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12. Investigations of Financial Markets SN
Using Statistical Physics Methods

Rosario N. Mantegna and H. Fugene Stanley 3

We begin with a brief historical note concerning the growing interest of sta-
tistical physicists in the analysis and modeling of financial markets. We then
briefly discuss the key concepts of arbitrage and efficient markets. We relate
these concepts to apparently ‘universal’ aspects observed in the empirical anal- i
ysis of stock price dynamics in financial markets. In particular, we consider (i) )
the empirical behavior of the probability density function for the return of i
an economic time series to where it started and (ii) the content of economic
information in a financial time series.

| " 12.1 Introduction

The quantitative modeling of financial markets started in 1900 with the pio-
neering work of the French mathematician Bachelier [12.1]. Since the 1950s, the _
analysis and modeling of financial markets have become an important research e
area of economics and financial mathematics [12.2]. The researches pursued i
‘have been very successful, and nowadays a robust theoretical framework char-

@2%/( «\ Fig. 12.0. Color representation quantifying the stability in time of the eigenvectors of the correlation
‘ QPC‘-Q matrix that deviate from random-matrix bounds. Two partially overlapping time periods A and B,
. of four months each, were analyzed, January 1994 — April 1994 and March 1994 ~ June 1994. Each
/ of the 225 squares has a rainbow color proportional to the scalar product (‘overlap’) of the largest
15 eigenvectors of the correlation matrix in period A with those of the same 15 eigenvectors from L
period B. Perfect stability in time would imply that this pixel representation of the overlaps has ones ' ‘ i

(the red end of the rainbow spectrum) in the diagonal and zeros (violet) in the off-diagonal. The i
eigenvectors are shown in inverse rank order (from smallest to largest), and we note that the pixels
near the upper right corner have colors near the red end of the spectrum, corresponding to the fact g

that the largest 6-8 eigenvectors are relatively stable; in particular, the largest 3—4 eigenvectors are | i

stable for very long periods of time. The remainder of the pixels are distributed toward the violet L
end of the spectrum, corresponding to the fact that the overlaps are not statistically significant, . j '
and corroborating the finding that their corresponding eigenvalues are random. This figure is kindly k _
contributed by P. Gopikrishnan and V. Plerou
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acterizes these disciplines [12.3-12.6]. In parallel to these studies, starting from
the 1990s a group of physicists became interested in the analysis and modeling
of financial markets by using tools and paradigms of their own discipline (for
an overview, consider, for example, [12.7-12.10]). The interest of physicists in
such systems is directly related to the fact that, during the years, predictability
has assumed a meaning in physics, which is quite different from the one orig-
inally associated with the predictability of, for example, a Newtonian linear
system. The degree of predictability of physics systems is nowadays known to
be essentially limited in nonlinear and complex systems. This makes the phys-
ical prediction less strong, but on the other hand the area of research covered
by physical investigations and of its application may increase [12.11].

In addition to the above observations, there are a series of reasons explaining
why this discipline emerged during the last decade. We will try to discuss some
of them hereafter.

Since the 1970s, a series of significant changes has taken place in the world
of finance. One key year was 1973, when currencies began to be traded in
financial markets and their values determined by the foreign exchange market,
a financial market active 24 hr a day all over the world. During that same year,
Black and Scholes {12.12] published the first paper that presented a rational
option-pricing formula.

Since that time, the volume of foreign exchange trading has been growing at
an impressive rate. The transaction volume in 1995 was 80 times what it was in
1973. An even more impressive growth has taken place in the field of derivative
products. The notional amount of financial derivative market contracts issued
in 1999 was 81 trillion US dollars. Contracts were negotiated in the over-the-
counter market (i.e. directly between firms or financial institutions), and in
specialized exchanges that deal only in derivative contracts. Today, financial
markets facilitate the trading of huge amounts of money, assets, and goods in
a competitive global environment.

A second revolution began in the 1980s when electronic trading was adapted
to the foreign exchange market. The electronic storing of data relating to fi-
nancial contracts - or to bid and ask quotes issued by traders - was put in
place at about the same time that electronic trading became widespread. One
result is that today a huge amount of electronically stored financial data is
readily available. These data are characterized by the property of being high-
frequency data - the average time delay between two records can be as short
as a few seconds. Between the available databases it may be worth mention-
ing the Olsen and Associates database comprising all the bid and ask quotes
of the foreign exchange market collected from information vendors, including
Reuters, Knight-Ridder, and Telerate since 1986 and the Trade and Quote
(TAQ) database, which comprises all the trades and quotes related to all the
securities listed in the New York Stock Exchange, Nasdaq National Market
System, and SmallCap issues. The TAQ database is available monthly on CD-
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Rom from the New York Stock Exchange. The enormous expansion of financial
markets requires strong investments in money and human resources to achieve

reliable quantification and minimization of risk for the financial institutions
involved.

