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“B importante, quindi, che i principi della
meccanica quantistica abbiano poriato ¢
riconoscere (...) il caratiere statistico delle
leggi ultime dei processt elementari. Questa
conclusione ko reso sostanziale lonalogia fro
fisica e scienze sociali, tra le quali é risultata
wnidentitd di valore e di mefodo.”

~— — Ettore Majorana [1]

1. — Introduction

During the last thirty years, physicists have achieved important results in the fields
of phase transitions, statistical mechanies, nonlinear dynamics, disordered and
self-organized systems. New paradigms have been developed and a range of complex
systems have been carefully investigated and described. This description has sometime
also been performed in the presenee of noise or quenched randomuness. With this,
relatively recent, background the study of economics systems performed by physicists
may produce results relevant for both physics and economics,

Economic systems, strictly regulated and very frequently monitored, are ideal for a
study performed using tools and paradigms developed to describe physical systems.
Due to strict regulation, such systems suffer only slightly from various modifications of
the rules underlying the process during the time window of the investigation of the
process. Moreover, due to continuous monitoring the amount of data describing the
phenomenon is usually sufficient for a detailed statistical analysis.
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The time evolution of price of goods or assets (or indices) in finanecial markets
belong to the above category. Financial markets are almost continuously monitored
(high frequeney data with recording time interval as short as few seconds exist) and
the rules governing these institutions are rather stable.

In this lecture, we first discuss the empirical results obtained by analyzing the time
evolution of the Standard & Poor’s 500 index of the New York Stock Exchange with
high temporal resolution. We then introduce and discuss a simple stochastic model, the
truneated Lévy flight (TLF). This model is able to describe several of the major
features observed in empirical data. We also discuss observations that are not
explained by the TLF model We end by considering similarity and differences
between the price dynamics in a financial market and the dynamies of the velocity of a
3-dimensional turbulent fluid.

2. —Scaling and its breakdown in the Standard & Poor’s 500 index

Stock exehange time series have been modelled as stochastic processes since the
seminal study of Bachelier published at the beginning of this century [2]. Several
stochastic models have been proposed and tested in the economics[3-10] and
physics [11-15] literature. Alternative approaches based on the paradigm of chaotic
dynamics have been also proposed [16-18]. The most widely accepted moedels state that
the variations of share price is a random process. For the distribution of variations of
the logarithm of asset prices several proposal have been published. These include i) a
normal distribution [2], ii) a Lévy stable distribution {4], iii) leptokurtik distributions
generated by a mixture of normal distributions[7] and iv) ARCH/GARCH
models [8,9].

The proposals of: i) a normal distribufion [2], and ii) a Lévy stable distribution [4]
obey, respectively, the central-limit theorem [19] or a generalized version of it [20]. The
most obvious difference between these two stochastic processes involves the wings of
the distributions. Distinguishing between the two processes i) and ii) by comparing the
distribution wings can be quite difficult because data sets are unavoidably limited. To
maximize the amount of data to be analyzed in a limited time interval (limited to avoid
that underlying rules or deep economics changes could happen inside the investigated
period) we chose to investigate high-frequency data.

Data, kindly provided by the Chicago Merecantile Exchange, consist of all 1447514
records of the 8 & P 500 cash index recorded during the 6-year period 1/84-12/89. The
time intervals between successive records are not fixed: the average value between
successive records is close to 1min during 1984 and 1985 and close to 15s during
1986-1989. We define the trading time as a continuous time starting from the opening
of the day until the closing, and then continuing with the opening of the next trading
day. From this data base, we seleet the complete set of non-overlapping records
separated by a time interval Af =+ ¢Af (where ¢ i3 the tolerance, always less than
0.035).
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Fig. 1. - () Time evolution of the S & P 500 sampled with a time resolution Af = 1 h in the period i
January 1984-December 1989. (b) Hourly variations of the 8 & P 500 Index in the peried January b

1984-December 1989.
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We denote the value of the S & P 500 as y(¢). Figure 1a shows %() as a function of the
time in the period 1984-1989. The time interval between two successive points in thig
graph is At = 60 min. In fig. 1b the successive variations of the S & P Index

(1a) 2(£) = y(t) — y(t — A

are shown for the same time interval. The intermittent behavior observed in the time
evolution of index variations (fig. 1b) will be discussed in the following sections.

