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Using the Jagla model potential we calculate the potential of mean force (PMF) between hard sphere
solutes immersed in a liquid displaying water-like properties. Consistent estimates of the PMF are
obtained by (a) umbrella sampling, (b) calculating the work done by the mean force acting on the hard
spheres as a function of their separation, and (c) determining the position dependent chemical po-
tential after calculating the void space in the liquid. We calculate the PMF for an isobar along which
cold denaturation of a model protein has previously been reported. We find that the PMF at con-
tact varies non-monotonically, which is consistent with the observed cold denaturation. The Henry
constant also varies non-monotonically with temperature. We find, on the other hand, that a second
(solvent separated) minimum of the PMF becomes deeper as temperature decreases. We calculate
the solvent-solvent pair correlation functions for solvents near the solute and in the bulk, and show
that, as temperature decreases, the two pair correlation functions become indistinguishable, suggest-
ing that the perturbation of solvent structure by the solute diminishes as temperature decreases. The
solvent-solute pair correlation function at contact grows as the temperature decreases. We calculate
the cavity correlation function and show the development of a solvent-separated peak upon decrease
of temperature. These observations together suggest that cold denaturation occurs when the solvent
penetrates between hydrophobic solutes in configurations with favorable free energy. Our results
thus suggest that cold denatured proteins are structured and that cold denaturation arises from strong
solvent-solute interactions, rather than from entropic considerations as in heat denaturation. © 2012
American Institute of Physics. [doi:10.1063/1.3677187]

I. INTRODUCTION

Folding and unfolding transitions in proteins have been
studied experimentally for many decades and in recent years
have received considerable theoretical attention.1, 2 Among
the more unusual phenomena observed is the unfolding of
some proteins when temperature is reduced from conditions
where the protein is in its native state. Such “cold denatura-
tion” has been observed experimentally3–5 for many different
proteins in the last two decades. Similar denaturation is also
observed upon increasing the pressure,6–10 a phenomenon first
described by Kauzmann.11 Although they have been the sub-
ject of many recent theoretical investigations, the cold denat-
uration and pressure denaturation transitions are less well un-
derstood than the protein unfolding that occurs upon increas-
ing temperature.

Water as the solvent is believed to play a significant role
in the collapse of proteins to the folded state in the normal
(high temperature to low temperatures) folding process, due
to the effective attraction between hydrophobic amino acids,
a phenomenon understood through the theory of hydropho-
bic hydration.12, 13 The solubility of the hydrophobic (H)

a)Author to whom correspondence should be addressed. Electronic mail:
sastry@jncasr.ac.in.

molecules in water has also been studied computationally14–18

by many investigators. The nature of hydrophobic hydra-
tion and its role in cold denaturation is less well understood,
but it has recently been addressed19–24 using simplified mod-
els displaying properties analogous to water, e.g., anomalous
thermodynamics.25–28 Here we follow the approach employed
in Refs. 20 and 21 by using a spherically symmetric interac-
tion potential for the solvent, i.e., the Jagla model.29, 30

Classical Flory theory31–33 relates the behavior of poly-
mers to the second virial coefficient of the effective monomer-
monomer interactions. If the second virial coefficient is nega-
tive, the polymer collapses into a globular state. If the second
virial coefficient is positive, the polymer swells into a ran-
dom coil conformation. It is thus useful to calculate the ef-
fective interactions between monomers in order to understand
the folding behavior of polymers. The effective interaction be-
tween monomers arises as a combination of their bare inter-
actions and those induced by the properties of the solvent. It
was previously observed20, 21 in simulations of a model hard
sphere homopolymer immersed in the Jagla solvent that such
a polymer goes from an unfolded state at high temperatures, to
a collapsed state at intermediate temperatures, and to a second
unfolded state at lower temperatures, which may be associ-
ated with cold denaturation. Based on these observations we
expect that, for hard sphere solutes in the Jagla solvent, the

