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Abstract

One plus one dimensional growth of an Eden model with acceleration sites is investigated
by simulations, where the acceleration sites which are distributed at random before the process
starts become immediately Eden cells if the surface of Eden cluster touches them. The critical
concentration of acceleration sites where the growth rate of the average cluster height diverges is
found as pc =0:592± 0:005 corresponding to the site percolation threshold of the square lattice.
The exponent which characterizes this divergence near the percolation threshold have been found
as �=1:33±0:08. An e�ective roughness exponent � which characterizes the surface morphology
is found to belong to the same universality class as the Eden model for p¡pc. At the critical
concentration, the present system changes to hold a self-similar surface. c© 1998 Elsevier Science
B.V. All rights reserved.

1. Introduction

Rough surfaces of growth models [1,2] such as ballistic deposition model [3], Eden
model [4–7] are important subjects in fractal studies. The 1+1 dimensional growth of
Eden model is a prototype to study a rough surface (here 1+1 refers to one-dimensional
substrate and one growth dimension, i.e. the resulting cluster is two dimensional).
Originally, the Eden model was introduced in order to study a two-dimensional

formation of tumor starting from a single seed [4]. Family and Vicsek discussed the
dynamics of scaling theory for one-dimensional growth of Eden model starting from
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seeds on a line [8]. The uctuation of the height h for a lattice width L is expressed
by

�(L; h)∼L�f(h=Lz) ; (1)

where � and z(= �=�) are growth and dynamic exponents, respectively, and � is rough-
ness exponent. The function f(x) is a scaling function given by

f(x)∼
{
x� for x.1 ;

const: for x/1 :
(2)

Therefore,

�(L; h)∼
{
h� for h. L ;

L� for h/ L :
(3)

These equations are useful to analyze experimental rough interfaces obtained e.g. by
ink invasion phenomena [9–11] and burning problems [12–14].
Recently, Cao and Wong [15] discussed heterogeneous Eden growth in order to

investigate nonuniversality which is found in experiments of sedimentary sandstones
[16,17], lignite coals [18], colloidal silicate particles [19,20] and so on [2]. They mea-
sured several dimensions of perimeter, hull and mass of cluster. The di�erences between
the roughness exponents of the original Eden model and their models are subtle and
they did not get any clear conclusion especially when the concentration of obstacles is
smaller than a critical value. One of the purposes of this paper is to shed light on this
problem by introducing well de�ned quantities like the growth rate and by carrying
out �nite size analysis.
Secondly, there are various impurities which exert inuences of not only reduction,

but also acceleration of growth rate. If we consider a forest-�re problem, there are with-
ered and dry trees as well as raw and wet trees. The former accelerates the spreading
of �re, while the latter decreases the spreading speed. Obstacles and related pinning
phenomena has been studied widely [21,22]. In this paper, however, we discuss only
an e�ect of acceleration in the Eden model. Randomly quenched acceleration sites with
concentration p get incorporated into the growing cluster immediately if any of their
neighbouring sites get occupied. Obviously, if there is an in�nite path through accel-
eration sites through the sample, the average height of the cluster goes immediately to
in�nity, i.e. the growth rate becomes in�nity.
We have carried out numerical simulations to calculate the growth rate v for various

concentrations of acceleration sites. The growth rate increases with the concentration,
and diverges at a critical value, which is determined as pc=0:592±0:005 in agreement
with the known value for the site percolation threshold of square lattice [23,24]. The
growth rate v diverges near to pc according to a power law with an exponent which
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was measured to be 1:33± 0:08. This value is close to the exponent of the correlation
length �= 4

3 [23,24].
As for the scaling of the surface roughness, we calculate the roughness exponent

� which characterizes a self-a�ne surface. The Eden model has �= 1
2 and �=

1
3 for

the roughness and the growth exponents, respectively. Due to general symmetry con-
siderations one expects that the present Eden model with acceleration sites is found to
belong to the same universality class as the usual Eden growth, namely to the KPZ
universality class with �=0:5 within a range of p¡pc [25]. The measured e�ective
exponent varies with p, however, a �nite size analysis shows that this is a crossover
e�ect and the KPZ universality seems to be valid. At p=pc, the surface is not self-
a�ne, but self-similar, because it is nothing but an ordinary percolation surface. It is,
however, di�cult to get a de�nite value of � at p=pc in the present model.
In the next section, we discuss the universality of the model. In Section 3 we

present a scaling analysis and the paper terminates with a discussion of the results and
a conclusion.