In our high-frequency analysis we investigate both price difference and logarithmic
difference (this last is the variable more commonly analyzed in economic studies). In
this lecture, we present results about price difference. Qur choice is motivated by the
fact we wish to avoid nonlinear transformations of the investigated stochastic variable
(in this case the logarithmic transformation). In fact it is known that nonlinear
transformations alter the conditional probabilities of the analyzed stochastic process.

However, in the high-frequency regime, the two stochastic processes 2(¢) (price
differences) and

(1&) (&) =In(y(t + Af)) — In(y(t))

logarithmic differences have similar statistical properties. This is due to the fact that in
the regime 2(¢) <y(?) , r(¢) =In[1 + 2(£)/y(t)] is bounded by

200 /y(t) 2(£)
Tv20m® -~ P 3m

and 2(t) is a “fast” variable, whereas y(t) is a “slow” variable being the integral of
2(t).

To quantitatively characterize the experimentally observed process, we
determine [15] the probability distribution P(z) of index variations for different values
of Af. We select At values that are logarithmically equally spaced ranging from 1 to
1000 min. The number of data in each set is decreasing from the maximum value of
493,545 (At =1 min) to the minimum value of 562 (At = 1000 min). As expected for a
random process, the distributions are roughly symmetrical and are spreading when Af
increases [15]. We also note that the distributions are leptokurtic, i.e. they have wings
larger than expected for a normal process. A determination of the parameters
characterizing the distributions is difficult if one uses methods that mainly investigate
the wings of distributions, especially because larger values of At imply a reduced
humber of data.

Therefore, we use a different approach; we study the «probability of return to the
origin» P(z=0) as a function of At. With this choice we investigate the point of each
probability distribution that is least affected by the noise introduced by the finiteness
of the experimental data set. Qur investigation of P(0) vs. Af in a log-log plot [15]
shows that the data are well fit by a straight line characterized by the slope —0.712 %
0.025. We observe a non-normal scaling behavior (slope = —0.5) in an interval of
trading time ranging from 1 to 1000 min.

@
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Fig. 2. - Comparison of the (a) At = 1 min, (b} At = 10 min, (¢) Af = 100 min, and (d) At = 1000 min
probability distributions with the symmetrical Lévy stable distributions (solid lines) of index & =
140 and scale factor y =y, Af (y, =0.00375). Approximately exponential deviations from the
Lévy stable profile are observed for At < 10 minutes ( (a) panel).
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Fig. 2 (continued).
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This empirical finding agrees with the theoretical model of a Lévy walk or Lévy
flight [21, 22]. In fact, if the central region of the distribution is well described by a
Lévy stable symmetrical distribution [23],

3) L.z, AD) = % Jexp[—yAtq“] cos (gz) dg,
0

of index a and scale factor ¥ at At = 1, then the probability of return is given by

T(1/a)

4 PO = Aty = ——— .
@ (0 =L, 8 =

By using the value —0.712 from the analysis of the probability of return, one obtains r
the index =140 = 0.05[15]. We also check if the scaling extends over the entire i !57
probability distribution as well as z=0. Figure2a-d show the P(Z) distributions ok
measured for Ai =1, 10, 100, and 1000, respectively. In each figure, we also show the I
Lévy stable distribution of index a = 1.4 (the value of the index was obtained from the HEEEEE
analysis of the probability of return to the origin) and y =y, At (where y, is the scale Tl
factor of the Af=1 min distribution obtained from the measured value of the Lo
probability of return to the origin of the Af=1 minute distribution under the i
assumption that a = 1.4 [15]). B

