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Fractal objects strongly screen external fields; only a small “surface” portion of the object is ex-
posed appreciably to the field. We have studied this exposed surface of several random fractals as
measured by random walkers and by ballistic particles launched from outside and absorbed by the
fractal. The number of absorbing sites weighted by their rate of absorption shows an apparent
power-law scaling with fractal mass. For diffusion-limited aggregates, ballistically generated aggre-
gates, and screened-growth clusters in two dimensions, this power-law relationship is for the most
part in accord with mean-field predictions of previous work. This accord is poorest for the objects
of lowest fractal dimensionality. We have confirmed that this scaling is different from that of the
old-growth—new-growth interface studied previously. We also find that a “hierarchy” of fractal di-
mensions describes the external surface of diffusion-limited aggregates.

I. INTRODUCTION

Considerable interest has recently developed in the for-
mation of fractal-like structures under nonequilibrium
conditions, motivated by the realization that fractal struc-
tures occur commonly in nature, and by the discovery of a
variety of simple computer models for growth and aggre-
gation that lead to the generation of fractal objects."™* In-
itially, the fractal geometry itself and its relationship to
the growth mechanism was the major area of interest.
More recently, attention has been focused on questions
concerning how the aggregates grow and the kinetics of
the aggregation processes.” Another very active area is
concerned with the question of how the familiar laws of
physics and chemistry are modified on fractal substrates.®

Since many of the unique properties of fractals are con-
cerned with the ways in which they interact through their
surfaces with an outside environment, it is important to
begin to develop a better understanding of the surface
properties of fractal structures. Another reason for being
interested in the surfaces of fractals is that the growth of
fractal structures occurs at the surface. Consequently a
better understanding of the surface properties of fractals
and related quantities may lead to a better understanding
of how such structures are formed.

Several steps have already been taken in this direc-
tion.”~!! (i) Meakin and Witten’ investigated the old-
growth—new-growth interface in diffusion-limited aggre-
gation’ and determined how the mass of the interface
grows with the mass of the old growth. (ii) Coniglio and
Stanley!® have developed the idea of an unscreened perim-
eter to describe now the effective-surface size of a fractal
depends on its diameter. In their picture, probe particles
move in the vicinity of a fractal cluster of M sites, and are
absorbed when they happen to touch it. Because of
screening, a relatively small number M, of sites absorb
the bulk of these probe particles. This number is a direct
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measure of the “exposed” or “unscreened” surface. Using
a mean-field argument they predict that M, scales as the
radius R to a power D,, with

D,=(D;—1)+(d —D;)/D, . (1)

Here Dy is the fractal dimension of the fractal, d is the
Euclidean dimension of the lattice, and D, is the fractal
dimension of the trajectory followed by probe particles
used to measure M,. One of our main objectives here is
to test this idea. - (iii) Plischke and Racz® introduced the
concept of an active zone (region in which growth is
occurring) in diffusion-limited aggregation and in the
(nonfractal) Eden growth process.” (iv) Grassberger!! has
analyzed the distribution of charge in a fractal object for
d =2. This problem is equivalent to the distribution of
sites visited by a random-walk trajectory.

Equation (1) emphasizes the fact that the apparent sur-
face of a fractal depends not only on its own fractal di-
mension but also on the fractal dimension of the probe
trajectory used to measure it. Even after the fractal di-
mension of the probe trajectory has been taken into ac-
count, the number of sites exposed to the probes can be
defined in various ways, given the broad distribution of
absorption rates. Our approach in this work is to measure
several moments of this distribution. These moments usu-
ally show a common scaling behavior, and the observed
scaling powers are for the most part consistent with Eq.
(1). The exceptions to this behavior have some common
suggestive features, as described below.

II. THE OLD-GROWTH—-NEW-GROWTH
INTERFACE IN DIFFUSION-LIMITED
AGGREGATION AND CLUSTERS GROWN
USING A SCREENED-GROWTH MODEL

The methods used to generate diffusion-limited aggre-
gation (DLA) clusters and to measure the size of the old-
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growth—new-growth interface have been presented ear-
lier.”12 However, it should be noted that the mass of the
old-growth—new-growth interface is the number of
“new”-growth sites that are nearest neighbors to one or
more “old”-growth sites in the limit in which the inter-
face is partially saturated (i.e., in the regime in which a
substantial number of new-growth particles have been
added, so that a finite fraction of the old-growth—new-
growth contacts have been made). In the present measure-
ments of this interface, we used d =2 DLA clusters that
are considerably larger than those used previously (25000
sites versus 9400 sites), and required the interface to be al-
most completely saturated.