0021-9606/2012/136(4)/044512/7/$30.00 © 2012 American Institute of Physics136, 044512-1

http://dx.doi.org/10.1063/1.3677187
http://dx.doi.org/10.1063/1.3677187
http://dx.doi.org/10.1063/1.3677187
mailto: sastry@jncasr.ac.in


044512-2 Maiti et al. J. Chem. Phys. 136, 044512 (2012)

effective solute-solute interaction increases upon cooling
(from temperatures where the hard-sphere polymer is col-
lapsed) and becomes positive at low temperatures. In the
present work, we study the effective solute-solute interactions
in the Jagla solvent, in order to obtain insights into cold denat-
uration of proteins. We note, however, that the model system
studied here is a minimal model for the phenomenon of in-
terest, and it would be desirable to verify the key conclusions
with more realistic models of water and proteins.

The effective interaction between solutes can be quanti-
fied by the PMF, which will be defined in detail in Sec. II.
Using three different methods, we calculate the PMF between
two hard sphere solutes immersed in the Jagla solvent over
a range of temperatures spanning the unfolded, folded, and
cold denatured states of the model polymer. Our results pro-
vide a quantitative confirmation of the observations in Refs.
20 and 21, namely, that a folding regime is present at inter-
mediate temperatures, bracketed by cold and heat denatura-
tion, for hard sphere polymers immersed in a Jagla solvent.
We further analyze the structural change of the solvent near
the solute, as well as the void space statistics in the solvent.
Our results suggest that cold denaturation occurs because the
solvent penetrates between hydrophobic solutes in configura-
tions with favorable free energy, and these results thus provide
insight into the mechanism of cold denaturation.

The remainder of this paper is organized as follows: In
Sec. II we provide a detailed description of the interaction
potential we are using and the concepts and methods we em-
ploy when we calculate the PMF and analyze void space. In
Sec. III we summarize our results. In Sec. IV we discuss our
results and offer our conclusions.

II. METHODS

The interaction potential U(r) of Jagla solvent particles
with an attractive tail is characterized by (i) the hard core di-
ameter a, (ii) the soft core diameter b, (iii) the range of at-
tractive interactions c, (iv) the depth of the attractive ramp
UA, and (v) the height of the repulsive ramp UR (Fig. 1).30, 34

These five parameters can be collapsed into three indepen-
dent dimensionless ratios: b/a, c/a, and UR/UA. The ratio of
the soft core and hard core diameters, b/a, is a sensitive con-
trol parameter that, for the purely repulsive case (UA = 0),
determines the fluid’s hard-sphere (b/a ∼ 1) or water-like (b/a
∼ 7/4) behavior.35 The latter value of b/a corresponds closely
to the ratio of radial distances from a central water molecule
to its second-neighbor and first-neighbor shells, as measured
by the second-nearest-neighbor and nearest-neighbor peaks
of the oxygen-oxygen radial distribution function (≈4.5 and
≈2.8 Å, respectively). Following Refs. 30 and 34, we select
b/a = 1.72, c/a = 3, and UR/UA = 3.5. This choice of param-
eters produces a phase diagram with several water-like fea-
tures. It includes two critical points, one corresponding to the
first-order liquid-gas transition and the other to a first-order
liquid-liquid transition at low temperatures, and a wide region
of density anomaly bounded by the locus of temperatures of
maximum density. The role of the attractive potential, b ≤ r
≤ c, is simply to allow fluid-fluid transitions to occur. Water-
like thermodynamic, dynamic, and structural anomalies occur
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0

5

U
(r

)

b

FIG. 1. Water is modelled by the spherically symmetric “two length scale”
(a and b) Jagla ramp potential.21 The continuous form of the potential (black
line) is used in umbrella sampling to calculate the potential of mean force
between a pair of hard spheres. The discretized form (red line) of the potential
is used in event driven molecular dynamics. a = 1 is the diameter of a Jagla
sphere.

even in the purely repulsive case (UA = 0), and their appear-
ance is governed by the ratio b/a.36

To compare the PMF calculated using the umbrella sam-
pling method via Monte Carlo simulations of the continuous
potential, we also calculate the PMF using a methodology
developed in the previous works, the discrete molecular dy-
namics (DMD) method.21, 37–41 In order to use the DMD al-
gorithm, we replace the repulsive and attractive ramps with
discrete steps (40 and 8, respectively), as described in Ref. 30
(see Fig. 1).