Al the distributions agree well with a Lévy stable distribution. The distributions
obtained with the highest temporal resolution (At < 10) (fig. 2a) show that in addition i
to the good agreement with the Lévy (non-Gaussian) profile observed for almost three :15 ;
orders of magnitude an approximately exponential fall-off is present. The clear
deviation of the tails of the distribution from the Lévy profile shows us that the
experimental tails are less fat than expected for a Lévy distribution. The deviation from
the Lévy distribution is not observable for At=10, due to the limited number of |
records used to obtain these distributions. '

The Lévy distribution has an infinite second moment (f « < 2)[23]. However, our
empirical finding of an exponential (or stretehed exponential) fall-off implies that the
second moment is finite, thereby resolving the question about the finiteness of the
variance of the price change distribution [24]. This conclusion might at first sight seem
to contradict our observation of Lévy scaling of the central part of the price difference
distribution over fully three orders of magnitude. However, there is no contradiction
since the above findings might be interpreted in terms of a simple stochastic process,
the truncated Lévy flight [25].

3. — The truncated Lévy flight

The truncated Lévy flight (TLF) has been introduced by Mantegna and Stanley in
ref. [25]. A TLF is defined as a stochastic process {#} characterized by the following
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probability density funetion

0, z>1,
(5) T)y=4 ol(x) -l=sx<|,
0, r< =1,
where
to
(6) L(-’JG)E% I exp[ —yg*]cos (gx) dg

0

is the symmetrical Lévy stable distribution of index « (0 < <2) and scale factor y
(y>0), ¢ is 2 normalizing constant and [ iz the cut-off length. For the sake of
simplicity, we set y = 1.

The central limit theorem (CLT) is fundamental to statistical mechanics. It states
that when %— o, the sum

(N : - W= 2

of n stochastic variables {x} that are statistically independent, identically distributed
and with a finite variance, converges to a normal (Gaussian) stochastic process.
Generally, » =10 is sufficient to ensure convergence. In a dynamical system, eq. (9)
defines a random walk if the variable x is the jump size performed after a time interval
At and # is the number of time infervals. In this lecture, the «number of varigbles» n
-and the «time» { = nAf can be interchanged everywhere.

We investigate the probability distribution P(z,) of the stochastic process of eq. (9)
when {z} is a TLF, i.e., a stochastic process with probability distribution given by
eq. (7). We monitor the degree of convergence of the TLF to the asymptotic normal
process by investigating the probability of return to the origin of the proecess P(z, = 0).
The reason for this choice is twofold, first this will give us a eoncrete parallel to what
we investigated in the previous section, and second the point 2, = 0 of the distribution
P(z) is the last point to converge to the asymptotic normal process for symmetrical
stochastic processes:

For low values of #, P(z, = 0) takes a value very close to the one expected for a Lévy
stable process

® Plz,=0)=L(z,=0)= F(l/ajz

man!

For large values of n, P(z, = 0) assumes the value predicted for a normal process,

1
9 Pz, =0) =N(z,=0) = ,
®) (@ ) (= ) V2ray(a, Hn'?

where o¢(a, I} is the standard deviation of the TLF stochastic process {x}.
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Fig. 3. — Probability of return to the origin of z,, as a function of » for ¢ =1. 5 and [ = 100. The
simulations (circles obtained with 5-10* realizations) are compared with the asymptotic Lévy
" regime (solid line) and the asymptotic Gaussian regime calculated for { = 100 (dotted lines).

In the interval 1< a <2, the crossover between the two regimes has been
determined in ref. [25] as

(10) Moy =Ala , ’

where

(11} A= T 2ai{a - 2) _
[ 20(1/a)I(1 + a) sin (wa/2)/2 — a)]'? ]

—.

wf The deseription of the convergence process is not erucially depending on the exact
% shape of the cut-off [26] and some rvesults of ref. [25] have been confirmed analytically
for an exponential eut-off in ref. [27].

