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In recent years there have been many measurements of the scaling-law equation of state
for different materials, and the “scaling function” so obtained has generally been fit by an
empirical equation involving the selection of several adjustable parameters. We propose a
method for calculating, directly from high-temperature series expansions, the function 4(x)
that determines the scaling-law equation of state H=M%%(x). Previously, k(x) has been calcu-
lated only for the S=3% Ising model, but the method is not generalizable to the case of the
Heisenberg model because it relies upon the use of low-temperature expansions as well, and
these are not known for the Heisenberg model. First we calculate i (x) for the Ising model
(bce, fee, and simple cubic lattices) in order to assess the utility and credibility of our
method. Our Ising model i (x) agrees well with the previous calculation that used both high-
and low-temperature expansions. Next we calculate k(x) in its entire region of definitionfor
the S=% Heisenberg model (fcc and bee lattices) and the S=» Heisenberg models (fcc lattice),
where S denotes the spin quantum number. The accuracy of our resulting expressions is
limited by the finite number of known terms in the corresponding high-temperature series
expansions, but it is generally of the order of a few percent. In Paper II the scaling functions
calculated here are compared with experiment and with the predictions of the universality
hypothesis.

I. INTRODUCTION AND OUTLINE OF PRESENT WORK duced temperature (7 - T,)/T,, and the magnetiza-
tion divided by its saturation value as 7— 0 or H
-, The critical-point exponents 6 and 3 are de-
fined by the asymptotic relations H~ M® when ¢=0,
and M~ (- ¢)® when H=0. The relation (1.1) is as-
sumed to be valid in the one-phase region close

to the critical point, which implies that the thermo-

The static scaling hypothesis'~* predicts the fol-
lowing form for the equation of state near the criti-
cal point:

H(e, M)=Mn(e/M'?) (M=0), (1.1)

where H, €, and M denote, respectively, the singu-
lar parts of the magnetic field divided by k7, /u
(u being the magnetic moment per spin), the re-

dynamic variables ¢ and M should be small quan-
tities. The form of the function k(x) is not speci-
fied by the static scaling hypothesis, although it
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has certain well-defined characteristics,* some of
which are outlined in Appendix A.

Experimental investigations on ferromagnetic
conductors, 7 insulators,®? semiconductors,® and
alloys*! confirmed the assumption of Eq. (1.1)
that the “scaled field” H/M?® appears to be some
function of only the “scaled temperature” ¢/M"/®,
We call this function k(x) the scaling function.

Given that Eq. (1.1) appears to be experimental-
ly verified, it is of interest to obtain a theoretical
expression for the scaling function #(x). The first
proposals® &2 for the function %(x) were strictly
phenomenological with numerous “adjustable pa-
rameters” chosen such as to afford a plausible fit
to the experimental data. Somewhat more theoret-
ically motivated were the parametric representa-
tions of the equation of state,'®!* and other refor-
mulations of the basic scaling hypothesis that have
recently been put forward.!5-!® However, these in-
troduce new unspecified functions and parameters,
and thus diminish possibilities of some kind of ap-
proximate calculation.

The first theoretical calculation of the scaling
function z(x) was carried out for the simplest of
model systems, the Ising model, by Gaunt and
Domb.!® Their calculation utilized information
provided by high-temperature and low-temperature
series expansions. Since for most other model
Hamiltonians (e.g., the Heisenberg model), low-
temperature series are impractical to obtain, any
attempt to furnish a straightforward generalization
of the Gaunt-Domb technique would appear to be
futile.

It is the purpose of this work to present a method
for calculation of the scaling function %(x) which
requires the knowledge of high-temperature expan-
sions only. In Sec. II the appropriate formulation
of the static scaling hypothesis is outlined, and for
the sake of illustration and assessment of our meth-
od, a calculation for the Ising model is presented.
In Secs. Il and IV we proceed to apply our method
to the S=3 and S= « Heisenberg ferromagnets,
respectively. In Paper 11,%° we discuss the depen-
dence of #(x) upon the form of the model Hamilto-
nian, and we examine the question of whether the
scaling function depends upon lattice structure and
spin quantum number (according to the universality
hypothesis it should not). We also compare in II
the calculated scaling functions with experimental
data on insulating ferromagnets (CrBr3, EuO) and
other materials.

II. METHOD OF CALCULATING SCALING FUNCTIONS
FROM HIGH-TEMPERATURE EXPANSIONS AND
APPLICATION TO ISING MODEL

A. Method of Calculating Scaling Functions

Our method of calculating the scaling function
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h(x) was discovered after consideration of a recent
formulation of the scaling hypothesis that involves
the concept of generalized homogeneous func-
tions.?'~2® By definition, a function f(x, y) is a
generalized homogeneous function if there exist
two numbers a, b, such that for all positive values
of A, the relation

F(A%x, X°y)=¥flx, y) (2.1)

is satisfied, where the exponent p is called the
“scaling power” of the function f(x, y) (one can
choose p =1 by redefining a— a/p and b-b/p). The
reader can verify by inspection that the scaling
hypothesis in the form of Eq. (1.1) implies that
H(e, M) is a generalized homogeneous function in
the critical region, since there exist two numbers,
a[=1/8(6 +1)] and b[=1/(5 +1)], such that for all
positive A\, one has

H()\ll B(ﬁ+1)€’ )\1/(5 + I)M): )\6/(6+1)H(€, M) . (2‘ 2)

Conversely, if we assume that H(e, M) is a gen-
eralized homogeneous function, then we can derive
Eq. (1.1) by setting x=(1/M)°*! in (2. 2) with the
result

H(e, M)/ M° = H(e/ MY %, 1) = h(e/ MM ") .

