactly. The exact fixed
point for an isotropic system is

26 -d 2
* = 2 _ =
-2t (22,

(4.10)

Linearizing around this fixed point, we again ob-
tain Hermite polynomials, but with eigenvalues

X, =d =Gp. (4.11)

For 6 =2, we recover the eigenspectrum of the
spherical model.3?

This exact solution suggests that for d <&, the
spherical model has no phase transition at finite
temperature (e.g., 1/6 <0) as is known for & =2.
This corresponds to the onset of infrared diver-
gences in the direct Feynman-diagram expansion.
The possible existence of a phase transition at
finite » is, however, not entirely excluded. Per-
turbation expansions for the usual critical theory
(0=2,5=2) fail at d=2 for all n. However, the
d =2 Ising model (n=1) has a “normal” transition
at its critical point, while the d =2 XY model (z=2)
has a Stanley-Kaplan transition.*® For each @ and
&, a similar situation may prevail at this “infra-
red boundary dimension” d; =G. For the general-
ized Lifshitz points (¢ =2L) the physically most in-
teresting case of three dimensions is always below
dy,=2L (L= 2), and it would seem that the theory
must be modified. As mentioned above, this cor-
responds to the occurrence of infinitely many rele-
vant Gaussian eigenvalues. If we admit anisotropy
in the k dependence, both the dimension from which
we perturb and the infrared boundary dimension
are lowered. For example, if only one component
of the wave vector contributed to the £2%* term
while the other components retain 22 dependence,
then diy=3 —1/L. Discussions of perturbation ex-
pansions for such systems are given else-
where.?°

In taking the n— « limit, we found that it was
necessary to pair the spin momenta. We may re-
verse the order of this procedure, and first pair
the spin momenta. For isofropic systems, this
limit is the same as the n— « limit, but for sys-
tems with only spin-reversal symmetry. On the
other hand, paired Hamiltonians of anisotropic
spins are also of interest; they represent classical
analogs of BCS pairing in superconductivity and in



13 EXACT AND APPROXIMATE DIFFERENTIAL... 1259

anisotropic superfluidity, where complex tensor

order parameters are formed through momentum
pairing. If the initial Hamiltonian is a functional
of paired-momenta spins only, it remains so for
all I. This corresponds to the fact that in a dia-

grammatic representation of such a theory, only
tree diagrams occur. The coincidence with the

n- limit arises because each loop of the trees
J

carries a combinatorial factor of n. Thus, the
tree diagrams dominate all other diagrams as »n
grows large.

For this case, we will give the derivation from
the exact Wegner-Houghton generator; the Wilson
case is entirely similar. If we assume the Hamil-
tonian is of the form 3C=30(sgs®,), the exact Weg-
ner-Houghton generator can be written as

a3e _ 53¢ f 8%3¢  4s]sY, 6%3¢ >
2 s+ 6 - d)f( 5% gramery +@ J €0 tr1n< R R e A e (4.12)

where C(p?) =6(|p|=1) in the original formulation
of Ref. 1; it is convenient for our purposes to let
it be more general. In the paired limit, we can
drop the momentum derivatives and 67.

We make the transformations

wh C(pz)Q 1/2
208 = (sasgp F ><89 ) ,  (4.13a)
4
JC—- — JC (4.13b)
-0
Equation (4.12) becomes
53C f 623C
oB 2(H2
al =d3 +(F - d)fzp _B'+ C({J)W
fC(Pz)—T‘—E+0(Q'1/2). (4.14)
Now we make the further transformations
zotﬂ
08 = fgz(kz)l = (4.15a)
R
Jo C2(2)
el 4.15b
=T ! (4.15D)
4
Inserting these into (4.14) we obtain
8H _ - oas OH °H __8H H
o1 “OH +(0 =)z g ey o =5 a8 54k -
(4.16)

Under similar transformations, (4.16) is the limit-
ing expression of the Wilson generator. The form
of the approximate generators stated in (1.1) and
(1.2) made it difficult to see that (4.16) is also their
common limit since the approximate generators do
not contain factors of the volume Q. This defect is
remedied in Sec. V. From the expressions for the
approximate generators given there [cf. (5.5)], it
is easy to derive that (4.16) is the appropriate lim-
it of the approximate generators as well. If we
assume isotropy and define z =z%%/n'/2 we return
to (4.7).

