
Physica A 254 (1998) 77–84

Modeling of �nancial data:

Comparison of the truncated L�evy 
ight and

the ARCH(1) and GARCH(1,1) processes

Rosario N. Mantegna a; ∗, H. Eugene Stanley b
aIstituto Nazionale per la Fisica della Materia, Unit�a di Palermo and Dipartimento di Energetica ed

Applicazioni di Fisica, Universit�a di Palermo, Palermo, I-90128, Italy
bCenter for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA

Abstract

We compare our results on empirical analysis of �nancial data with simulations of two stochas-

tic models of the dynamics of stock market prices. The two models are (i) the truncated L�evy


ight recently introduced by us and (ii) the ARCH(1) and GARCH(1,1) processes. We �nd that

the TLF well describes the scaling and its breakdown observed in empirical data, while it is not

able to properly describe the 
uctuations of volatility empirically detected. The ARCH(1) and

GARCH(1,1) models are able to describe the probability density function of price changes at a

given time horizon, but both fail to describe the scaling properties of the PDFs for short-time

horizons. c© 1998 Elsevier Science B.V. All rights reserved

1. Introduction

Inspired by pioneering works on the analysis and modeling of economic and �nancial

systems [1–3], a growing number of physicists are being involved in the analysis and

modeling of �nancial markets [4–20]. In this lecture we consider the price dynamics

of a stock index traded in a �nancial market. The most accepted paradigm in �nance is

that no arbitrage is present in �nancial markets, i.e. there is no way to extract money

from the market continuously and without risk [21].

In this lecture, we �rstly recall results obtained by us [9,11,12], by performing an

empirical analysis of high-frequency data of one of the most important indices of the

New York Stock Exchange, the Standard & Poor’s 500 (S&P500) index. The results

obtained in the empirical analysis are used as benchmarks for two stochastic processes

used to model price dynamics in �nancial markets. The �rst model is the truncated
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L�evy 
ight (TLF), recently introduced by us [22,23]. The second stochastic process

belongs to the class of autoregressive conditional heteroscedasticity (ARCH) models

[24] and to its generalization (GARCH) [25]. We address strengths and weaknesses

of all three models in describing real �nancial data. We focus our attention on the

probability density functions (PDFs) of price changes at di�erent time horizons, on the

scaling properties of the PDFs and on the degree of stationarity of index changes.

2. Empirical analysis

We performed empirical analyses of the dynamics of indices of stock prices traded in

�nancial markets [4,9,11,12]. Our empirical analysis [9,11,12] of the S&P500 Index of

the New York Stock Exchange shows that a non-Gaussian scaling of the PDF of price

changes is present at short times (from �t=1 to 1000 trading minutes) while a break-

down from the non-Gaussian scaling is present for long times (�t/1000 trading min-

utes) [9,11,12]. We performed our analysis by analyzing high-frequency data recorded

during the 6-year period 1=84–12=89 (time intervals between successive records as

short as 15 s are present in the data base). In our analysis [9], we de�ne the trad-

ing time as a continuous time starting from the opening of the day until the closing,

and then continuing with the opening of the next trading day. From this data base, we

select the complete set of non-overlapping records separated by a time interval �t±��t
(where � is the tolerance, always less than 0.035). We denote the value of the S&P500

as y(t), and we de�ne z(t) ≡ y(t)− y(t − �t). In our analysis, we determine [9] the
probability distribution P(z) of index variations for di�erent values of �t. We select �t

values that are logarithmically equally spaced ranging from 1 to 1000min. The number

of data in each set is decreasing from the maximum value of 493,545 (�t=1min)

to the minimum value of 562 (�t=1000min). We note [9] that the distributions are

non-Gaussian, indeed, they have wings larger than expected for a normal process.

We study the “probability of return to the origin” P(z=0) as a function of �t.

With this choice, we are investigating the point of each probability distribution that is

least a�ected by the noise introduced by the �niteness of the experimental data set.