Therefore the scaling function %(x) is seen by
(2. 3) to be identical to the function H(x, 1).

However, if H(e, M) is not the singular part of
the magnetic field, then the last result is not a
complete truth since the arguments of H(e/M'/%, 1)
are not always small quantities, as they should
be in order that values of H are germane to the
critical region. That is, if H=Hg,o+ Hyonsing, then
by definition H= H,,, near the critical point.
Hence, if we stay very near the critical point we
can simply consider H, but if we do not manage to
stay near the critical point we must “sort out”
Hgyng and H,on o in order to consider Hgy,, only.
Since there is no way of doing this sorting out, we
must choose arguments of H such that we are al-
ways near the critical point, i.e., such that al-
ways H= Hyyp,-

To overcome this difficulty, we can return to Eq.
(2.2) and set A= (c/M)**!, where the number ¢ may
(in principle at least) be chosen arbitrarily small.
With this choice, Eq. (2.3) is replaced by

P H(e, M)/M° = H(ec* B/ M8, ¢) = e/ MY B)

(2.4)
and the scaling function k(x) is now determined by
the equation

h(x)= H(xc 8, ¢)/c® . (2.5)

That is, if we knew the function H(e, M), then h(x)
could be obtained by replacing the variables € and
M by xc*’? and ¢, respectively.

Unfortunately, for all but the most unrealistic

(2.3)
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model Hamiltonians (such as the one-dimensional
Ising model and the Curie-Weiss model or “mean-
field theory”), all that we know about the function
H(e, M) is a finite number of terms in a series
expansion. Hence in order to obtain a reliable esti-
mate for H(e, M) we must extrapolate the regular
behavior of these terms using, e.g., the technique
of Padé approximants (PA’s).2* 25

In order to demonstrate the utility of our cal-
culational method, we begin with a calculation of
the scaling function for the Ising model.

B. Calculation of Scaling Function for Ising Model

As mentioned in Sec. I, Gaunt and Domb!® have
calculated the scaling function %(x) for the two- and
three-dimensional (d=2, 3) Ising models utilizing both
high- and low-temperature series expansions. In
this section we obtain an expression for i(x) that
requires for its calculation only high-temperature
series expansions. The appropriate high-tempera-
ture expansions have been obtained by Gaunt and
Baker?®® in connection with their calculation of
M(T, H=0), the spontaneous magnetization or
“phase boundary.” These expansions have the form

H(e, M)= (e +1)tanh [M7(M, v)] , (2.6)
where
(M, v)= i b, (MW" = i b, (M . 2.7

Here ,(M) are polynomials in A2 of degree n,
vEtanh(J/kT)Etanh[Kc/(e+1)] , (2.8)

K.=J/kT,, k is the Boltzmann constant, and J is
the exchange parameter in the Ising Hamiltonian
(7>0). Only a limited number (L) of polynomials
¥,(M) could be calculated,?® the number L being
equal to 8, 12, and 12 for the fcc, bce, and simple
cubic (sc) lattices, respectively. Hence Eq. (2.7)
truncated at order L is not expected to describe the
behavior of H(e, M) in the critical region unless it
can be approximated by some closed-form expres-
sion that represents an extrapolation beyond order
L.
According to Eq. (2.5), to obtain the scaling
function %(x) we must set M=c in Eqs. (2.6) and
(2.7), where c is a small positive constant. For-
mally, this procedure is similar to a problem en-
countered by Gaunt and Baker in a different con-
text,%® and we shall therefore follow their approach
here. Specifically, we shall assume that the func-
tion 7(M=c¢, v) in (2.7) vanishes at the phase bound-
ary with the power-law form

L

(e, v)2 23 P(' = vy - v)f(0) ,

n=0

(2.9)

where vy, g, and f(v) are to be estimated by the
method of PA’s. Thus one first must find v, and ¢
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by considering PA’s to (d/dv)[lnr(c, v)], and after-
wards f(v) can be determined by studying the prod-
uct (vg—2)"*7(c, v).