12.2 Econophysics

The research approach of physicists to financial modeling aims to be comple-
mentary to the ones of financial mathematicians and economists. The main
goals are (i} to contribute to a better understanding and modeling of financial L
markets and (i) to promote the use of physical concepts and expertise in the }I
multidisciplinary approach to risk management. il

This research area is often addressed as econophysics. The word econo-
physics describes the present attempts of a number of physicists to model
financial and economic systems using paradigms and tools borrowed from the-
oretical and statistical physics. h

Financial markets exhibit several of the properties that characterize com-
plex systems. They are open systems in which many subunits interact nonlin- _
early in the presence of feedback. In financial markets, the governing rules are A
rather stable and the time evolution of the system is continuously monitored. F
It is now possible to develop models and to test their accuracy and predictive
power using available data, since large databases exist even for high-frequency
data.

A research community has begun to emerge in econophysics starting from
the 1990s. New interdisciplinary journals have been published, conferences have
been organized, and a set of potentially tractable scientific problems has been
provisionally identified. The research activity of this group of physicists is
complementary to the most traditional approaches of finance and mathemati-
cal finance. One characteristic difference is the emphasis that physicists put on
the empirical analysis of economic data. Another is the background of theory
and method in the field of statistical physics developed over the past 30yr
that physicists bring to the subject. The concepts of scaling, universality, dis-
ordered frustrated systems, and self-organized systems might be helpful in the
analysis and modeling of financial and economic systems. One argument that
is sometimes raised at this point is that an empirical analysis performed on .
financial or economic data is not equivalent to the usual experimental inves-
tigation that takes place in physical sciences. In other words, it is impossible
to perform large-scale experiments in economics and finance that could falsify
any given theory.

5 We note that this limitation is not specific to economic and financial sys- N
tems, but also affects such well developed areas of physics as astrophysics, f{j
atmospheric physics, and geophysics. Hence, in analogy to activity in these
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more established areas, we find that we are able to test and falsify any theo-
ries associated with the currently available sets of financial and economic data
provided in the form of recorded files of financial and economic activity.

Among the important areas of physics research dealing with financial and
economic systems, one concerns the complete statistical characterization of
the stochastic process of price changes of a financial asset. Several studies
have been performed that focus on different aspects of the analyzed stochastic
process, e.g. the shape of the distribution of price changes [12.9,12.13-12.17],
the temporal memory [12.18-12.21], and the higher-order statistical properties
[12.22-12.24]. This is still an active arca, and attempts are ongoing to develop
the most satisfactory stochastic model describing all the features encountered
in empirical analyses. One important accomplishment in this area is an almost
complete consensus concerning the finiteness of the second moment of price
changes. This has been a longstanding problem in finance, and its resolution
has come about because of the renewed interest in the empirical study of
financial systems.

A second area concerns the development of a theoretical model that is
able to encompass all the essential features of real financial markets. Several
models have been proposed [12.25-12.39], and some of the main properties
of the stochastic dynamics of stock price are reproduced by these models as,
for example, the leptokurtic non-Gaussian shape of the distribution of price
differences. Parallel attempts in the modeling of financial markets by taking
into account some results observed in the empirical analyses have been also
developed by economists [12.40-12.42, 12.87].

One of the more active areas in finance is the pricing of derivative instru-
ments. In the simplest case, an asset is described by a stochastic process and a
derivative security (or contingent claim) is evaluated on the basis of the type
of security and the value and statistical properties of the underlying asset.
This problem presents at least two different aspects: (i) ‘fundamental’ aspects,
which are related to the nature of the random process of the asset, and (ii)
‘applied’ or ‘technical’ aspects, which are related to the solution of the option-
pricing problem under the assumption that the underlying asset performs the
proposed random process.

In this area the investigations which are considering the problem of the
rational pricing of a derivative product when some of the canonical assumptions
of the Black and Scholes model are relaxed [12.9, 12.43,12.44]. Other autors
focus on aspects of portfolio selection and its dynamical optimization [12.45-
12.49]. A further area of research considers analogies and differences between
price dynamics in a financial market and such processes as turbulence [12.15,
12.19,12.50] and the dynamics of ecological systems [12.16,12.51].