V. GENERALIZATION OF THE APPROXIMATE
GENERATORS TO INCLUDE ALL POSSIBLE
SPIN-MOMENTA GROUPINGS

The approximate generators given in (1.1) and
(1.2) are appropriate for Hamiltonians of the form

H= f d*x HER)). (5.1)

The momentum-dependent term in s,s_, is assumed
but not written out explicitly. The momentum-
space representation of this Hamiltonian contains
one momentum-conserving 6 function for each
term. However, for other problems a more gen-
eral form of momentum dependence is required
and yet the full equations need not be used. For
example, in the large-»n and paired-momenta lim-
it discussed in Sec. IV, we considered
H=H([3(x)2d%). In this case, all the spins occur
in momentum pairs. A still more complicated
example is that of Hamiltonians suitable for the
study of compressible magnets,?! in which some
spin momenta are paired and some are not. The
following form is used?!:

H=§ féz(i)d"x +2 f[EZ(i)]zd"x

w2 [f§2()?)d"x]2 : (5.2)

where, as in Sec. IV, Q is the volume of the sys-
tem,

The most general form which can be subsumed
in the approximate generators is

H=H({(s%4...sm}), (5.3a)
where
(§%e . ogm) = f d* s ®)- - -sOm(X). (5.3b)

Here q,---a, runs over all possible sets of co-
ordinate indices (q;<#). The usual case (5.1)
corresponds to H linear in each (s®--:s*m); that
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is, H=(H(S)). The paired-momenta and large-n

limit corresponds to H=H({(s%s?)). In this notation,

the magnetoelastic problem has the Hamiltonian
Yizey Uizezay U =y
H=5(8%) +3(5%8%) +5=(87)%. (5.4)

More general spin groupings in Hamiltonians can
occur when the systems are subjected to arbitrary
global constraints. By examining the exact gener-
ators, we find that the appropriate approximate
generators are

2
le{ =dH+3(G -d)s- VH)+<tr1n (6 B+—a§1;5)>
(5.5a)
?f =dH+%(6-d)(3-VH) +(V2H) - (VH-VH) .
(5.5b)
In (5.5) we have defined
9 o [ 9 o otm
gg‘(s 1o e >=5—s—g(s 1e e .g%m) (5.6a)
3 a Oty Y y
gg<s 1e e o8 ><S 1...8 j>
o om0 .
=(s%- s m)-é—;-s-(s)’l...s"':)
H{sT1e 0 s7i) 5%5(3“1- .. etc., (5.6b)
(D =9. (5.6¢c)

Of course, for any particular problem, the final
result should be independent of © in the limit

Q -, With the generators (5.5), it is easy to
verify the paired-momenta limit of (4.16) is the
limit of the approximate generators as well.

As an example of the use of (5.5), we give the
nonlinear differential equations for the Hamilto-
nian (5.4) correct to O(e), €e=4 —d, using the ap-
proximate Wegner-Houghton generator,

3 v

3l —21’+(n+2) "Iy (5.7a)
ou _ u?

37 (n+8)(1 7 (5.70)
w v?

7= 2(n+2)( )2 ng +r)2 (5.7c)

These represent the differential limit of the re-
cursion equations for the coupled order parame-
ters s? and (s?) studied in Ref. 21, It is possible
to give a nonlinear solution of (5.7) similar to our
other nonlinear problems involving coupled order
parameters®; this solution is given in Sec. VI.
We also point out that the approximate genera-
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tors (5.5) can be written as a functional differential
equation in a single function §(X), rather than as

an ordinary differential equation in an infinite num-
ber of variables (s®...s*", However, we must
respect the underlying lattice structure of the
system by noting that

6sP(X)/6s*(X) =05, (5.8a)
instead of the usual formula
858 (%) /65 () =6,56%(0) . (5.8b)

The resolution of this seeming disparity is that

6% (0) is essentially (1/a)?, where a is the smallest
length scale in the system. For true continuum
systems a =0, but for lattice systems in which
natural units for length are used (i.e., the lattice
spacing) a =1, With this caveat, the approximate
generators can be written as

aH

ST =dH+3 (6 - d)f d*x s OF) —a

@

+fxd”xtrln (6 a—(;%@—)>, (5.9a)

oH o
5—l-=dH+2(cr d)fd"xs (’)6 ,,(,)

5H  6H
f‘“as r)as 55 @0 fddx_és“(i)é_sg(i)
(5.9b)

VI. NONLINEAR SOLUTION TO COMPRESSIBLE
FERROMAGNET RENORMALIZATION-GROUP
EQUATIONS (5.7) TO FIRST ORDER IN ¢

To solve (5.7) we make the change of variables
V.= m+8u/e[(1 +7R], y,=nmv/e[(1 +7R], ¥=7/
(1+7), and x =7 +€¥,A,/2 +€y,/2, where A,
=(n+2)/(n+8). The subscripts n and e refer to
the normal n-component and elastic portions of
the Hamiltonian (5.2). We then have the equations,
to O(e),

ax €AY €Y,

— — — n —

57 _2x<1 X —4‘—2 —f-z ), (6.1a)
°]