We measure length in units of a, time in units of
a(m/UA)1/2 (where m is the particle mass), the number density
in units of a−3, pressure in units of UAa−3, energy in units of
UA, and temperature in units of UA/kB. This realization of the
Jagla model displays a liquid-gas critical point at Tc1 = 1.446,
Pc1 = 0.0417, and ρc1 = 0.102, and a liquid-liquid critical
point at Tc2 = 0.375, Pc2 = 0.243, and ρc2 = 0.370.30

We model solute particles as hard spheres with a diameter
d0. The hard sphere solutes interact with the Jagla solvent only
through excluded volume repulsion, which occurs at a contact
distance of (a + d0)/2. Here, we consider d0 = a to be the hard
core diameter of the solute. The dependence of the solubility
on d0 is an important question and will be the subject of future
work.

Keeping the pressure of the solvent constant at P = 0.1,
we study five state points T = 2, ρ = 0.0788, T = 1.5,
ρ = 0.1836, T = 1.2, ρ = 0.2228, T = 0.9, ρ = 0.2493, and T
= 0.5, ρ = 0.2658. The constant pressure line passes below
the liquid-liquid critical point and above liquid-gas critical
point. The system size is set at N = 1000, 2000, and the num-
ber of independent configurations analyzed is above 1200. In-
dependent configurations are stored for each set of 50 000 MC
sweeps, for further analysis.

The PMF between two solutes quantifies the net interac-
tion between the solute particles as a result of both direct and
solvent-mediated interactions. In general, we define the PMF
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through the average distribution function 〈p(ξ )〉 subject to the
constraint of fixing some coordinate ξ to a given value. In our
case, the relevant coordinate is the distance between the solute
particles. Thus, we write

〈p(ξ )〉 =
∫

dRδ(ξ (R) − ξ ) exp(−U (R)/kBT )∫
dR exp(−U (R)/kBT )

, (1)

where R represents the 3N dimensional configuration space
coordinates of the system (for an N atomic system). With re-
spect to a reference value ξ* of the relevant coordinate, we
can define the PMF W(ξ ) to be

W (ξ ) ≡ W (ξ ∗) − kBT ln

[ 〈p(ξ )〉
〈p(ξ ∗)〉

]
. (2)

In calculating the PMF we have employed three methods: um-
brella sampling, directly calculating the mean force, and cal-
culating the distance-dependent excess chemical potential.

A. Umbrella sampling

Although the PMF can be evaluated using simulations
that generate a distribution of the distances between pairs
of solvent particles, the probability of finding two solutes at
any given range of distances is prone to large statistical error.
Thus, we first use the umbrella sampling method to evalu-
ate the PMF. In the umbrella sampling method, we perform
Monte Carlo simulations with a bias potential added to the
bare interaction potential of the system. The bias potential
is set so that it forces the solute particles to sample a de-
sired range of distances. Thus, we add a harmonic potential
wi(ξ ) = 1

2K(ξ − ξi)2, where ξ i is the most probable value of
ξ in umbrella sampling run i, and it generates a biased distri-
bution function p(ξ )b. It can be easily verified that the poten-
tial of mean force is obtained in terms of the biased distribu-
tion as42

Wi(ξ ) = W (ξ ∗) − kBT ln

[ 〈p(ξ )b〉
〈p(ξ ∗)〉

]
− wi(ξ ) + Fi, (3)

where the unknown constant Fi is given by

exp−Fi/kBT = 〈exp−wi (ξ )/kBT 〉. (4)

The ensemble averages indicated by 〈...〉 above are com-
puted as usual by the average of the quantity of interest over a
series of configurations obtained after each MC step; specifi-
cally, 〈p(ξ )b〉 is the frequency of observing a configuration in
which the distance between two solutes is equal to ξ .