Another common theme encountered in econophysics concerns the time cor-
relation of financial series. The detection of the presence of a higher-order
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correlation in price changes has motivated a reconsideration of some beliefs of
what is termed ‘technical analysis’ [12.52].

In addition to the studies that analyze and model financial systems, there
are studies of the income distribution of firms and studies of the statistical
properties of their growth rates [12.53-12.56]. The statistical properties of the
economic performances of complex organizations such as universities or entire
countries have also been investigated [12.57].

This brief presentation of some of the current efforts in this emerging dis-
cipline has only illustrative purposes and cannot be exhaustive. For a more
complete overview, consider, for example, the proceedings of conferences ded-
icated to these topics [12.7,12.8].

From the above overview we see that econophysics started as an emerging
discipline during the 1990s. However before the starting up of the discipline
a series of physicists and mathematicians have investigated on an individual
basis financial and economic problems. Some of these pioneering approaches
are discussed in the next section.

12.3 An Historical Note

The interest of the physics community in financial and economic systems has
roots that date back to 1942, when a paper from Majorana on the essential
analogy between statistical laws in physics and in the social sciences was pub-
lished [12.58]. In his contribution, he wrote that “....It is important that the
principles of quantum mechanics have led to recognize (...) the statistical char-
acter of the fundamental laws of elementary processes. This conclusion makes
essential the analogy between physics and social sciences, between which there
is an identity of values and method”. This unorthodox point of view was con-
sidered of marginal interest until recently. Indeed, prior to the 1990s, very few
professional physicists did any research associated with social or economic sys-
tems. The exceptions included Kadanoff [12.59], Montroll and Badger [12.60],
and a group of physical scientists at the Santa Fe Institute [12.61].

In this chapter we briefly discuss the application to financial markets of such
concepts as power-law distributions, correlations, scaling, unpredictable time
series, and random processes. During the past 30 yr, physicists have achieved
important results in the field of phase transitions, statistical mechanics, non-
linear dynamics, and disordered systems. In these fields, power-laws, scaling,
and unpredictable (stochastic or deterministic) time series are present and the
current interpretation of the underlying physics is often obtained using these
concepts.

With this background in mind, it may surprise scholars trained in the nat-
ural sciences to learn that the first use of a power-law distribution - and the
first mathematical formalization of a random walk - took place in the social
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sciences. In 1897 the Italian social economist Pareto investigated the statistical
character of the wealth of individuals in a stable economy by modeling thern
using the distribution

y~z, (12.1)

where y is the number of people having income z or greater than = and v is an
exponent that Pareto estimated to be 1.5 [12.62]. Pareto noticed that his result
was quite general and applicable to nations ‘as different as those of England,
of Ireland, of Germany, of the Italian cities, and even of Peru’.

It should be fully appreciated that the concept of a power-law distribution
is counterintuitive, because it lacks any characteristic scale. This property pre-
vented the use of power-law distributions in the natural sciences until the recent
emergence of new paradigms (i) in probability theory, thanks to the work of
Lévy [12.63] and thanks to the application of power-law distributions to several
problems pursued by Mandelbrot [12.64]; and (ii) in the study of phase tran-
sitions, which introduced the concepts of scaling for thermodynamic functions
and correlation functions [12.65].

Another concept ubiquitous in the natural sciences is the random walk.
The first theoretical description of a random walk in the natural sciences was
performed in 1905 by Einstein [12.66] in his famous paper dealing with the
determination of the Avogadro number. In subsequent years, the mathematics
of the random walk was made more rigorous by Wiener {12.67], and now the
random walk concept has spread across almost all research areas in the natural
sciences.

The first formalization of a random walk was not in a publication by Ein-
stein, but in the doctoral thesis by Bachelier [12.1]. Bachelier presented his
thesis to the faculty of sciences at the Academy of Paris on 29 March 1900, for
the degree of Docteur en Sciences Mathématigues. The first page of his thesis
is shown in Fig.12.1. His advisor was Poincaré, one of the greatest mathe-
maticians of his time. The thesis, entitled Théorie de la Spéculation, is sur-
prising in several respects. It deals with the pricing of options in speculative
markets, an activity that today is extremely important in financial markets
where derivative securities - those whose value depends on the values of other
more basic underlying variables - are regularly traded on many different ex-
changes. To complete this task, Bachelier determined the probability of price
changes by writing down what is now called the Chapman-Kolmogorov equa-
tion and recognizing that what is now called a Wiener process satisfies the
diffusion equation (this point was re-discovered by Einstein in his 1905 paper
on Brownian motion). Retrospectively analyzed, Bachelier’s thesis lacks rigor
in some of its mathematical and economic points. Specifically, the determi-
nation of a Gaussian distribution for the price changes was - mathematically
speaking - not sufficiently motivated. On the economic side, Bachelier inves-
tigated price changes, whereas economists are mainly dealing with changes in
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THEORIE (

LA SPECULATION,

Par M. L. BACHELIER.