Our investigation of P(0) versus �t in a log–log plot [9] shows that the data are well

�t by a straight line characterized by the slope −0:712 ± 0:025. We observe a non-
normal scaling behavior (slope 6= −0:5) in an interval of trading time ranging from 1

to 1000min.

For short-time horizons (from �t=1 to 1000min), this empirical �nding agrees

with the model of a L�evy 
ight proposed by Mandelbrot in 1963 to model cotton price

dynamics [1] or with the model of a L�evy walk [26]. In fact, if the central region of

the distribution is well described by a L�evy stable symmetrical distribution [27],

L�(z; �t) ≡
1

�

∞
∫

0

exp(−
�tq�) cos(qz)dq ; (1)
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of index � and scale factor 
 at �t=1, then the probability of return is given by

P(0) ≡ L�(0; �t)=
�(1=�)

��(
�t)1=�
: (2)

By using the value −0:712 from the analysis of the probability of return, we obtain

the index �=1:40± 0:05 [9].
We also check if the scaling extends over the entire probability distribution as well

as z=0. All the distributions (with �t=1 to 1000min) agree well with a L�evy sta-

ble distribution [9,28]. The distributions obtained with the highest temporal resolution

(�t¡10) show that in addition to the good agreement with the L�evy (non-Gaussian)

pro�le observed for almost three orders of magnitude, an approximately exponential fall

o� is present. The clear deviation of the tails of the distribution from the L�evy pro�le

shows that the experimental tails are less fat than expected for a L�evy distribution.

The L�evy distribution has an in�nite second moment (if �¡2) [27]. However, our

empirical �nding of an exponential (or stretched exponential) fall-o� implies that the

second moment is �nite. This conclusion might at �rst sight seem to contradict our

observation of L�evy scaling of the central part of the price di�erence distribution over

fully three orders of magnitude. However, the contradiction is more apparent than real

since, for example, the above �ndings are consistent with the theoretical predictions of

the truncated L�evy 
ight [22,23].

3. The truncated L�evy 
ight

The truncated L�evy 
ight (TLF) has been introduced by Mantegna and Stanley

in Refs. [22,23]. A TLF is de�ned as a stochastic process {x} characterized by the
following probability density function:

T (x) ≡







0; x¿‘ ;

c1L(x); −‘6x6‘ ;
0; x¡− ‘ ;

(3)

where L(x) is the symmetrical L�evy stable distribution of index � (0¡�62) and scale

factor 
 (
¿0), c1 is a normalizing constant and ‘ is the cuto� length. In the following

theoretical considerations, for the sake of simplicity, we set 
=1.

The central limit theorem (CLT) is fundamental to statistical mechanics. It states

that when n→ ∞, the sum

zn ≡
n

∑

i=1

xi (4)

of n stochastic variables {x} that are statistically independent, identically distributed and
with a �nite variance, converges to a normal (Gaussian) stochastic process. Generally,

n ≈ 10 is su�cient to ensure convergence. In a dynamical system, Eq. (4) de�nes a

random walk if the variable x is the jump size performed after a time interval �t and
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n is the number of time intervals. Here, the “number of variables” n and the “time”

t= n�t can be interchanged everywhere.

For low values of n, P(zn = 0) takes a value very close to the one expected for a

L�evy stable process

P(zn=0) ' L(zn=0)=
�(1=�)

��n1=�
: (5)

For large values of n, P(zn=0) assumes the value predicted for a normal process,

P(zn=0) ' N (zn=0)=
1√

2��o(�; ‘)n1=2
; (6)

where �o(�; ‘) is the standard deviation of the TLF stochastic process {x}.
In the interval 16�¡2, the crossover between the two regimes has been determined

in Refs. [22,23] as

n× ≈ A‘� ; (7)

where A is a function of � (the explicit form is given in Refs. [22,23]). The description

of the convergence process does not depend crucially on the exact shape of the cut

o� [29] and some results of Refs. [22,23] have been con�rmed analytically for an

exponential cut o� in Ref. [30].