By performing a series of umbrella sampling runs, we
have estimates of the PMF Wi in different windows of ξ , each
shifted with respect to the other by an unknown constant Fi

[see Eq. (3) above], which is eliminated by requiring that the
PMF estimated using the different bias potentials match for
the same values of ξ . Using an appropriate value for the spring
constant K (we choose K = 9.0), and setting the spacing be-
tween successive ξ i such that the distributions 〈p(ξ )b〉 have
sufficient overlap with good statistics, the full PMF is gener-
ated by shifting the individual estimates with respect to each
other so that they match in the ξ range of overlap. In practice,
we use a nonlinear fit to the set of PMF estimates Wi, with

a different ξ independent constant term for each run i with a
different bias potential wi, the other fit parameters being the
same for all cases.

B. Direct calculation of the mean force

In this method, we compute the PMF by first calculat-
ing the mean force F(r) acting between two solute particles
separated by a distance r using DMD simulations. Since the
solutes have only hard sphere repulsion, the mean force arises
from interactions with the solvent particles. We consider two
solutes confined by an imposed square-well potential to a lim-
ited range of separating distances R,

Ubond(R) =
⎧⎨
⎩

∞ R < d1

0 d1 < R < d2

∞ R > d2

, (5)

where (d1 + d2)/2 = r, the separation at which we wish to
calculate F(r) and d2 − d1 = �r = 0.1a. To find F(r), we
compute the sum

∑
�pr/2 of changes of the radial compo-

nent of the linear momentum for both solute particles due to
collisions with all Jagla particles and divide it by the total
simulation time, F (r) = 1

�t

∑
�pr . The radial component is

the projection of the momentum change of the first particle on
the radius vector directed from the second particle to the first
particle. In these simulations we first equilibrate the system at
constant P and T to establish its equilibrium volume V(T, P)
and then perform a production run for constant V and T. The
simulations are done for N = 1000 Jagla particles and two
hard spheres for t = 104 time units. We compute the poten-
tial of mean force by integrating F(r) from a sufficiently large
cutoff rmax = 5a to a given r < rmax,

W (r) = W (rmax) +
∫ rmax

r

F (r)dr, (6)
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FIG. 2. The potential of mean force W(r) (divided by kBT) vs. distance be-
tween two hard spheres immersed in the Jagla solvent shown for five temper-
atures at pressure P = 0.1. The lines shown are fit lines obtained by umbrella
sampling. The comparison of PMF calculated by different methods is shown
in Fig. 3.
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FIG. 3. Comparison of PMF obtained from three different methods, shown in a different panel for each temperature. The data shown by violet circles are
from different umbrella sampling runs, after they have been shifted to yield the fit curve shown in Fig. 2 (also shown here). Thus, the scatter in the data points
indicates the accuracy of the determination of PMF. The data points shown in blue squares are from the excess chemical potential (see Sec. II B). The PMF
curves shown in red dashed lines are obtained using the collision frequency (see text). The results from the three methods agree well with each other.

where W(rmax) is approximated as the logarithm of the solute-
solute radial distribution function in the diluted solvent,
W(rmax) = −kBTln [g(rmax)].