INTRODUCTION,.

Les influences qui déterminent les mouvements de lu Bourse sont
innombrables, des événements passés, actuels ou méme escomptables,
ne présenlant souvent aucun rapport apparent avec ses vatialions, se
répercutent sur son cours.

A coté des causes en quelque sorte naturelles des variations, inter- !
viennent aussi des causes factices : la Bourse agit sur elle-méme et le ;
mouvement actuel est fonction, non sculement des mouvements anté- -l
rieurs, mais aussi de la position de place.

La détermination de ce¢s mouvements se subordonne 3 un nombre
infini de facteurs : il est dés lors impessible d'en espérer la prévi-
sion mathématique. Les opinions contradictoires relatives i ees varia-
tions se partagent si bien qu'au méme instant les acheteurs croient &
la hausse et les vendeurs a la baisse.

_ Le Calcul des probabilités ne pourra sans doute jamais s'appliquer 4
B aux mouvements de la cote et la dynamigue de la Bourse ne sera ‘ ¥
jamais une science exacte. i §!

Mais il est possible d'étudier mathématiquement 1'état slatique du TH
marché 4 un instant donné, c¢'est-a-dire d'établir la loi de probabilité L '
des variations de cours qu'admet 4 cet instant le marché. Si le marche, i
en effet, ne prévoit pas les mouvements, il les considere comme étant

Fig. 12.1. First page of the PhD thesis of Luis Bachelier. This work was written in 1900, almost
50yr before the concept of random walk was currently used to model asset price dynamics in a
financial market and 73 yr before the first publication of a rational option price procedure

the logarithm of price. However, these limitations do not diminish the value of
Bachelier’s pioneering work.

To put Bachelier's work into perspective, the Black and Scholes option- e
pricing model - considered the milestone in option-pricing theory - was pub- o
lished in 1973, almost three-quarters of a century after the publication of his N
thesis. Moreover, theorists and practitioners are aware that the Black and
Scholes model needs correction in its application, meaning that the problem
of which stochastic process describes the changes in the logarithm of prices in
a financial market is still an open one.
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The problem of the distribution of price changes has been considered by
several authors since the 1950s, which was the period when mathematicians
began to show interest in the modeling of stock market prices. Bachelier’s
original proposal of Gaussian distributed price changes was soon replaced by
a model in which stock prices are log-normal distributed, i.e. stock prices are
performing a geometric Brownian motion. In a geometric Brownian motion,
the differences of the logarithms of prices are Gaussian distributed. This model
is known to provide only a first approximation of what is observed in real data.
For this reason, a number of alternative models have been proposed with the
aim of explaining

(i) the empirical evidence that the tails of measured distributions are fatter
than expected for a geometric Brownian motion; and
(ii) the time fluctuations of the second moment of price changes.

Among the alternative models proposed, ‘the most revolutionary develop-
ment in the theory of speculative prices since Bachelier’s initial work’ [12.2],
is Mandelbrot’s hypothesis that price changes follow a Lévy stable distribu-
tion {12.68]. Lévy stable processes are stochastic processes obeying a general-
ized central limit theorem. By obeying a generalized form of the central limit
theorem, they have a number of interesting properties. They are stable (as
are the more common Gaussian processes) - i.e. the sum of two independent
stochastic processes z; and z»s characterized by the same Lévy distribution of
index « is itself a stochastic process characterized by a Lévy distribution of the
same index. The shape of the distribution is maintained (is stable) by summing
up independent and identically distributed Lévy stable random variables.

Lévy stable processes define a basin of attraction in the functional space
of probability density functions. The sum of independent and identically dis-
tributed stochastic processes S,, = 3 ..., #; characterized by a probability den-
sity function with power-law tails,

P(x) ~ z=(He), (12.2)

will converge, in probability, to a Lévy stable stochastic process of index «
when n tends to infinity [12.69)].