By performing numerical simulations, it is possible to investigate the process of
convergence of the TLF to its asymptotic Gaussian process. To generate a Lévy stable
stochastic process of index a and scale factor y =1, we use the algorithm of ref. [28]. &4
Other algorithms can be found in the mathematical literature [29]. In fig( 3y we Show
the probability of return obtained by simulating the z, process when a=1.5 and [ =
100. We also show the asymptotic behaviors predicted by using eq. (7) (solid line) and
eq. (3) (dashed lines). We clearly see the crossover between the two regimes. For the
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Fig. 4. - Semilogarithmic scaled plot of the probability distributions of the TLF process
characterized by a = 1.5 and [ = 100 measured for » = 1, 10, 100 and 1000. For low values of % (r =
1, 10} the central part of the distributions is well described by the Lévy stable symmetrical profile
associated with a = 1.5 and y = 1 (solid line). For high values of # (% = 1000} the TLF process has
already reached the Gaussian regime and the distribution is essentially Gaussian (dotted line}.

€10

selected control parameters {a = 1.5 and { = 100) the crossover
260 (where the units are minutes). For the same control parafmeters we also investigate
the distribution P(z,) at different values of %n. In fig/# we show the distributions
obtained by simulating a TLF for = = 1, 10, 100, and 1000. The distributions are drawn
in scaled units

« 18 observed for 1, =

P
12) Tes)= o,
and
' _ oz
(13) ’ 2y = nua -

We use scaled units to be able to compare the shape of the distributions at very
different values of #. From fig. 4 it is clear that the TLF distribution is changing shape
as a function of %. For low values of = (n = 1, 10), we observe a good agreement with a
Lévy profile (solid curve in fig. 4), while for high values of n (n = 1000) the distribution
is well approximated by the asymptotic Gaussian profile (dotted eurve in fig. 4). By
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comparing the results of figs. 3 and 4 we note that the probability of return to the origin
indieates with high accuracy the degree of convergence of the process to one of the two
asymptotic regimes. For example, when » = 1 and 10 the probability of return is clearly
in the Lévy regime (fig.3) and the central part of the TLF distribution is well
described by a Lévy distribution (fig. 4). Conversely, for » =1000 the probability of
return to the origin is in the Gaussian regime (fig. 3), and the distribution is almost
coincident with the Gaussian distribution characterized by the appropriate standard
deviation (fig. 4).

To summarize, our study shows that by investigating the probability of return to the
origin of an originally quasi-stable non-normal stochastic process with finite variance a
clear erossover between Lévy and Gaussian regimes is observable. Hence a Lévy-like
probability distribution can be experimentally observed for a long (but finite} interval
of time (or number of variables) even in the presence of stochastic processes
characterized by a finite variance.

4. - Failures of the description of some aspects of the S&P 500 dynamics in terms
of the TLF model

The TLF is then compatible with the experimental observation of non-Gaussian
profile of the central part of price change distribution and with the finiteness of the
variance of this distribution. Can the TLF also describe entirely the intermittent
behavior observed in fig. 1b? To answer to this question we need to study the time
dependence of the parameters a and y characterizing the price change distribution. We
now discugs this point. '

To investigate if a time dependence is observed in the parameters a and y, we
analyze monthly subintervals of our 6-year data set. Specifically we measure for each of
the 72 months the probability of return to the origin within the time interval (At =

1, ..., 32 minutes). Then we determine the logarithm of the probability of return as a

funetion of the logarithm of At and we fit with a straight line the experimental points.
From the slope of the fitting we determine the index « of the distribution while from
the intercept of the straight line at At =1 we determine the scale factor y.

The results of our investigations are shown in figs. 5 and 6. Figure 5 shows the time
dependence of a. The index a is roughly constant (o =138 =0.14) and fluctuating
around its average value. The time dependence of y, shown in fig. 6, is much more
pronounced so that this behavior cannot be taken into account by the simple TLF
model; moreover, bursts of activity localized in specific months (such as April 87 and
October 87 are) are observed. .