By performing numerical simulations, we veri�ed [22,23] that the probability of

return to the origin indicates with high accuracy the degree of convergence of the

process to one of the two asymptotic regimes.

The TLF model explains the empirical observations of (i) non-Gaussian scaling of

the PDFs of price changes for short times; (ii) L�evy shape of the central part of the

price change distributions for �t61000 trading minutes; (iii) gradual convergence to a

Gaussian process for long-time horizons (�t/1000 trading minutes). However, not all

the features observed in the S&P 500 dynamics are described by the TLF model. The

simplest version of the model cannot describe the short-time memory (of the order of

20min or less) observed in the empirical data [11,22,28] and also does not explain the

empirical observation of the time dependence of the parameter 
 which is 
uctuating

with burst of activity localized in speci�c months [9,28]. The 
 parameter is related to

what is called “volatility” in the economic literature [31].

4. ARCH process

ARCH stochastic models were introduced by Engle in 1982 [24]. They are stochastic

models with autoregressive conditional heteroscedasticity, namely zero mean, uncorre-

lated stochastic processes with non-constant variances conditional on the past. These

models have a very interesting property: they might be locally unstationary (for short-

time intervals) but globally stationary for well-de�ned ranges of the values of the

control parameters. They are widely known in the economic literature [32], but they
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are almost unknown to the physics community in spite of the fact that they might also

be useful in the description of physical problems.

The simplest ARCH model is the ARCH(1) model de�ned as a random variable Z

which is characterized at time t by a variance �2t given by

�2t = �0 + �1Z
2
t−1 ; (8)

where Zt−1 is a random variable selected from a set of random variables characterized

by a Gaussian distribution with zero mean and standard deviation �t−1. �0 and �1 are

the control parameters of the stochastic process.

The most general ARCH stochastic process, the ARCH(n) process is de�ned by

�2t = �0 + �1Z
2
t−1 + · · ·+ �nZ2t−n ; (9)

where �0; : : : ; �n are control parameters and Zt−1; : : : ; Zt−n are random variables drawn

from sets of random variables with Gaussian distributions of zero mean and stan-

dard deviations �t−1; : : : ; �t−n; respectively. In spite of the fact that �t is showing an

intermittent-like behavior, the overall process {Z} is stationary on a long-time scale
for a wide range of the control parameters. For example, it has been proven by Engle

that the ARCH(1) process has �nite variance for �1¡1, and �nite fourth moment for

3�21¡1 [24].

We simulate several ARCH(1) process to investigate the dynamics of the uncon-

ditional probability density function P(Zn�t) at di�erent time horizons n�t (Zn�t ≡
∑n

i=1 Zt−i). For each simulation we also study the scaling properties of the “proba-

bility of return to the origin” P(Zn�t =0) as a function of n�t. We select the values

of the control parameters to investigate ARCH(1) processes which are characterized

by the same unconditional variance observed in our empirical investigation of the

S&P500 dynamics (namely �2=2:57 × 10−3) and by di�erent values of the kurtosis
� of the {Z} process. For an ARCH(1) process the unconditional variance is given
by [24]

�2=
�0

1− �1
; (10)

while the kurtosis is [24]

�=
3(1− �21)
1− 3�21

: (11)

We focus our attention on three cases:

(1) �0=0:00231 and �1=0:1. In this case �
2=2:57×10−3 and �=3:06. The value

of � is very close to the one expected for a Gaussian stochastic process (�=3);

(2) �0=0:00112 and �1=0:564. With these values of the control parameters the

variance and the kurtosis are �2=2:57× 10−3 and �=43. This value of � is approxi-
mately the same value observed in the empirical analysis of the S&P500 changes for

time intervals �t=1min;