This property tells us that the distribution of a Lévy stable process is a
power-law distribution for large values of the stochastic variable z. The fact
that power-law distributions lack a typical scale is reflected in Lévy stable
processes by the property that the variance of Lévy stable processes is infinite
for @ < 2. Stochastic processes with infinite variance, although well defined
mathematically, are extremely difficult to use and, moreover, raise fundamental
questions when applied to real systems. For example, in physical systems the
second moment is often related to the system temperature, so infinite variances
imply an infinite (or undefined) temperature. In financial systems, an infinite
variance would complicate the important task of risk estimation.
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12.4 Key Concepts

In the model of financial markets a pair of concepts are crucial to understand
the current theories modeling them. In this section we will discuss two rele-
vant concepts namely the concept of absence of arbitrage and the concept of
efficient market. Financial markets are systems in which a large number of
traders interact with one another and react to external information in order to
determine the best price for a given asset. The goods might be as different as
animals, ore, equities, currencies, or bonds - or derivative products issued on
those underlying financial goods. Some markets are localized in specific cities P
(e.g. New York, Tokyo, and London) while others (such as the foreign exchange
market) are delocalized and accessible all over the world.

When one inspects a time series of the time evolution of the price, volume,
and number of transactions of a financial product, one recognizes that the time
evolution is unpredictable. At first sight, one might sense a curious paradox. i
An important time series, such as the price of a financial good, is essentially
indistinguishable from a stochastic process. There are deep reasons for this
kind of behavior, and in this chapter we will examine some of these.

12.4.1 Arbitrage

| A key concept for the understanding of markets is the concept of arbitrage - ik
~— the simultaneous purchase and sale of the same or equivalent security in order
L to profit from price discrepancies.

The presence of traders looking for arbitrage conditions contributes to a
market’s ability to evolve the most rational price for a good. To see this,
suppose that one has discovered an arbitrage opportunity. One will exploit it
and, if one succeeds in making a profit, one will repeat the same action. This I
action will increase the demand of a given good at a given place or time and |
will simultaneously increase the supply of the same good at another time or
place. The modification of the demand and supply levels forces the price of the o
considered good to attain a more rational value in a given place or time.

To summarize: (i) new arbitrage opportunities continually appear and are
discovered in the markets but (ii) as soon as an arbitrage opportunity begins
to be exploited, the system moves in a direction that gradually eliminates the
arbitrage opportunity.

pECee

12.4.2 Efficient Market Hypothesis

Markets are complex systems that incorporate information about a given asset
in the time series of its price. The most accepted paradigm among scholars in
finance is that the market is highly efficient in the determination of the most
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rational price of the traded asset. The efficient market hypothesis (EMH) was
originally formulated in the 1960s [12.70]. A market is said to be efficient if
all the available information is instantly processed when it reaches the market
and it is immediately reflected in a new value of prices of the assets traded.

The theoretical motivation for the efficient market hypothesis has its roots
in the pioneering work of Bachelier [12.1], who proposed that the price of
assets in a speculative market be described as a stochastic process. This work
remained almost unknown until the 1950s, when empirical results [12.2] about
the serial correlation of the rate of return showed that correlations on a short
time scale are negligible and that the approximate behavior of return time
series is indeed similar to uncorrelated random walks.

The EMH was formulated explicitly in 1965 by Samuelson {12.71], who
showed mathematically that properly anticipated prices fluctuate randomly.
Using the hypothesis of rational behavior and market efficiency, he was able
to demonstrate how Y;,1, the expected value of the price of a given asset at
time £ 4 1, is related to the previous values of prices Yg, Y3, . .. , ¥; through the
relation

E{K+1t%,m1'“ }}?} ZK (123)

Stochastic processes obeying the conditional probability given in {12.3) are
called martingales [12.72]. The notion of a martingale is, intuitively, a proba-
bilistic model of a ‘fair’ game. In gambler’s terms, the game is fair when gains
and losses cancel, and the gambler’s expected future wealth coincides with the
gambler’s present assets. The fair game conclusion about the price changes
observed in a financial market is equivalent to the statement that there is no
way of making a profit on an asset by simply using the recorded history of
its price fluctuations. The conclusion of this ‘weak form’ of the EMH is then
that price changes are unpredictable from the historical time series of those
changes.