The pronounced fluctuations of the parameter y reflects the known observation that
«volatility» is time-dependent in financial market [30]. The time dependence of y
(under the assumption that the distribution of P(y) is not power-law) should not affect
the stable description of the process because the sum of independent stochastic
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Fig. 5. — Time dependence of the index o of the S&P 500 changes distribution P(z) measured each
month of the investigated period. The results are obtained starting from the measured probability
of return to the origin of the stochastic process (see text). The index a is roughly constant o =
1.38 £ 0.14 over the investigated period.
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Fig. 6. - Time dependence of the scale factor y of the S&P 500 changes distribution £(2z) measured
each month of the investigated period. The results are obtained starting from the measured
probability of return to the origin of the stochastic process (see text). The parameter y (related to
the «volatility» of the market) is time dependent. Bursts of significantly higher y values are
observed in specific months as April 87, October 87 and subsequent months.
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Fig. 7. — One min variance of the variations 2(t) of the 3 & P 500 index measured in a one-hour
time interval. A strong intermittent behavior, analogous to the energy dissipation rate of
fally-developed turbulence (see fig. 1 of [37)) is observed. The large one-day drop on 19 October
1987 is evident (¢ = 6000 h).
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index measured in a one hour time interval. At low frequencies an 1/flike behavior is observed. i L
The peak observed at high frequency represents an intraday modulation of the variance. RN
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variables of the same index o but different scale factor y is still a stable variable
characterized by same index .

Another guestion concerns the time evolution of the variance of index changes. In
fig. 7 we show the variance of the 1 minute index changes of the S&P 500 measured
each market hour from January 1984 to December 1989. The profile of the index change
variance (related to what is called «volatility» in the economics literature) is strongly
intermittent. Moreover a Fourier analysis of this time behavior shows a speetral
density which may be roughly approximated by a {(1/f)-like behavior at Iower frequency
(fig. 8). The presence of the peak observed at high frequency in fig. 8 corresponds to
the known intraday variation of volatility observed in financial market [31].

The time dependence of y and of the variance of the index changes are not
explainable in terms of the TLF model of sect. 2. A generalization of this model is then
needed to also catch these important features observed in the dynamies of the S&P 500
index.

Of course, other models might also be considered to fully describe the stock market
data. For example, by using a rather different approach, an alternative possible
physieal phenomenon that it is worthwhile to investigate is turbulence [32). The goal is
to see if turbulence might be used as a paradigm to describe some of the phenomena
empirieally observed in the analysis of data of the S&P 500 dynamics. The rationale for
this choice is that it is known that intermittency of the dissipation rate and
non-Gaussian profile of the probability density function of velocity changes are
observed in the time evolution of a fully turbulent fluid moving in a 3-dimensional
space. This research has been performed independently by different groups [33-35).

5. — Anzlogies and differences with turbulence

To investigate analogies and differences between the quantitative measures of
fluctuations in an economic index and the fluctuations in velocity of a fluid in a fully
turbulent state we have systematically compared [34] the statistical properties of the
S&P 500 cash index with the statistical properties of the veloeity of turbulent air.

The turbulence data were kindly provided by Prof. K. R. Sreenivasan.
Measurements were made [36] in the atmospheric surface layer about 6 m above a
wheat canopy in the Connecticut Agricultural research station. The Taylor microscale
Reynolds number RE; was of the order of 1500. Velocity fluctuations were measured
using the standard hot-wire velocimeter operated in the constant temperature mode on
a DISA 55M01 anemometer. The file consists of 130000 velocity records »(t) digitized
and linearized before processing. The associated velocity differences is defined as
U (t) = 0(8) — 1(t — Af). .

The variance of index variations (fig. 7) shows a time dependence approximately
similar to the time evolution of a representative component of the rate of dissipation of
the kinetic energy £(t) namely ¢’ = (dw/dt)® (See for example fig. 1 of refence [37].)
Considerable experimental evidence that the rate of dissipation of fully developed
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turbulence is multifractal has been obtained [37,38], but a more detailed study of stock
exchange data is needed before drawing conclusions concerning the usefulness of a
multifractal model in the time evolution of the index variance.