Gaunt and Baker?® noted that the series (2.9)
was not sufficiently lengthy for reliable estimates
for vy and ¢ to be obtained unless ¢ was inside the
interval 0.6<¢<0.975. Since the smaller the val-
ue of ¢, the larger the region of x where the rela~
tion (2.5) is satisfied, we shall choose ¢=0. 6 for
our further analysis. For the Ising-model analy-
sis we shall consider first the bcc lattice. Table
I contains poles and residues of the PA’s to (d/dv)
X [In7(0. 6, v)]; these correspond, respectively, to
the numbers v, and g of Eq. (2.9). We estimate?”
from Table I that v;=0.1658 and ¢=1.076. Then
we form PA’s to the function f(v) of Eq. (2.9);
these PA’s were found to be consistent up to five
decimal places. Wetherefore, almost arbitrarily,
chose the [4,4] PA, and Eq. (2.9) becomes

v 1,078
7(0.6, v) —(1 —m)

1 —4. 5660 +5.4060% + 5. 8420° + 0. 39070*
1-5.9360 +17. 80302 - 37.0980° + 25. 8112* °
(2.10)
If we now combine Eqs. (2.10), (2.9), and (2.6),
we can obtain from (2.5) an approximate expres-
sion for A(x) that depends upon the exponents 3
and §. If we use the generally accepted estimates
B=15 and =5, then we finally obtain for %(x) the
small-x expression

h(x)= hy(x)=[(0.195x +1)/0. 07776] tanh™* [0. 67, v)] ,
(2.11a)

where 7(0.6, ) is given by (2.10) and o

=tanh[0. 15743/(0.195x +1)].

It is important to emphasize that the expression
of Eq. (2.11a) for &,(x) is not expected to be ac-
curate for very large values of x. For example,
if x=1.6 and B=75, then the first argument of
H(e, M) in Eq. (2.5) is given by xc'/?=0.312, which
is hardly of the order of ¢ in the critical region.
Hence we must expect (2.11a) to fail for values of
« larger than about unity. This is the reason we
use subscript 1 in Eq. (2.11a), reserving the nota-
tion 7,(x) for an expression for large «x.

Since x=¢/M? [ef. Eq. (1.1)], positive x cor-
responds to T> T, and it turns out that we can also
calculate 7(x) for large x directly from high-tem-
perature expansions. The method has, in fact,
been carefully explained by Gaunt and Domb?®® (cf.
also Sec. IIC). Thus?® we find the following ex-
pression for i(x), valid at large x:

» 1.0007 +1. 01892 + 0. 4045x™* +0. 1696x%

1+0.4388x°2° ’
(2.11b)

where y=1.25 and B=i5§. This expression differs

ny(x) =
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only very slightly from the fifth expression of Ref.
19, and the difference is probably caused by the
rounding off of results at different stages of the
calculation.

At xz 1, the large-x expression of Eq. (2.11b)
for h,(x) overlaps the small-x expression of Eq.
(2.11a) for n,(x) (within an accuracy of about 1%).
Hence our order-of-magnitude estimate presented
above for the domain of validity of 4,(x) was indeed
fairly reasonable.

C. Comparison with Results of Gaunt and Domb

We have shown above that, using high-tempera-
ture expansions exclusively, we can obtain two
expressions that represent the scaling function of
the Ising model in its whole region of definition:
h(x)=ny(x) for x<1, while h(x)=h,(x) for x21
[Egs. (2.11a) and (2.11b), respectively]. On the
other hand, Gaunt and Domb'® derived five differ-
ent expressions for five different domains of x.
Their first four expressions were obtained using
“low-temperature” expansions, 2 and they cover the
same domain of x as does Eq. (2.11a) for #,(x),
while their fifth expression for large x coincides
with our Eq. (2.11D) for 7,(x). Therefore we make
comparison only between our 7,(x) and the four
“low-temperature” expressions of Ref. 19.

A few words of caution should be spoken in ad-
vance. First, k (x) can be as accurate as the de-
termination of the phase boundary from the series
(2.8) (cf. Fig. 1). This determination is limited
in accuracy owing to the fact that high-temperature
expansions, at least those of finite length as in

TABLE 1. Poles and residues of the PA’s to (d/dv)[InT(0.6,
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FIG. 1. Log-log plot of the phase boundary of the

Ising model for the bec lattice. This curve, similar to
Fig. 5 of Ref. 26, is based upon calculations in Ref. 29
using exact low-temperature series expansions. The hori-
zontal lines represent the confidence limits that follow
from high-temperature-expansion calculations of the cor-
responding values of v, (Ref. 26). The arrow indicates
our estimation of vy, for M=0.6, obtained from Table I.