2. Universality of the Eden growth model with acceleration sites

The model is de�ned here on the square lattice as an extension of the usual Eden
growth process. Before the process starts acceleration sites are positioned randomly
on the lattice with probability p. The Eden growth proceeds as usual: If a site is
neighbor to an occupied site, it becomes a growth site and at every time step one of
the growth sites is chosen at random and occupied (added to the cluster). However, if
an acceleration site becomes neighbor to an occupied one, it gets immediately part of
the cluster.
We consider Eden growth on a square lattice of Lx ×Ly (Lx. Ly). One of the hor-

izontal edges is a starting line for Eden growth. Acceleration sites which are dis-
tributed randomly in the lattice are denoted by circles in Fig. 1. The hatched region in
Fig. 1 show the Eden cell which is already grown. If an Eden cell grows upward at a

Fig. 1. Eden model with acceleration sites. Hatched region is the grown Eden cells and the site with circle
is the acceleration site. If we assume that a cell indicated by an arrow grows, 4 acceleration sites turn to
Eden cells immediately.
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Fig. 2. The growth rate against the concentration of acceleration sites. Lx is the horizontal lattice width.

Fig. 3. Typical patterns of Eden growth surfaces with acceleration sites. The lattice size Lx × Ly is 80× 1000.
(a) The concentration of acceleration sites is p = 0:5. (b) p = 0 (original Eden growth).

site shown by an arrow of Fig. 1 and touches an acceleration site, then the connected
acceleration sites with it will be occupied by the Eden cells immediately.
When the number of Eden cells increases by the same number as Lx, we proceed

a unit time. The growth rate of Eden cells is measured by height increase for a unit
time for various lattice sizes from Lx =16 to Lx =320, where Ly is set large enough
so as Lx. Ly, and shown in Fig. 2 against the concentration of acceleration sites. The
growth rate increases with the concentration of acceleration sites and diverges near 0:6.
Fig. 3a shows a surface region of Lx =80 with the concentration of acceleration sites
of p=0:5, and Fig. 3b shows a surface of a regular Eden model for comparison.
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Fig. 4. Roughness exponent � against the concentration of acceleration sites. The triangle shows the results
obtained from the data of Lx = 160 and the circle shows the roughness exponents � extrapolated from
our results to in�nite lattice. The square means the roughness exponents which are expected for the in�nite
lattice size.

Next, we measure the roughness exponent � which is obtained by the saturated
value of uctuation of the surface height. The raw values of the e�ective exponent �
for p¡pc obtained from the data for Lx6160 are shown by the triangle in Fig. 4.
Those values become larger gradually with the concentration of acceleration sites. This
seems to contradict our expectation about universality of the scaling of the roughness.
However, if we calculate the roughness exponents for various lattice sizes of Lx from
16 to 320, as denoted by the circle in Fig. 4 we get a strong indication that the
change in the exponent is due to a crossover. For 0:1¡p60:5, the extrapolated value
is about 0.5, and we get �≈ 0:5 for 0¡p60:1 already without the extrapolation. For
0:5¡p¡0:6, the pattern seems to be self-similar for the considered lattice sizes, but
the roughness exponent still decreases, although very slowly, with the increasing lattice
width Lx. From Fig. 4, it seems to be likely that the roughness exponent converges
to 0.5 up to the threshold value of concentration of acceleration sites at the in�nite
lattice size. This means that, although there exist a lot of acceleration sites in the lattice
and the pattern di�ers apparently very much from the original one-dimensional Eden
growth model, as long as p¡pc the universality class is the same as for the usual
Eden growth, namely the KPZ universality class [25].