Quantitative parallel analysis have been performed [34] by measuring the time
dependence of the standard deviations o z(Af) and o ;(Af) of P(Z) and P(U), we find
that: i) In the case of the S&P 500 index variations the time dependence of the standard
deviation, when Af = 15 minutes fits well the behavior

(14) o z(AL) « (A" |

The exponent is close to the typical value of 0.5 observed in random processes with
independent increments. ii) The velocity difference of the fully turbulent fluid shows a
time dependence of the standard deviation, fitting the behavior

(15) o y(AL) < (AL

which is observed in short-time anticorrelated random processes.

Equivalent conclusions are reached if we measure the spectral dengity of the time
series (f) and v(t). Economic data have the spectral density typical of a Brownian
motion, S(f) o f ~2(19], while for turbulence data the spectral density shows a wide
inertial range S(f) « f ~5® (see, e.g., [32]). " '

Another difference between the two processes is observed by investigating the
probability of return to the origin P(U = 0) as functions of the t{ime interval Af between
successive observations. The deviation from a Gaussian process is measured by
comparing P(U =0) with the value of Py(0). P,(0) is determined starting from the
measured values of o(At) by using the equation

1 _
(16} Py (0) VEo(aD
valid for a Gaussian process.

We observe[34] a clear difference between P(0) and Pg(0). The difference
observed shows that both PDFs have a non-Gaussian distribution, but the detailed
shape and the sealing properties of the two PDF's are different.

In a previous section we reported that a scaling compatible with a Lévy stable
process is observed for economic data and indeed a Lévy distribution reproduces quite
well the central part of the distribution of the S&P 500 index variations. A similar
scaling does nol exist for turbulence data over a wide time interval {34]. Moreover, by
using the measured values of P(0) and o, and hypothesizing a stretched exponential
PDF [36], we can describe quite well the experimental PDF of the velocity difference
with a stretched exponential distribution

um
17 P = —— [_I_.}

characterized by a (time dependent) stretching exponent 7 and a scale factor [.
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The parallel analysis of the statistical properties of an economic index and the
velocity of a turbulent fluid in a 3-dimensional space shows that the two processes are
quantitatively different. The absence of an inertial range associated with the economic
time series and the differences observed in the scaling properties of the «probability of
return» to the origin clearly rule out the possibility that a Navier-Stokes type of
equation might describe the dynamies of the index in a 3-dimensional space. However,
for d-dimensional turbulence with non-integral 4[39], it is possible to select a
non-integral dimension (=2. 05) at which the spectral density of the turbulent fluid
shows the same behavior observed in uncorrelated stochastic processes. Thus our
resuits cannot rule out the possibility that stock indices are controlled by a
Navier-Stokes type of equation in an abstract space of non-integral dimension.

6. — Discussion

In this lecture, we have tried to give a concrete example on how and why physicists
may consider economics systems (and in particular financial systems) as very
interesting «complex systems». We believe we have shown as the investigation of such
systems is not so exctie as it may appear at first sight.

It is true that, at the moment, it may seem to be an unusual challenge for a physicist
{o investigate economic systems by using tools and paradigms developed to describe
physical phenomena. There are certainly rational reasons for this view. IFor example,
physical and economie systems are, of course, rather different and economic systems
are usually quite “complex.” Moreover, the lack of conservation principles for economie
systems implies that economic systems are often in a non-equilibrium regime.

On the other hand, there are opposite arguments that favor the involvement of
physicists in the study of economic systems. The theoretical, numerical and
experimental tools allowing to investigate non-equilibrium disordered systems
{included non-ergodic systems) are steady increasing in this period. The interaction
between the two disciplines might then be crucial for the development of new
thecretical models and paradigms.
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