(2.17), are not the best source of information near
the phase boundary. We have used no specific
values of critical-point exponents or critical am-
plitudes in calculating #4,(x). However, these criti-
cal parameters were utilized by Gaunt and Domb

in their construction of k(x), thereby fixing certain
values of %(x) in advance. For instance, if we
combine (2. 8) and (2. 9) with the independent esti-

v)] [see Eq. (2.9)]. N andD, respectively, denote the

order of the numerator and denominator of the PA. At each PA the upper number corresponds to »,, while the number

in brackets approximates g of Eq. (2.9). Here CZ (“competing
v) has two zeros, one below T, and the other above T,

zero”) means that the PA erroneously predicts that r(0. 6,

2 3 4 5 6 7 8 9
) 0.1847 0.1601 0.1638 0.1692 0.1665 oz 0.1658 0.1658
(1.6788) (0. 8770) (1.0052) (1.3012)  (1.1215) (1.0767) (1.0804)
s 0.1669 0.1662 0.1662 0.1661 0.1661 0.1659 0.1658
(1.1288) (1.1016) (1.1015) (1.0973)  (1.0954) (1.0868) (1.0816)
. 0.1649 0.1662 0.1662 0.1660 oz 0.1658
(1.0330) (1.1014) (1.1016) (1.0939) (1.0758)
0.1662 0.1661 0.1660
5 (1.1033) (1.0973) (1.0911) ¢z ¢z
0.1660
6 cz . 0930) cz cz
0.1661 0.1658
7 (1.0949) (1.0688) cz
8 cz cz
. 0.1658

(1.0794)
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TABLE II. Values of 2(0) of the Ising model (the bce
lattice) obtained by using different PA’s (different rows
of the table) to the function f(»), Eq. (2.9), and by choos-
ing different estimates (different columns) of the expo-
nent q.

D
Padé A B c q=1.076
IN,D] (g=1.076) (¢=1.08) (g=1) 6=4.8
13, 3] 0.3812 0.3807  0.3911 0.3442
[4,3] 0.3819 0.3812  0.3906 0.3448
5,3] 0.3819 0.3812  0.3889 0.3448
[6, 3] 0.3819 0.3813  0.3874 0.3448
(3,4] 0.3819 0.3812  0.3906 0.3448
[4,4] 0.3819 0.3813  0.3914 0.3448
[5,4] 0.3819 0.3813  0.3769 0.3448
[6,4] 0.3819 0.3811  0.3856 0.3448
[3,5] 0.3819 0.3813  0.3899 0.3448
i4,5) 0.3819 0.3814  0.3812 0.3448
[5,5] 0.3819 0.3812  0.3868 0.3449
[6, 5] 0.3830 0.3820  0.3842 0.3448
3, 6] 0.3819 0.3813  0.3888 0.3448
4, 6] 0.3819 0.3812  0.3863 0.3448
[5,6] 0.3819 0.3801 0.3846 0.3448
6, 6] 0.3819 0.3817  0.3830 0.3448

mate®®3 B=1,5056 [where B is defined by M

= B(- ¢)’] and M=0.6, then we find v,=0.16466.
Our conclusion from Table I was vy=0.1658, a
value 0.69% larger. The effect of this discrepancy
is that the Gaunt-Domb function 4(x) vanishes at
x==x9==B#=-0.27, whereas Table I implies
that 7(x)=0 when x=-0. 30.

A second cautionary note concerns the effect of
different estimates of ¢ upon the result in Eq.
(2.11a). Table I provides values of 7,(0) obtained
from expressions fully analogous to Eq. (2.11a),
only constructed with different PA’s to the function
f() of Eq. (2.9). Column A is constructed using
q=1.076, column B uses ¢=1.08, while column C
uses the Gaunt and Baker prediction g=1.26%"

The reader will note in column A the rather
striking consistency between different PA’s [as is
typical for other values of ,(x) as well]. It is
noticeable from column B that this consistency is
weakened when one takes a sort of average esti-
mate, ¢=1.,08, from Table I for q. From column
C we see that the consistency gets still worse when
one takes ¢=1 (of course, this lack of consistency
does not disprove the Gaunt-Baker conjecture that
q= 1).26, 27

More significant, perhaps, is that all these val-
ues for 7,(0) are about 10% different from the value
1(0)=0. 345 that was estimated® as the amplitude
of the critical isotherm [H=2(0)M°® from Eq.

(1.1)] and was utilized in the construction of the
Gaunt-Domb?® scaling function. That this 10%
discrepancy is due to the shortness of the high-
temperature expansions (2. 9) is supported by the
following argument. The critical-point exponent

6 is estimated by conventional methods (involving
the use of “high-field”? series expansions) to
have a value exceedingly close to 5.3 However,
when Gaunt and Baker?® decided to test their high-
temperature expansion methods by estimating 6,
they were able to come up with the much Iess pre-
cise estimate §=5.0+0.2. Presumably if con-
siderably more terms were known in the basic
high-temperature series, the confidence limits
placed on this estimate could be reduced. Corre-
spondingly, we decided to calculate %(x) using a
range of values of 6 between 4.8 and 5.2. When
we did this, we found that the agreement with the
Gaunt-Domb %(x) is considerably improved if we
allow 6 to decrease below 5. For example, we
show in column D of Table II the values of %,(0)for
the choice § =4.8, and we note that they agree with
the value k(0)=0.345.'%% Thus we conclude that
our method for calculating #,(x) is no less accurate
than the analogous method for determining the phase
boundary.?8