The screened-growth model is a surface-growth model
in which the probability of growth at an unoccupied site
adjacent to an already occupied site is determined by the
independent multiplicative-screening effects of all of the
occupied sites in the cluster.!*!* For the ith interface site
at position r; the growth probability is given by

—A|r —r | ~€

P,'= IIe ) (2)

k=1,N

where r; is the position of the kth occupied lattice site
and A is a constant that is set to a value of 1.0 in our
simulations. This model leads to the formation of ran-
dom structures with a fractal dimension Dy equal to the
parameter € in Eq. (2).'41°

The screened-growth clusters were generated on
10011001 square lattices. The growth was started at
the center of the lattice and ended when the edges of the
lattice were first reached (Dy=1.25, %, and 1.5) or the
cluster had occupied 25000 sites (Dy=1.75). For both
the DLA and screened-growth models we find that the
size or “mass” of the old-growth—new-growth interface
M; depends on the old-growth mass M according to the
power-law relationship ‘

M; ~M8 . 3)

Table I shows the results obtained for the exponent 8.
The error limits shown are only the contributions of sta-
tistical uncertainties (95% confidence limits); systematic
errors may be larger than this. Seven clusters were used
for each model shown in the table.

III. THE EXPOSED SURFACE OF FRACTAL
AGGREGATES: PENETRATION OF PARTICLES
INTO RANDOM STRUCTURES

Our approach to measuring the surface size of random
structures is to probe the structure with particles follow-

TABLE 1. Fractal dimensions and interface exponents of
screened-growth and DLA models.

Model Fractal dimension Interface exponent
Screened growth 1.75 0.725+0.04
DLA 1.71 0.625+0.02
Screened growth - 1.5 0.625+0.04
Screened growth 1.33 0.545+0.004
Screened growth 1.25 0.475+0.06
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ing linear or random-walk trajectories. Each particle is
started off at a random position outside the area occupied
by the cluster and its trajectory is followed until it reaches
an unoccupied surface site (an unoccupied site which is a
nearest neighbor to an occupied site on the cluster). After
each trajectory has been completed a record is kept of
which unoccupied interface site is first contacted. A mea-
sure of the surface size can then be obtained based on the
total number of times each unoccupied interface site has
been “hit” after a large number of trajectories. Our defi-
nition of the surface size is based on the idea that a more
penetrating probe will contact a large surface area and
that this will result in a more uniform distribution of hit
probabilities. For a less penetrating probe, relatively few
surface sites will have a large probability of being contact-
ed. Consequently, we have measured the “moments” pu;,
W, and p; defined by

= [;Ni ]2/§N,?=N%/§N,? : (4a)
N3 / 2N,-3 ]1/2 , (4b)

1/3

M=

H3= (4c)

Nt /3N
i

Here N; is the number of hits made on the ith site and
Ny is the total number of probe particles (3,;N;). We
also calculated the fotal number of sites contacted p.

IV. SURFACE SIZE OF CLUSTERS GROWN
BY DIFFUSION-LIMITED AGGREGATION

Clusters in the size range of 15000—25000 occupied
sites were grown using a lattice model for DLA.>!! The
growth process was stopped at 17 or 18 stages during the
growth (the exact number depends on the final cluster
size) and 25000 particle trajectories were used to probe
the surface of the aggregate. Similar simulations were
also carried out in which the surface was probed with
100000 on-lattice linear trajectories (trajectories with ran-
dom impact parameters and with a direction randomly
chosen from the four equally probable directions on the
lattice). The results obtained from four simulations with
random-walk trajectories and five simulations with linear
trajectories are shown in Figs. 1 and 2, respectively. Be-
sides the statistics defined in Eq. (4), the total number u
of sites hit is also plotted. These results suggest power-
law relationships between the quantities u; and the cluster
mass M

pi~M" (j=1,2,3). (5)

The values obtained for y; from five simulations carried
out using random-walk trajectories, and from six simula-
tions carried out using linear trajectories, are shown in
Table II. As before, the uncertainties shown in Table II
represent the contributions of statistical uncertainties only
(95% confidence limits). The systematic-uncertainties are
probably considerably higher. In particular, it should be
noted that for the case of linear (on-lattice) trajectories we
would expect that the exponents ¥y, ¥,, and ¥; should all
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FIG. 1. Dependence of the surface sizes u, p1, i3, and p3 for
DLA clusters determined by 25000 random walks on the total
cluster mass M. u is the total number of surface sites hit. The
surface sizes uj, u,, and p; are screened perimeter masses de-
fined in the text.