Zaoyfel -y,)-4x], (6.1b)
%Lm[e(l -3,) - 2en,y, - 4x]. 6.1c)

In terms of these variables the four critical (x =0)
fixed points and the corresponding temperature-
like eigenvalues are (cf. Fig. 2) as follows:

(i) the Gaussian fixed point, y,=%,=0, AL=2; (ii)
the Wilson-Fisher n-spin point,®* y,=0, y,=1,

sy Yn
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FIG. 2. Solution region for isotropic compressible
ferromagnets for @yp<0 (shown shaded). Here G, WF,

S, FR, and IG denote the (i) Gaussian, (ii) Wilson-Fisher,
(iii) spherical, (iv) Fisher-renormalized, and (v) infinite-

Gaussian fixed points. The variables y,,y,, and x are
defined at the outset of Sec. VI.

AMi=2-eA,; (iii) a “pure elastic” point, y,=0,
y,=1, A1 =2 — ¢ (identical to the spherical mod-
el®3); (iv) the Fisher-renormalized n-spin point3®
(z point), v,=1, y,=1-2A,, Ai¥=2-€A,, where
A,=6/(n+8). In addition, there is the “infinite-
Gaussian” fixed point at x =1, y,=%,=0.

The existence of the z point corresponds to the
possibility of defining a linear combination of
y,and %, z=y,- (1 -2A,)y,, such that z =0 is the
trajectory connecting the Gaussian fixed point to
the z point. The equation for z is

9z

ol =z[e(l -y, -9,) - 4x]. 6.2)

Fixed points (i) and (iii) and fixed points (ii) and
(iv) are Fisher-renormalization® pairs. That is,
Abaalii=g and All+al¥=d. As expected from the
arguments of Ref. 36, the relative stability of two
fixed points which form a Fisher-renormalization
pair is determined by the sign of the specific-heat
exponent (@=2 -d/A;); the stabler fixed point is
that which has a negative «, that is, A,<d/2.

We define the auxiliary functions R, X, ¥, and
Y, in terms of which we can give the solution, *

oR

T =2(1 -7P)R, (6.3a)

aX
Yl 2xX | (6.3b)

%: -ey,Y,, (6.3¢c)

%L: -€9,Y,. (6.3d)

We find X =(1 -7), R=x¥24nY 2 and the following
relationship between Y, and ¥,:

Y- (1 =2A)y,=y,Y1" 2%~ (1-2A W,Y,. (6.4)

Various renormalization (“scaling”) invariants
can be formed from these functions as in Ref. 4.
We can advance beyond this stage here for the
compressible magnet, since (6.1) can be solved
exactly in the x =0 plane.

We have immediately that ¥, =1 -y, and from
(6.4)

v oYl =y,) 20 -1]+ (1 -24,)y,
" 1-2a,)9, :

(6.5)

The separatrix joining the #-spin point to the

z point is the line y,=1. The separatrix connect-
ing the pure elastic to the stablest fixed point

(the z point for #<4 and the n-spin point otherwise)
is given by Y, =0 (cf. Ref. 4), or

(1-2a.)

ye=1_(1_y")1‘2An' (6.6)

Thus, the two separatrices join smoothly at the
stablest point, but the boundary as a whole is not
analytic at the stablest point. This is to be ex-
pected from the general theory of nonlinear dif-
ferential equations; each region bounded by sep-
aratrices must be handled separately.

We will consider the region bounded in the x =0
plane by the lines z =0, ¥,=0, y,=1 (cf. Fig. 2);
this region always includes the stablest fixed
point.?” The two-dimensional separ-surfaces
that bound the region for x =0 are z =0, y,=0 and
that given by v, =¢,(x,9,/v,), where ¢,
is found to O(e€) by the methods of Ref. 4to be

n

(p,,=(1-x)‘/zexp{e—j-;—[I—Z(A,,+-§)g )]} .

6.7)

The auxiliary function Y, is similarly determined
to be [again to O(€)]

Y,= ( ——(pj)—:'l)exp[ex%: (A,,+~§-j‘:>:] . (6.8)

Y, can now be determined by use of (6.4) and the
solution is complete.
We now define the nonlinear scaling fields

Sti) (6.9a)

- X
XYYy,

X

R S— (6.9b)
= xi oy,
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x Yo x
Sy = —2%—, (6.9¢)
Ve
- X y
S(iv) = ——Xl-zA, y"E, ;;L . (6.9d)
These scaling fields satisfy
a5,
_._(L).al =2y Sy) - (6.9¢)

The free energy is a generalized homogeneous
function®® of the ordering field & and the S;):

G, {Sg )P =p*Gu™h, {u¥syb),  (6.10)

where

j=i,ii,iv and A=d+3(2-d).