C. Distance dependent excess chemical potential

The third approach we use to calculate the PMF is based
on the excess chemical potential μex of a solute, as a function
of the distance from a second solute particle. In the limit of
the distance between the two solutes ξ → ∞, one obtains the
bulk value of the excess chemical potential μex

bulk, whereas at
finite distances the difference of μex(ξ ) and μex

bulk yields the

potential of mean force.43, 44 We generate equilibrium con-
figurations using Monte Carlo NVT runs of a system of one
solute in a sea of solvent molecules. The excess chemical po-
tential of a second solute is calculated as a function of dis-
tance ξ from the first solute using a geometrical analysis45 to
find the void space available for the insertion of the second
solute particle. In order to do so, we consider spherical shells
at varying distances from the solute particle, and evaluate the
volume fraction in each shell that is in the void, i.e., the vol-
ume fraction that is available for the insertion of the second
solute particle. Then

μex
s (ξ ) = −kBT ln(〈v0(ξ )〉), (7)
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FIG. 4. (a)–(e) The pair correlation function g(r) of the solvent, in the bulk (solid line) and near the hard sphere solute (symbols). The local structure is almost
unaffected by the presence of the solute at low T whereas at high T, the interfacial solvent structure is perturbed. (f) Solvent-Solute pair correlation function,
which is more strongly peaked at lower temperature.

W (ξ ) = μex
s (ξ ) − μex

bulk, (8)

where v0(ξ ) is the volume fraction for a given bin labeled
by ξ that is in the void. Averaging is performed on the num-
ber of equilibrium configurations (typically 2500) to find out
〈v0(ξ )〉. This method is the standard Widom insertion method
for calculating the excess chemical potential46 as it applies
to hard particles. We use the algorithm of finding void space
described in Ref. 45.

1. Cavity correlation function

As a related geometrical characterization of the solvent
structure, we calculate the cavity correlation function S2(r),47

which is the probability that two randomly chosen points sep-
arated by a distance r both lie in the void space, i.e., that it is

possible to insert the solute particle at either of the two loca-
tions without hard core overlaps with the solvent particles. As
r → 0, S2(r) → 〈v0〉 where 〈v0〉 is the volume fraction of the
void space mentioned above. As r → ∞, S2(r) → 〈v0〉2.

III. RESULTS

The PMF W(r) divided by kBT between hard sphere so-
lutes at different temperatures obtained from umbrella sam-
pling are shown in Fig. 2. The data shown are the fit lines
to the PMF using the procedure described above. The results
for the three different methods used are compared in Fig. 3,
with a different panel for each temperature. The data shown
for umbrella sampling are the individual data points from all
the sampling runs, shifted in each case by the constant factor
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explained above. These data thus provide an estimate of the
error in our computation. The results from all three methods
are in good agreement.

We begin by focusing on the first minimum of the
PMF, which corresponds to a separation near d0 between
the two hard sphere solutes. The PMF at contact shows
non-monotonic behavior with temperature, displaying a trend
that is consistent with the solubility of the hydropho-
bic homopolymer presented in Ref. 30. The state point
with T = 1.5, ρ = 0.1836 has the lowest PMF value
at contact, and then increases upon both increasing and
decreasing temperature. This corresponds to a “hydrophobic
collapse” regime at intermediate temperatures, with a weak-
ening of the effective interaction between solute particles
upon both increasing and decreasing temperature. That weak-
ening occurs when the temperature is lowered implies the pos-
sibility of cold denaturation of polymers composed of hard
sphere monomers. We also observe, however, that the second
minimum of the PMF gets progressively deeper as the tem-
perature is lowered. This implies that, at low temperatures, it
becomes thermodynamically favorable for solutes to organize
at distances separated by a solvent particle.