Considerably better agreement with the Gaunt-
Domb scaling function is obtained if we compare
not plots of (x) vs x but rather follow Refs. 19 and
12 and plot #(x)/(0) vs (x+xy)/x,. There are many
reasons for this kind of plotting. First, any com-
parison with experimental data is most plausibly
achieved with such “normalized” plots (see Paper
II). Second, for the purposes of such a normalized
plot, we do not need knowledge of the numerical val-
ues of the critical-point exponents g and 6. This
is because of our method of calculating #,(x) [cf.
Eq. (2.5)]; B becomes irrelevant because of the
identity

(xct® + xyc B)/ et B = (x + x0)/ %g (2.12)
and 6 becomes irrelevant because ¢® would be can-
celed by taking the ratio k,(x)/%,(0). In this way
errors implied by possibly inaccurate estimates of
B and § are eliminated.

Table III presents this kind of comparison be-
tween normalized values of h,(x) using expression
(2.11a) and the four corresponding “low-tempera-
ture” expressions of Gaunt and Domb.!° It is evi-
dent that the discrepancy is much smaller than 10%,
and moreover it appears in regions of x where
Gaunt and Domb claimed only about 10% accuracy for
their own calculation. Therefore we feel that our
results (and theirs) for the normalized function
hy(x)/h,(0) are accurate to, at worst, 10%, and
might be considerably better.

D. Calculation of Ising-Model Scaling Function for fcc and sc
Lattices

We have also calculated expressions for k,(x) for
the fcc and sc lattices, and these are given in
Appendix B.
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TABLE III. Comparison of the normalized scaling
function k(x)/k(0) as it is calculated in this work by using
the high~temperative series expansion (see column 2)
with the results for the same function obtained in Ref. 19
by using low-tempervatuve Ref. 29) series expansions
(see column 3).

(x+x0)/xo h1(x)/h1(0) h{x)/n(0)
0.25 0.224 0.231
0.50 0.473 0.471
0.75 0.733 0.733
1.25 1.27 1.27
1.50 1.55 1.55
1.75 1.83 1.83
2.00 2.12 2,11
2.25 2.41 2.40
2.50 2.70 2.69
2.75 3.00 2.99
3.00 3.29 3.28
3.25 3.59 3.59
3.50 3.89 3.89
3.75 4.20 4.20
4.00 4.50 4.52
4,25 4.81 4.84
4.50 5.11 5.16

For both lattices the precision in determining
the phase boundary (i.e., in determining v, and q)
was worse than for the becc lattice. In the case
of the fcc lattice, this is because fewer terms in
the series (2.7) were known (L =8); in the case
of the sc lattice, the 12 known terms were less
convergent than in the bcc case. We used c=0.64
for the fcc calculation and ¢=0.70 for the sc cal-
culation.

One might get the impression that the constant
¢ is rather arbitrarily chosen. The fcc and bee
lattices, however, have similar phase boundaries,
so that the value M=0.64 for the fcc lattice lies
as much in the critical region as does the value M
=0. 60 for the bcc lattice. Moreover, the sc lattice
has a steeper phase boundary, and it turns out that
M=0."70 for the sc lattice corresponds to about
the same reduced temperature as does M =0. 60 for
the bece lattice.?® 30

A detailed consideration of the possible depen-
dence of the scaling function on lattice structure
is presented in Paper II.

III. CALCULATION OF SCALING FUNCTION FOR § =;—
HEISENBERG MODEL

In this section we utilize the technique illustrated
in Sec. II for the Ising model to calculate for the
first time the scaling function of the S=3% Heisen-
berg model, with Hamiltonian

N
=3I D G GO kT HD of
(i3 i=1

(3.1)

Here ¢’ and ¢’ are the Pauli spin operators at

the nearest-neighbor pair of sites (4,7 ), H is the
external magnetic field divided by K7,/u (to make
it dimensionless), and oy is the component of ¢
parallel to the field H.

A. Calculation of #, (x) for Small Values of x

Baker, Eve, and Rushbrooke® have calculated
high-temperature series expansions for the Hamil-
tonian (3. 1) that are analogous to the Ising-model
series of Eq. (2.7):

H(e, M)=(e+1)tanh™ [Mg(M, z)] , (3.2)
where
o L
gM, 2)=20 (2" /n)P,(M)2"= 27 (2/n )P, (M)Z" .
n=0 n=0
(3.3)

Here P,(M) are polynomials in M2 of degree n,
z2=K,/(e+1), (3.4)

K,=J/kT,, and L=8 for all three lattices (fcc,
bce, and sc).

Again, we assume that the one-phase region is
analytic (see Refs. 33 and 34), and we assume
that, in analogy with (2. 9), the function g(M, z) for
fixed M= ¢ vanishes at the phase boundary as

L
gle, 2)= 1423 (2"/n)P,(c)2" 2 (29— 2)'0(2) .
n=1 (3‘ 5)

We first consider the fcc lattice. The PA analy-
sis of (d/dz) Ing(c, z) provides relatively reliable
results for z, and ¢, providing c is in the range
0.4<¢<0.85.% For the reasons discussed in
Sec. II, we will choose the smallest possible value,
¢=0.4. The PA’s for z, and g are somewhat less
consistent (cf. Table IV) than in the Ising case
(Table I). Our estimates are essentially the same
as those of Ref. 32, 24=0.25526 and ¢=1.29.