A general solution of this form will have singular-
ities on the bounding surfaces, in particular, on
the separatrix leaving the stablest fixed point.*

If these singularities are to be eliminated, we
must choose the form of the function in (6.10)
carefully. This is equivalent to defining new scal-
ing fields which avoid the singularities. From a
phenomenological point of view, such a “super-
scaling-field” is not unique. It need only satisfy
certain limiting properties. For example, when
n<4 and the Fisher-renormalized fixed point is
stablest, we must have® the limiting critical be-
havior of that point everywhere on the interior of
the critical surface. Thus, we wish to define Sp
such that

Sr=Sgiv) » (6.11a)
for x- 0, y, #0. On the other hand, if y,~ 0 with
v, fixed, we require that
iv i
Sp—~ SO/ (6.11b)
Finally, as y, -0 (y, — 0 also, to stay in the so-
lution region) we require

/A

Sr—=S(i) (6.11¢)

It is always possible to define such a function.

With S, satisfying (6.11) G(%, S;) has no singular-
ities,

G, Sp)= ™ G(u™ h, u*7Sy). (6.12)

The proper scaling field can be found by calcu-

lating the equation of state using the nonlinear
scaling fields. The solution in the remaining
region (bounded by z=0, y,=0, and the separ-
surface) and the equation of state is treated else-
where,3®

VII. EPILOGUE

In this work we have shown that simplifications
can be achieved in renormalization-group calcu-
lations by altering the structure of the renormal-
ization-group equations prior to detailed calcu-
lation. In each case treated here, we reduced the
full renormalization-group equations to a non-
linear differential equation. While such equations
are not always easy to handle, they are far more
tractable and familiar than nonlinear functional
integro-differential equations.

The most general generator derived, (5.9), is,
of course, approximate. However, many renor-
malizations-group problems are studied in lowest
order of perturbation theory; the use of the full
renormalization equations is clearly superfluous.
Moreover, in special circumstances [such as the
paired-spin-momenta and large-» (even-0) limits],
these simpler generators become exact.

On a more philosophical level, it seems likely
that approximate generators accurate to higher
order in perturbation theory can also be construc-
ted. In the Callan-Symanzik approach to critical
phenomena, first-order linear partial differential
equations for the spatially uniform limit of the
thermodynamic functions (i.e., constant magnetic
field and magnetization) are constructed. The
coefficients in these equations are nonlinear func-
tions of the renormalized Hamiltonian parameters
which must be calculated by field-theoretic Feyn-
man-diagram expansions. In a separate work, we
show that renormalization-group generators such
as the Wegner-Houghton generator can be reform-
ulated as generators for the free energy and equa-
tion of state. The approximate generator (5.5a)
can in the same way be converted into an approxi-
mate generator for the thermodynamic functions.3®
The equations are highly nonlinear, but, in con-
trast to the Callan-Symanzik method, they are
self-contained equations. The nonlinear structure
automatically incorporates the results of the dia-
gram expansion. Since we are usually interested
in the spatially uniform limit, we might expect to
be able to construct renormalization equations in-
volving only spatially uniform quantities. The ap-
proximate generators given in this work include
these effects to lowest order; the higher-order
effects of the spin fluctuations might be incorpor-
ated by increasing the degree of nonlinearity of
the generators. This would correspond to being
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able to give operator definitions for the coeffic-
ients of the Callan-Symanzik equations. The gen-
erators studied here represent the first stage in
the development of a hierarchy of generators,
each incorporating a higher order of spin fluctu-
ations and, hence, a more precise description of
thermodynamic functions.

Note added in proof. After the submission of
this manuscript, it came to our attention that
F. J. Wegner [Phys. Lett. 54A, 1 (1975)] has in-

dependently indicated the equivalence of the Weg-
ner-Houghton and Wilson generators to first order
and has recalculated the values of n given in Ref.
16.
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FIG. 1. Schematic plot of order ® (defined in Sec. 1) vs
propagator exponent & (where the critical propagator
varies with momentum as | k|%). For the case of long-
range forces with interaction strength 1/7%%°, &=0 for
0=2, and =2 otherwise; the case §=2L (L a positive
integer =2) corresponds to a “generalized Lifshitz
point.” The heavy lines and solid circle correspond to
previously treated special cases: (a) The vertical line
indicates case =2 and @ arbitrary (Ref. 13); (b) the
horizontal line indicates the case 8=2, 0=2 (Ref. 18);
and (c) the heavy circle indicates the Lifschitz point
=4 (Ref. 19). In Sec. II this previous work is extended
to all meaningful values of both ¢ and © (shown shaded).