Since the 1960s, a great number of empirical investigations have been de-
voted to testing the efficient market hypothesis [12.73]. In the great major-
ity of the empirical studies, the time correlation between price changes has
been found to be negligibly small, supporting the efficient market hypothesis.
However, it was shown in the 1980s that by using the information present
in additional time series such as earnings/price ratios, dividend yields, and
term-structure variables, it is possible to make predictions of the rate of re-
turn of a given asset on a long time scale, much longer than a month. Thus
empirical observations have challenged the stricter form of the efficient market
hypothesis. _

Thus empirical observations and theoretical considerations show that price
changes are difficult if not impossible to predict if one starts from the time
series of price changes. In its strict form, an efficient market is an idealized
system. In actual markets, residual inefficiencies are always present. Searching
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out and exploiting arbitrage opportunities is one way of eliminating market
inefliciencies.

12.5 Idealized Systems in Physics and Finance

The efficient market is an idealized system. Real markets are only approxi-
mately efficient. This fact will probably not sound too unfamiliar to physicists
because they are well acquainted with the study of idealized systems. Indeed,
the use of idealized systems in scientific investigation has been instrumental
in the development of physics as a discipline. Where would physics be without 4
idealizations such as frictionless motion, reversible transformations in ther- i
modynamics, and infinite systems in the critical state? Physicists use these
abstractions in order to develop theories and to design experiments. At the
same time, physicists always remember that idealized systems only approxi-
mate real systems, and that the behavior of real systems will always deviate
from that of idealized systems. A similar approach can be taken in the study
of financial systems. We can assume realistic ‘ideal’ conditions, e.g. the exist-
ence of a perfectly efficient market, and within this ideal framework develop ol
theories and perform empirical tests. The validity of the results will depend :
on the validity of the assumptions made.

The concept of the efficient market is useful in any attempt to model fi-
nancial markets. After accepting this paradigm, an important step is to fully
characterize the statistical properties of the random processes observed in fi-
nancial markets.

R '“am*ﬁ“”(

12.6 Empirical Analysis

Econophysics is an interdisciplinary research area, with a growing number of !
practitioners. We shall briefly describe the spirit and substance of some recent .
work that focuses on universal aspects observed in the empirical analysis of .
different (in location and time period) financial markets.

12.6.1 Statistical Properties of Price Dynamics

The knowledge of the statistical properties of price dynamics in financial mar-
kets is fundamental. It is necessary for any theoretical modeling aiming to
obtain a rational price for a derivative product issue on it [12.74] and it is
the starting point of any valuation of the risk associated with 2 financial posi-
tion. [12.75]. Moreover, it is needed in any effort aiming to model the system.
In spite of this importance, the modeling of such variable is not yet conclusive,
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Several models exist which are showing partial successes and unavoidable limi-
tations. In this research, the approach of physicists maintains the specificity of
their discipline namely to develop and modify models by taking into account
results of empirical analysis.

Several models have been proposed and we will not review them here. Here
we wish only to focus on the aspects which are universally observed in various
stock price and index price dynamics.

12.6.2 Short- and Long-Range Correlations

In any financial market - either well established and highly active as the New
York stock exchange, emerging as the Budapest stock exchange, or regional
as the Milan stock exchange - the autocorrelation function of returns is a
monotonic decreasing function with a very short correlation time. High fre-
quency data analyses have shown that correlation times can be as short as
a few minutes in highly traded stocks or indices [12.19,12.76]. A fast decay-
ing autocorrelation function is also observed in the empirical analysis of data
recorded transaction by transaction. By using as time index the number of
transactions occurred from a selected origin, a time memory as short as a few
transactions has been detected in the dynamics of most traded stocks of the
Budapest ‘emerging’ financial market [12.77).

The short-range memory between returns is directly related to the necessity
of absence of continuous arbitrage opportunities in efficient financial markets.
In other words, if correlation were present between returns this would allow
devising trading strategies that would provide a net gain continuously and
without risk. The continuous search for and exploitation of arbitrage oppor-
tunities from traders focused on this kind of activity drastically diminish the
redundancy in the time series of price changes. Another mechanism reducing
the redundancy of stock price time series is related to the presence of so-called
‘noise traders’. With their action, noise traders add into the time series of stock
price information, which is unrelated to the economic information decreasing
the degree of redundancy of the price changes time series.

It is worth pointing out that not all the economic information present in
stock price time series disappears due to these mechanisms. Indeed the redun-
dancy that needs to be eliminated concerns only price change and not any
nonlinear functions of it [12.78].