The PA’s to the function ¢(z) of Eq. (3.5) were
next formed. They were found to be quite consis-
tent, and we chose the [3, 3] approximant as repre-
sentative. The corresponding closed-form expres-
sion for g(0.4, z) is, from (3. 5),

2 )1.29
£0-4,9= (1~ 5585

1+3.789z+1.6712% +3.6122°
1+3.7752+4.6222% +14. 39723 *
(3.6)
Substituting Eq. (3.86) into Eq. (3.2) and using
Eq. (2.5), we obtain the following expression for
the scaling function %z(x) of the S=4 Heisenberg
model:

(0.4) Bx+1

() =y

tanh™1[0.4g(0. 4, 2)], (3.7a)

where
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TABLE IV. Poles (the upper numbers) and residues (the numbers in brackets) which correspond to z, and ¢, respec-
tively, of PA’s to (d/dz)[lng (0.4, z)] [cf. Eq. (3.5)]. c.c. denotes that the corresponding prediction is a pair of complex

conjugates.
RN 1 2 3 4 5 6
1 0.33967 0.27670 0.22846 0.250 84 0.26554 0.260 15
2.977) (1.609) 0.748) (1.193) (1.679) (1.455)
9 0.29396 0.18033 0.24343 oo 0.26158
(2.016) (1.894) (1.007) e (1.518)
3 0.25496 0.25518 0.25601 0.257 57
(1.281) (1.286) (1.307) (1.356)
4 0.25519 0.254 88 0.25394
(1.286) (1.280) (1.270)
5 0.25599 0.253 97
(1.306) (1.271)
6 0.25782
(1.367)

2=0.2492/[(0. 4)!/8x +1] . (3.7b)

Again we must emphasize that Eq. (3.7a) is valid
for small x.2” In order to obtain an expression for
large x we use the Gaunt-Domb method which is
quite sensitive to the estimated values of the criti-
cal-point exponents y and A. Here y denotes the
critical-point exponent that describes the diver-
gence of the zero-field isothermal susceptibility
(xp~ €7"), while the “gap exponent” A describes
the divergences of the higher-order derivatives of
the magnetization with respect to field H, when
H=0and T-~ T;. Thus in our construction of x(x)
two separate groups of exponents are necessary:
We need g and 6 to get 7, (x) for small x and we
need y and A to get h,(x) for large x.

However, if we accept the scaling hypothesis,
we cannot choose these four exponents indepen-
dently: As noted above, they are related by the

scaling relations!~—%2
A=B+y, (8.8a)
Bo=B+7v. (3.8b)

Therefore, in writing Eqs. (3.7a) and (3.7b), we
have not expressed the values of (0. 4)1/8 gand
(0.4), since there is now an alternative to choose
either 8=0.35 and §=5 (as in Ref. 32), or to take
B=0.385 and § =4.71, which are obtained by com-
bining earlier but presumably more accurate esti-
mates®® y=1.43 and 2A = 3. 63 together with the
scaling relations (3. 8a) and (3.8b).3® For reasons
to be explained later, we shall choose y=1.43, 2A
=3.63, 8=0.385, and 6 =4.71, a set of exponents
that satisfies the scaling relations.%’

B. Asymptotic Behavior of Derivatives of Magnetization with
Respect to Field

One can show* (cf. Appendix A) that if the scaling
hypothesis, Eq. (1.1), is to be valid near the criti-

cal isochore (M=0, T>T,), then it follows from
usual thermodynamic assumptions that the function
h(x) should have the large-x series expansion

h(x)=21 nnxﬁ(hl- 2n) , (3.9)
S on=
valid when x exceeds some finite constant R (i.e.,
R<x< ),

On the other hand, Domb and Hunter? obtained
the same result, Eq. (3.9), following a different
method, and their calculation provided a clue for
the actual calculation of the coefficients 7,. One
first assumes that successive higher-order field
derivatives of the magnetization, evaluated at H
=0, have singularities as 7'~ T, that are related
to one another by a constant “gap” index,

2r-1
(%)momz,_ls"-z"“ (r=1,2,...).
(3.10)

The “gap exponent” A defined in (3.10) is related
to the exponents 8, ¥, and § by Egs. (3.8a) and
(3.8b); note that (3.10) reduces for »=1 to the zero-
field isothermal susceptibility x,, so that the
“amplitude” A, is simply the susceptibility ampli-
tude.