3. Scaling treatment

Let us consider the relation between the growth rate and the concentration of ac-
celeration sites for various lattice sizes shown in Fig. 2. We expect usual �nite size
scaling similar to Eqs. (1)–(3). The growth rate v(Lx; p) for the lattice width Lx and
the concentration of acceleration sites p can be expressed as

v(Lx; p)∼ |�|−sg(|�|=L−1=�x ) for p¡pc ; (4)
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Fig. 5. The data collapse of scaled uctuation of growth rate is plotted against |p− pc|=L−0:750x for several
values of lattice width Lx , where the critical concentration of acceleration sites pc is 0.592.

where �=p− pc and the function g(x) is a scaling function given by

g(x)→
{
x s if x→ 0 ;

const: if x→∞ ;
(5)

and s and � are determined by data collapse. Therefore we obtain explicitly

v(Lx; p)∼
{
Ls=�x for �→ 0 ;

|�|−s for Lx→∞:
(6)

In order to check this relation, we change the scales in Fig. 2 following Eq. (4).
Looking for the best collapse of data, we obtain

s=1:37± 0:07; �=1:33± 0:08 ; (7)

which is shown in Fig. 5. These values of s and � are very close to 4
3 which is the

value of the exponent of the correlation length in ordinary percolation [23,24].
We have also plotted the uctuation W (standard deviation) of the growth rate

against the concentration of acceleration sites for several values of the lattice width of
Lx in Fig. 6 and the data collapse is checked by assuming the following function,

W (L)∼ |�|−s′h(|�|=L−1=�′x ) ; (8)

where h(x) is seemed to be expressed by the scaling function

h(x)→
{
x−1 if x→ 0 ;

x s
′

if x→∞;
(9)

and s′ and �′ are the exponents determined by the data collapse. The result is shown
in Fig. 7 when s′=1:33± 0:11 and �′=1:33± 0:10 as the best data collapse.
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Fig. 6. The uctuation of growth rate is plotted against the concentration of acceleration sites for several
values of lattice width Lx .

Fig. 7. The data collapse of scaled uctuation of growth rate is plotted against |p− pc|=L−0:750x for several
values of lattice width Lx , where the critical concentration of acceleration sites pc is 0.592.

4. Conclusions

We have discussed a new Eden growth model which has randomly distributed
acceleration sites which immediately become a part of the Eden cluster whenever they
become neighbor to an occupied site. Therefore, the Eden growth is accelerated by
the acceleration site, and as the concentration of such sites increases, the growth rate
speeds up and becomes in�nite at the percolation threshold. This divergence of growth
rate can be described by the same exponent as for the correlation length exponent of
the percolation model.
We have also been interested in the problem of universality of the surface scaling of

the present modi�ed Eden model. As seen in Fig. 4, we have obtained �=0:50± 0:01
for p¡0:5, which indicates that the present modi�ed Eden model belongs to the same
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universality class as the original Eden model. It is di�cult to get a de�nite exponent for
0:5¡p¡pc = 0:5927 : : : from sizes studied here, because in this range the roughness
exponent decreases very slowly with the lattice size. However, there are no physical
factors which would cause any transition between 0:5¡p¡pc and, therefore, we expect
that in the thermodynamic limit even in this range the exponent approaches its universal
value. The present modi�ed Eden surface is self-a�ne for p¡pc as the original Eden
surface, but at p=pc the present model turns to have a self-similar surface. It becomes
the in�nite percolation cluster at the threshold.
In order to check our prediction experimentally, we have already prepared a labo-

ratory experiment which corresponds to the Eden model with acceleration sites. The
results of this experiment will be published in a separate paper.
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