The absence of time correlation between returns does not mean that returns
are identically distributed over time. In fact different authors have observed
that nonlinear functions of return such as the absolute value or the square
are correlated over a time scale much longer than a trading day. Moreover the
functional form of this correlation seems to be power-law up to at least 20
trading days approximately [12.20,12.21,12.24,12.76,12.79-12.81].
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A final observation concerns the degree of stationary behavior of the stock
price dynamics. Empirical analysis shows that returns are not strictly sense
— stationary stochastic processes. Indeed the volatility (standard deviation of

returns) is itself a stochastic process. Although a general proof is still lacking, .
empirical analyses performed on financial data of different financial markets
suggest that the stochastic process is locally nonstationary but asymptotically j '
stationary. By asymptotically stationary we mean that the probability density " "
- function (PDF) of returns measured over a wide time interval exists and it I
is uniquely defined. A paradigmatic example of simple stochastic processes _
which are locally nonstationary but asymptotically stationary is provided by i
ARCH [12.82] and GARCH [12.83] processes.

12.6.3 The Distribution of Returns

The PDF of returns shows some ‘universal’ aspects. By “universal’ aspects we
mean that they are observed in different financial markets at different periods i
of time provided that a sufficiently long time period is used in the empirical |
analysis. The first of these ‘universal’ or stylized facts is the leptokurtic na-
ture of the PDF. A leptokurtic PDF characterizes a stochastic process having B
small changes and very large changes more frequent than in the case of Gaus- 't
sian distributed changes. Leptokurtic PDFs have been observed in stocks and '
indices time series by analyzing both high-frequency and daily data. An exam-
ple is provided in Fig. 12.2. Thanks to the recent availability of transaction-
by-transaction data, empirical analyses on a transaction time scale have also ik
been performed. One of these studies performed by analyzing stock price in g
the Budapest stock exchange show that return PDF are leptokurtic down to M2
a ‘transaction’ time scale [12.77). See a direct example in Fig. 12.3. e

The origin of the observed leptokurtosis is still debated. There are several HE
models trying to explain it. Just to cite (rather arbitrarily) a few of them: (i) a
model of Lévy stable stochastic process [12.68]; (ii) a model assuming that the K
non-Gaussian behavior occurs as a result of the uneven activity during market
hours [12.84]; (iii) a model where a geometric diffusive behavior is superim-
posed to Poissonian jumps [12.85); (iv) a quasi-stable stochastic process with
[inite variance [12.86]; and (v) a stochastic process with rare events described
by a power-law exponent not falling into the Lévy regime [12.17,12.41,12.87].
The above processes are characterized by finite or- infinite moments. In the
attempt to find the stochastic process that best describes stock price dynam-
ics, it is then important to try to preliminary conclude about the finiteness or
infiniteness of the second moment.

The above answer is not simply obtained [12.88] and careful empirical
analyses must be performed to reach a reliable conclusion. It is our opin-
ion that an impressive amount of empirical evidence has been recently found
supporting the conclusion that the second moment of the return PDF is fi-
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Fig. 12.2. Logarithm of the probability density function of the S&P 500 index high-frequency
changes computed at a At = 1 min time horizon. The probability density function is compared with
the symmetrical Lévy stable distribution of index a = 1.40 and scale factor -y = 0.00375 (solid line).
The dotted line is the Gaussian distribution with standard deviation o equal to the experimental
value 0.0508. The variations of price are normalized to this value. Deviations from the Lévy stable
profile are observed for |z!/o = 6. From [12.14]
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Fig. 12.3. Semilogarithmic plot of the probability density function of tick by tick log price changes
measured for the MOL Company (the time period is the second quarter of 1998). The solid line is
a syrnmetrical Lévy distribution of index & = 1.60 and scale factor -y = 0.000005. From [12.77]
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nite [12.14,12.17, 12.41,12.87,12.89, 12.90]. This conclusion has a deep conse-
quence on the stability of the return PDF. The finiteness of the second moment i
and the independence of successive returns imply that the central limit theo- i
rem asymptotically applies. Hence the form expected for the return PDF must
be Gaussian for very long time horizons. We then have two regions - at short
time horizons we observe leptokurtic distributions whereas at long time hori-
z0ns we expect a Gaussian distribution, A complete characterization of the _
stochastic process needs an investigation performed at different time horizons. )

During this kind of analysis, non-Gaussian scaling and its breakdown has been
detected [12.14,12.19].