(3) �0=0:00109 and �1=0:575. Values of the control parameters implying the same

variance as above but a very high value for the kurtosis (�=247).
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By varying the values of the control parameters, it is, of course, possible to make the

shape of the PDF P(Z) more leptokurtic than a Gaussian distribution. The presence of a

given degree of leptokurtosis does not imply directly scaling properties of P(Zn�t) PDFs

strongly di�erent from the Gaussian scaling. By studying the “probability of return

to the origin”, we �nd that an approximate scaling behavior is present in ARCH(1)

stochastic processes for short times (n�t6100). We �nd that the values of the scaling

exponent best describing the above-cited time evolution of P(Zn�t =0) are 2.02, 1.93

and 1.85, respectively. These values are very close to the scaling exponent 2 observed

for a Gaussian stochastic process. Hence, an ARCH(1) process is not able to describe

the scaling properties empirically observed in the stochastic dynamics of the S&P500

for �t¡1000min (where the scaling exponent is 1.4).

5. GARCH process

ARCH(1) model is the simplest autoregressive model. In the following, we will con-

sider a less simple autoregressive model, the GARCH(1,1) model. The GARCH(1,1)

model is widely studied in the economic literature [32]. In 1986 generalized ARCH or

GARCH(p; q) models were proposed [25]. These models are more 
exible than ARCH

models in the lag structure. They are de�ned by the relation

�2t = �0 + �1Z
2
t−1 + · · ·+ �pZ2t−p + �1�2t−1 + · · ·+ �q�2t−q ; (12)

where the constants �0; : : : ; �p; �1; : : : ; �q are the control parameters of the GARCH

stochastic process. The simplest GARCH process, the GARCH(1,1), is often studied

in the modeling of prices of �nancial assets. GARCH(1,1) processes are unconditional

stationary with �nite variance and fourth moment if 1−�1−�1¿0 and 1−�21−2�1�1−
3�21¿0, respectively. Empirical analyses of stock market price data have shown (see,

for example, [33]) that a good choice of the parameter �1 is �1=0:9. Accordingly, we

set �1=0:9 in our simulations and we set the remaining control parameters �0 and �1
to the values �0=2:3×10−5 and �1=0:09105. With this choice of control parameters,
the unconditional variance [34]

�2=
�0

1− �1 − �1
(13)

of the process {Z} is approximately equal to the value observed in the S&P500 data.
The kurtosis [34]

�=
6�21

1− �21 − 2�1�1 − 3�21
+ 3 (14)

also assumes the value measured in the empirical analysis of the S&P500 data (�=43).

The simulated GARCH(1,1) process has an unconditional PDF P(Z�t) which mimics

very well the one observed in the S&P500 data with a time interval �t=1min [9].

We also study the probability of return to the origin to determine if scaling is observed
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for the PDFs of this process. We observe a scaling behavior for a wide range of time

(n�t¡10 000). The measured scaling exponent is 1.88, a value close to the Gaussian

scaling exponent and rather di�erent from the scaling exponent found in empirical data

(�=1:4).

In summary, the GARCH(1,1) process fails to properly describe the scaling proper-

ties of the S&P500 index detected for �t¡1000min. However, GARCH(1,1) is able

to give an accurate description of the �t=1min PDF using as control paremeters

�1=0:9 and obtaining the values of �0 and �1 from the values of �2 and � measured

from the empirical data.

6. Discussion

Our study shows that the problem of the complete stochastic characterization of

index (or price) dynamics in a �nancial market is an open question. For example, both

models considered here have strengths and limitations, and modi�cations of them are

needed to reach a more satisfactory agreement with the results of empirical analyses.

The problem of stochastic modeling of price dynamics comprises fundamental and

applied aspects. The fundamental aspects are related to the theoretical modeling of a

non-linear complex system evolving without known conservation laws in the presence

of quenched and external noise. The applied aspects are related to the role that the

exact shape of the PDF of stock returns and the time evolution of the variance of stock

returns (volatility in the economic literature [31]), plays in the pricing of derivative

�nancial products [35]. An extremely important activity performed everyday in �nancial

markets.

We think that the mixing of empirical analyses, modeling, simulations and com-

parison between empirical data and simulations constitutes a scienti�c procedure that

will allow us to eventually �nd the most accurate and “parsimonious” stochastic model

describing index (or price) dynamics.
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