To better understand this phenomenon, we calculate the
pair correlation function between solvent particles in the bulk
solvent (i.e., separated from the solute particles by at least
6d0), and those solvent particles that are geometric neighbors
of the solutes (identified by a Voronoi construction). As seen
in Fig. 4, at high temperatures the pair correlation function
near the solute particles (ginterface(r)) is different from the bulk
g(r), indicating that the presence of the solute affects the sol-
vent structure. As the temperature is lowered, this difference
gradually diminishes and, at the lowest temperature, the inter-
face and bulk pair correlation functions are indistinguishable.
Thus, at the lowest temperatures, the insertion of the solute
does not affect the solvent structure at all, a situation that can
arise whenever the solvent structure provides favorable posi-
tions for the embedding of the solute particles. An inspection
of the solvent-solute pair correlation function (Fig. 4) shows
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FIG. 5. The cavity correlation of Jagla fluid. The emergence of a peak at
the solvent separated distance of r = 2a at low temperatures implies that it
becomes favorable for the solute spheres to be at solvent separated positions.
Solutes at such a separation will perturb the solvent structure the least.
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mate of Buldyrev et al.20 near the location of minimum solubility.

that, indeed, this pair correlation becomes stronger at the con-
tact position as the temperature is lowered.

To investigate further the ordering at low temperatures,
we calculate the cavity correlation function in the pure solvent
(see Fig. 5). This correlation function reveals the structure of
the void space into which a solute particle may be inserted.
Note that, as the temperature decreases, a peak in the cav-
ity correlation function develops at a distance of 2a (which is
equal to d0 + a for our choice of solvent and solute sizes).
Thus, spatially correlated, solvent-separated locations exist in
the solvent at which a pair of solute particles can be inserted
with minimal perturbation of the solvent structure. We there-
fore conclude that the second minimum in the PMF arises
from the structural ordering in the solvent at low tempera-
tures, which makes it favorable for the solute particles to sit
at solvent separated distances. Conversely, we conclude that
the interpenetration of the solvent and solute particles at low
temperatures is a possible mechanism for cold denaturation.

The solubility of hard spheres at low pressure can be well
described using the Henry constant. The Henry constant kH(T)
(Ref. 48) of the solute in the dilute mole fraction solution is
defined as

KH (T ) ≡ kBTρ� exp

(
μex

s

kBT

)
, (9)

where μex
s is the excess chemical potential of the solute in the

bulk, which we calculate directly by computing the void vol-
ume fraction, and ρ� is the number density of the solvent. The
minimum solubility has a maximum value of KH(T), so the in-
verse of the Henry constant vs. T passes through a minimum
shown in Fig. 6. This result is in good quantitative agreement
with the results from previous work20, 21 (also shown in Fig. 6)
giving the temperature of minimum solubility near T = 0.9.
A similar result using a one-dimensional lattice model was
obtained in Ref. 49.

IV. CONCLUSION

We have calculated the PMF between hard sphere solutes
immersed in a liquid displaying water-like properties and
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defined by the Jagla model potential. We have calculated the
PMF over a range of temperatures at constant pressure that
spans a temperature range within which it was previously
shown that a hard sphere homopolymer displays a collapse
transition that is bracketed by regions in which one observes
an analog of heat and cold denaturations in proteins. The PMF
estimates obtained here using three different methods yield
PMF values at contact that are consistent with an intermediate
temperature regime in which the effective interaction at con-
tact between hard sphere solutes is attractive, with the effec-
tive interaction at contact becoming unfavorable as the tem-
perature is either increased or decreased. On the other hand,
the effective interaction, quantified by the PMF, is seen as be-
coming progressively more attractive at a solvent-separated
distance 2a. By calculating the solvent pair correlation func-
tion near the solute and away from the solute, we have shown
that the perturbation of solvent structure by the solute dimin-
ishes as the temperature decreases. We have calculated the
cavity correlation function and demonstrated that a solvent-
separated peak develops when the temperature is lowered.
Taken together, these observations suggest a mechanism for
cold denaturation that occurs because the solvent penetrates
between hydrophobic solutes in configurations with favorable
free energy. Our results thus suggest that cold denatured pro-
teins are structured and that cold denaturation arises from
strong solvent-solute interactions, rather than from entropic
considerations as in heat denaturation.
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