12.7 Collective Dynamics I

In the previous sections we saw that ‘universal’ facts suggest that the stock
price change dynamics in financial markets is well described by an unpre- T
dictable time series. However, this does not imply that the stochastic dynam-
ics of stock price time series is a random walk with independent identically ‘ [‘
distributed increments. Indeed the stochastic process is much more complex I
than a customary random walk. \

One key question in the analysis and modeling of a financial market COILCErns ’
the independence of the price time series of different stocks traded simultane-
| ously in the same market. The presence of cross-correlations between pairs of
stocks has been known for a long time and it is one of the basic assumptions of
the theory of the selection of the most efficient portfolio of stocks [12.91]. Re-
cently, physicists have also started to investigate empirically and theoretically
the presence of such cross-correlations.

It has been found that a meaningful economic taxonomy may be obtained
by starting from the information stored in the time series of stock price only. kR
A simple example is shown in Fig.12.4. This has been achieved by assuming 'ii{
that a metric distance can be defined between the synchronous time evolution
of a set of stocks traded in a financial market and under the essential Ansazz
that the subdominant ultrametric associated with the selected metric distance
is controlled by the most important economic information stored in the time
evolution dynamics [12.92].

Another approach to detect collective movement, of stock price fluctuations
involves the comparison of the statistics of the measured equal-time cross-
correlation matrix C against a ‘null hypothesis’ of a ‘random’ cross-correlation
matrix, constructed from mutually uncorrelated time series [12.93, 12.94]. The
comparison is performed in the diagonal basis, and it is found that = 98%
of the eigenvalues of C are consistent [12.93,12.94] with that of a random
cross-correlation matrix (see Fig. 12.5). There are also deviations [12.93,12.94]
for ~ 2% of the eigenvalues at both edges of the eigenvalue spectrum, which
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Fig. 12.4. Hierarchical tree associated to the stock porifolio of 30 stocks used to compute the
Dow Jones Industrial Average index in 1998. The 30 stocks are labeled by their tick symbols.
The hierarchical tree is obtained with the correlation based clustering procedure of [12.92]. In the
hierarchical tree, several groups of stocks are detected. They are homogeneous with respect to the
economic activities of the companies: (i) oil companies (Exxon (XON), Texaco (TX), and Chevron
(CHV?}); (it) raw material companies {Alcoa (AA) and International paper (IP)), and (iii} companies
working in the sectors of consumer nondurable products (Procter and Gamble (PG)) and food and
drinks (Coca Cola (KQ)). The distance between each stock and the others is the ultrametric distance
d=(i, 7} computed starting from the correlation coeflicient matrix. From [12.92]

are found to correspond mainly to conventionally identified sectors of business
activity [12.96].

The observation of the presence of a certain degree of statistical synchrony
in the stock price dynamics suggests the following conclusion. Consideration
of the time evolution of only a single stock price could be insufficient to reach
a complete modeling of all essential aspects of a financial market.

12.8 Conclusion

This chapter briefly discusses the goals and scopes of econophysics, the moti-
vations and precursors of physicists involved in the analysis and modeling of
financial markets, and some of the stylized ‘universal’ facts that are observed
in financial markets and are considered robust by several researchers working
in the field. Starting from these results one can devise studies trving to enrich
and expand this knowledge to provide theoreticians and computer scientists
with the empirical facts that need to be explained by their models progressively
proposed. The ultimate goal is to contribute to the search for the best model
describing a financial market, one of the most intriguing complez systems.
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Fig. 12.5. The probability densiiy of the eigenvalues of the equal-time cross-correlation matrix C I
constructed from price fluctuations of 1000 largest stocks in the TAQ database for the 2yr period |
1994-1995. Recent analytical resulis [12.95] for cross-correlation matrices constructed from mutually l .
uncorrelated time series predict a distribution of eigenvalues within a finite range depending on the : i
ratio R of the length of the time series to the dimension of the matrix (solid curve). In our case
R == 6.448 corresponding to eigenvalues distributed in the interval 0.37 < M, < 1.94 i12.93-12.95]. -
However, the largest eigenvalue for the 2yr period (inset) is approximately 30 times larger than

- the maximum eigenvalue predicted for uncorrelated time series. The inset also shows the largest
eigenvalue for the cross-correlation matrix for four half-yr periods - denoted A, B, C, D. The
arrow in the inset corresponds to the largest eigenvalue for the enmtire 2yr period, Ayooo & 50.
The distribution of eigenvector components for the large eigenvalues, well outside the bulk, shows
significant deviations from the Gaussian prediction of RMT, which suggests ‘collective’ behavior
or correlations between different companies. The largest eigenvalue corresponds to the correlations
within the entire market [12.93,12.94]
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