If one now substitutes the asymptotic behavior,
Eq. (3.10), into the Taylor series expansion of
M(e, H) about H=0,

= 82"1M> g -1
M(i,H)_rEn(aHzr'l peo r=1)1 ~ (8.11)

then one can obtain a simple relation between the
coefficients 7, in (3.9) and the coefficients A,, ,

in (3.10) by reverting the series (3.11) (see Appen-
dix C for the details of this procedure). There-
fore, it is necessary to know the amplitudes A,, 4
in order to obtain the coefficients 7, in the large-
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x expansion of k(x) [Eq. (3.9)].

The only amplitude A,, ;, before evaluated® for
the S=  Heisenberg model is the susceptibility am-
plitude A;. Therefore we calculated the higher-
order amplitudes from the series expansion®

)

Mle, H)= 22 Fy(€)(e+1)-?

n=1

H?tl-l

2n-1)1" (8.12)

where
© K 4
F - [loer +
2 (€) Eaa,,,(m)

and the coefficients a,, ; are derived in Ref. 35.
From (3.12) it follows that

(i

T
Equations (3.13) and (3. 14) imply that the ampli-

tude A,,_; of Eq. (3.10) can be obtained in either

of two fashions: (i) by estimating the [— = limit

of the sequence

A= 1) it

or (ii) by evaluating the residues of the PA’s to the
function

[Fz,.(i)]l/ [r+2(r 'I)A]E <A2r } l)l/[;w 2(r -l)A]€-1 .
(3.16)

Methods (i) and (ii) are the conventional techniques
used for obtaining amplitudes.®®

(3.13)

) =(e+12"1F, (¢) . (3.14)
H=0

y=2(r-1)a

p ) (8.15)

Only series of the form of (3.13) with »=1, 2,

3, and 4 are known,*® and therefore only the four
amplitudes A;, As, As, and A, can be estimated.
As is clear from Eqs. (3.15) and (3.16), the values
of the amplitudes A,, _; depend strongly upon the
estimates used for y and A. Following the consid-
erations discussed at the end of Sec. III A, we shall
try the two choices (y=1.40, 2A=3.50) and (y
=1.43, 2A=3.63).

In Figs. 2(a)-2(d) we have plotted against 1/1
for =1, 2, 3, and 4, respectively, the known
number of terms in the sequence A, , defined in
Eq. (3.15). For each value of 7, plots for both sets
of exponents (y, A) are shown; however, only one
value for K, was used—the estimate K_,=0.2492 of
Ref. 35.

Similarly, in Tables V (a)-V (d) we show the
PA’s to the function of Eq. (3.16) for »=1, 2, 3,
and 4, respectively, and again we show the pre-
dictions for each of the two possible sets of ex-
ponents (y, A).

We see from Fig. 2 that the set y=1.43, 2a
=3. 63 causes less curvature in the sequences
AP, than the other set. We also see from Table
V that the PA’s are somewhat more consistent
when we use this set of the critical-point exponents.
Hence, the amplitudes A,,_; can be determined
more reliably for y=1.43, 2A=3.63 than for y
=1.40, 2A=3.50. In fact, for the first set we
find A, =1.072+0.002, Az=—4.052):33, and A;
=130.0:%9.
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TABLE V. Residues of PA’s to the functions Fy,() of Eq. (3.14). The amplitudes Ay, A3, A; and A, follow, respec-

tively, from the (a), (), (c), and (d) parts of the Table, by using the formula A,, ; =)\ (residue/K,

)Wl r-1)A
[

, wWhere A is

1, —2, 16, and 272, correspondingly. Two possible choices of the critical-point exponents, (y=1.43, 2A=3.63) and
(y=1.40, 2A=3.50), are considered (cf. text). The dots appear at those places where the corresponding Padé pre-

dictions are unrealistic.

IXN 2 3 4 5 6 7 D\N 2 3 4 5 6 7
(a) b)
y=1.43 y=1.43, 2A=3.63
2 0.274 0.272 0.249 0.259 0.259 0,266 2 0.302 0.306 0,283 0.426 0.282
3 0.265 0.261 0.261 0.262 0.262 3 0.307 0.297 0.285 0.282
4 0.262 0.261 0.261 0.262 4 0.273 0.287 0.290
5 0.261 0.262 0.262 5 0.285 0.292
6 0.262 0.262 6 0.281
7 0.262
vy=1.40 y=1.40, 2A=3.50
2 0.279 0.276 0.258 0.267 0.267 0.281 2 0.310 0.310 0.296 0.294
3 0.270 0.268 0.269 0,271 0.271 3 0.312 0.302 0,299 0.293
4 0.268 0.269 0.267 0.272 4 0.288 0.299 0.301
5 0.269 0.267 0.271 5 0.298 0.306
6 0.271 0.272 6 0.289
7 0.272
(c) (@)
y=1.43, 2A=3.63 y=1.43, 2A=3.63
2 0.350 0.295 0.379 0.215 0.237 2 0.497 (R eee
3 0.314 0.328 0.318 0.318 3 0.296 0.373 0.291 0.505
4 0.332 0.321 0.318 4 0.442 0.326 0.348
5 0.312 0.318 5 0.258 0.356
6 0.320 6
y=1.40, 2A=3.50 y=1.40, 2A=3.50
2 0.352 0.305 0.390 0.231 0.726 2 0.491 ce s oo
3 0.319 0.335 0.329 0.332 3 0.295 0.376 0.303 0.513
4 0.343 0.330 0.331 4 0.466 0.331 0.356
5 0.323 0.331 5 0.263 0.369
6 0.337 6

On the other hand, for y=1.40 and 2A=3. 50 we
estimate A;=1.127+0.004, Ag=—-4.7:3:%, and A;

=178. 0+ 5.0 using only predictions of PA’s.