have values equal to 1/Dy (=0.6), where Dy is the fractal
dimension associated with two-dimensional DLA. The
results shown in Table II estimate that the systematic un-
certainties are of the order of 10%. For the case of ballis-
tic trajectories, the probability that a particular unoccu-
pied interface site will be contacted can be found exactly.
Each site at the surface of the fractal can be reached by
zero, one, two, or three on-lattice ballistic trajectories.
The exponents ¥y, ¥, and y3 were determined in this way
using five hundred 50000-site 2D DLA clusters. For
clusters in the size range 5000 <N <50000, we found
71=0.63410.004, ¥,=0.642+0.005, and ¥3;=0.644
+0.004; for clusters in size range 1000<N <5000,
we found y;=0.6421+0.005, ¥,=0.6471+0.005, and
v73=0.650+0.005. Finally, for clusters in the size
range 200<N <1000, we found %;=0.65310.010,
72=0.654%0.010, and y3;=0.652+0.010. These results
are quite similar to those obtained using 100000 trajec-
tories and a much smaller number of clusters. However,
the three exponents are now much more nearly equal and
somewhat closer to the expected value of about 0.59. Also
the trend towards smaller values for larger cluster size in-
dicates that we are seeing the effects of finite-size correc-
tions to the asymptotic scaling behavior. Thus we con-
clude that our results are consistent with the expectation
that y,=y,=73=1/D~0.59 in the limit of large cluster

N ¢ ©
o
T T T

L1\

o
(o]
T T 1T T 171

| T S T I |

1

1 1 1 1 1 1 1 1 I
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
ln M

1 L 1 1 1

FIG. 2. This figure shows how the surface sizes u, ui, t,,
and us3 depend on the cluster size N for the penetration of parti-
cles following linear trajectories into DLA aggregates.
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TABLE II. Surface-size exponents y;, obtained by probing
the surface of Witten-Sander aggregates using random-walk and
ballistic (linear) trajectories.

Surface-size Particle trajectory

exponent Random walk Linear
71 ‘ 0.521+0.003 0.677+0.016
Y2 0.491+0.001 0.660+0.019
Y3 0.473+0.004 0.646+0.019

sizes. The random-walk exponents are all approximately
+; this is the prediction D, /Dy of the mean-field argu-
ment, Eq. (1).

V. SURFACE SIZE OF SCREENED-GROWTH
CLUSTERS

The surface size of clusters generated with the
screened-growth model can be defined using the growth
probabilities of the surface sites in a similar way to the
definition of the surface size obtained by probing DLA
clusters by particles following random-walk trajectories.
By analogy with Eq. (4) we have

,u1=1/EP,-2, " (6a)
, 3 172

o= |1 / se|, (6b)
1/3

= |1 / spH (6¢)

where P; is the growth probability for the ith unoccupied
surface site. In this case the P; are known exactly from
Eq. (2). It should be noted that the growth probabilities
used in Eq. (5) are normalized such that >, P;=1.

For the case Dy=e=1.25 the effective exponent y; ob-
tained from the growth probabilities is 0.155+0.045 for
clusters that are 1% —100% complete, 0.157+0.064 for
clusters that are 5%—100% complete, and 0.109+0.131
for clusters that are 109%—100% complete. Similarly for
D;=€=1.50; we find y;=0.404%0.056 (1%—100%
complete), 1=0.397+0.086 (5%—100% complete), and
Y1=0.392+0.100 (10%—100% complete). For
Dy=e=1.75; we find y;=0.5621+0.046 for clusters
1%—100% complete, y;=0.576+0.053 for clusters
10%—100% complete, and y;=0.76810.065 for clusters

TABLE III. Surface-mass exponents obtained by probing
screened-growth clusters with particles following linear trajec-
tories. Six clusters were generated using each model to obtain
these results and 100000 trajectories were employed.

Surface-size

exponent Fractal dimension
1.50 1.75
71 0.73+0.05 0.65+0.01
Y2 0.71+£0.05 0.63+0.01
Y3 0.70+0.05 0.621+0.02
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FIG. 3. Surface sizes found by using particles with a linear
trajectory to probe screened-growth clusters with a fractal di-
mension of 1.5; u is the total number of unoccupied sites “hit”
by the trajectories and the unscreened surface lengths u,, o, and
w3 are defined in the text.

509%—100% complete (i.e., clusters in the size range
12500< N <25000 occupied lattice sites). To obtain
these results 14 clusters were grown with a fractal dimen-
sion of 1.25, seven with a fractal dimension of 1.50, and
seven with a fractal dimension of 1.75.

The surfaces of clusters generated using the screened-
growth model were also examined using particles follow-
ing random-walk and ballistic trajectories. Table III
shows some of the results obtained by examining
screened-growth clusters with fractal dimensions of 1.75
and 1.5 using linear fractal trajectories. The surface-mass
exponents ¥, 73, and y; are somewhat larger than ex-
pected. Assuming that y;=1/Dy (0.66 for Dy=1.50 and
0.57 for Dy=1.75). In view of the similar results ob-
tained for DLA clusters (see above) we attribute these de-
viations to both finite-size effects and the fact that
100000 trajectories would not be sufficient to determine
Y1 Y2, and 73 accurately. The effects of a finite number
of trajectories is expected to be smaller for random walk
than for ballistic trajectories. The reason for this is that
the most frequently contacted sites contribute most to the
moments of the contact probability distribution used to
obtain the exponents y; and the contact probabilities for
the most frequently contacted sites are determined the
most accurately. Figure 3 shows the results obtained for
the penetration of linear trajectories into screened-growth
clusters having a fractal dimension of 1.50.

Similar simulations were also carried out using particles
following random-walk trajectories. The results obtained
using 25000 trajectories at various stages during the
growth of clusters with a fractal dimensions of 1.25, 1.50,
and 1.75 are shown in Table IV. Here again the measured
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TABLE IV. Surface-mass exponents y; describing how the
surface size increases with cluster mass, obtained by probing the
surfaces of clusters generated using the screened-growth model.
For each value of the fractal dimension, six clusters were gen-
erated and each cluster was probed using 25 000 particles follow-
ing random-walk trajectories. In most cases the measurements
have recently been checked by increasing the number of trajec-
tories tenfold to 250000. The resulting exponents agree with
those shown here, to within the indicated uncertainty.

Surface-size Fractal dimension Dy

exponent 1.25 1.50 1.75
71 0.66+0.03 0.57+0.01 0.51+0.01
Y2 0.61+£0.02 0.53£0.01 0.48+0.01
Y3 0.58+0.02 0.51£0.02 0.47+0.01

exponents are about 0.5, in agreement with the mean-field
prediction, except for the case of smallest Dy; viz.,
Df_1.25.

VI. THE SURFACE OF BALLISTIC AGGREGATES

Ballistic aggregates were generated using a modified
version of the Vold-Sutherland model'®!” in which both
the particles and the aggregate are confined to a square
lattice.'® The growth process was stopped at various
stages when the aggregate had reached a range of sizes
from 25—200000 occupied sites. This model leads to
structures that are not fractals'® but that may have a frac-
tal surface. The surface of the aggregates was probed us-
ing either 25000 or 50000 particles following random-
walk trajectories, or 100000 particles following linear tra-
jectories. Table V shows some of the results obtained
from six clusters that were probed using linear trajec-
tories. The surface-size exponents y; are close to but
somewhat larger than the expected value of 0.5. Compar-
able results obtained using random-walk trajectories are
shown in Table VI; similar results were obtained using ei-
ther 25000 or 50000 probe particles. Figure 4 shows how
the surface sizes u, py, iy, and pu; depend on the cluster
size for the penetration of particles following random-

walk trajectories into ballistically generated aggregates.

VII. DISCUSSION

Our simulation results indicate that the surface-size ex-
ponents ¥; (j =1—3), which describe how the surface size
measured by random-walk trajectories depends on cluster
mass, are insensitive to the fractal dimension of the struc-
ture for a number of d =2 systems with fractal dimen-
sions in the range 1.5—2.0. This result is in good agree-

TABLE V. Surface-size exponents (v, ¥», and ¥3) for the penetration of ballistic particles in ballisti-
cally generated aggregates. Clusters in the size range N; <N < N, were used.

N, =25 N, =300 N,=3000 N, =20000

Exponent N, =200000 N,=200000 N, =200000 N,=200000
7 0.531+0.005 0.523+0.004 0.513+0.005 0.507+0.007
Y2 0.531+0.004 0.522+0.004 0.513+0.005 0.506:0.007
- 0.530+0.004 0.521+0.004 0.511+0.005 0.503+0.007