For

either set of exponents, we see from Fig. 2(d) and
Table V (d) that all estimates of A, are extremely
erratic and unreliable so that we shall not use this
amplitude in the calculation of /,(x) that follows.
We will calculate 7,(x), first for the set y=1.43,

C. Calculation of %, (x) for Large Values of x

From the considerations of Sec. III B it follows
that the first three terms of the expansion (3.11)
for M(e, H) may be estimated fairly reliably for
the set of exponents y=1.43, 2A=3.63, with the

result that

M(e, H)=1.072¢""H-4.05¢7-22(H%/31)

2A=3.63 (since this set corresponds to more reli-
able estimates for the amplitudes) and second, for
the set y=1.40, 2A=3.63. We shall find that al-
though the amplitudes A,, ; (for the two sets of
exponents) differ quite considerably in magnitude,
the resulting large-x expressions for the scaling
functions are very similar, the discrepancy being
within 1% for the range x<2. For larger x, the
discrepancy increases, but for all x within the range
corresponding to usual experimental values (x<10%)

we find that the discrepancy never exceeds about
10%.%°

+130 ™ (H%/51) +--- . (3.17)

From Eqgs. (C2) and (C8) of Appendix C we can ob-
tain from (3. 17) the first three coefficients 7, in the
expansion (3.9) for A,(x),

75(x)=0.9328x" +0.5111 "2 +0.1263 ¥ +... ,
(3.18)

where we have eliminated the exponent § in (8.9) in
favor of the exponent y by using the scaling rela-
tion B(6 +1)=28+y [Eq. (3.8b)]. In our final result,



6 EQUATION OF STATE NEAR THE CRITICAL POINT.I. ... 995

(8.18), the coefficients 7, decrease in reliability
with order » because the process of series rever-
sion (cf. Appendix C and Ref. 19) increases the un-
certainty of the higher-order coefficients. This is
not serious, for the higher-order coefficients in
(3.18) do not influence the numerical values of
hy(x) for large x nearly as much as do the lower-
order coefficients.

The knowledge of only three terms in the series
expansion (3.18) is certainly a disadvantage, but
owing to its presumably fast convergence it is not
disastrous. In fact, we found that numerical val-
ues of i,(x) were almost the same if we simply
truncated the series (3.18) at the three calculated
terms, or if we formed the “[1,1] PA ” to (3.18)
(this is the only PA possible for three terms),

() = g7 2982840 2805x7%
2XIEX T 0. 242X

(3.19)

Equation (3.19) for the large-x expression /,(x)
matches perfectly with Eq. (3.7) for the small-x
expression %,(x); the region of overlap extends from
x=1.2 to x=1.5, within which the discrepancy
between the two expressions is never larger than
about 1%. {Of course, when we consider matching
hy(x) and 7,(x), we have to use the exponents 3
=0.385 and 5 =4.71 in evaluating 7 (x) [cf. Eq.
(3.7a)], since Eq. (3.19) for k,(x) has been calcu-
lated only for the corresponding values y=1. 43 and
2A=3.63.}%°

In summary, then, we have found that in the case
of the S= 4 Heisenberg model, just as in the case
of the Ising model, fwo expressions are sufficient
to represent the scaling function %(x) over its entire
range of definition, — xo<x<; A(x)=hy(x) for x
$1.25 and h(x)=hy(x) for x21.25, where %,(x) and
hy(x) are given in Egqs. (3.7a) and (3.19), respec-
tively.

Comparison of the calculated 7(x) with experi-
mental results on ferromagnetic systems is pre-
sented in Paper II.

D. Calculation of Scaling Function for Other Cubic Lattices

The above calculations are for the fcc lattice.
For the bcc lattice we have also obtained an analo-
gous expression for i (x), and it is given in Appen-
dix B. However, for the sc lattice we could not
calculate a satisfactory expression for #,(x) be-
cause it was impossible to determine zy and ¢ in
Eq. (3.5) with sufficient accuracy. In fact, the
same obstacle prevented a complete determination
of the phase boundary for this lattice.®

Numerical comparison of the scaling functions
for the fcc and bec lattices will be studied in
Paper II.

IV. CALCULATION OF SCALING FUNCTION FOR
CLASSICAL HEISENBERG MODEL (S =)

The classical (S=x) Heisenberg model is no less
interesting than the S=3 Heisenberg model, either
from an experimental or from a theoretical point
of view. In fact, accordin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>