
Physica A 274 (1999) 216–221
www.elsevier.com/locate/physa

Applications of statistical mechanics to �nance
Rosario N. Mantegnaa;b; ∗, Zolt�an Pal�agyic, H. Eugene Stanleyd;e
aIstituto Nazionale per la Fisica della Materia, Unit�a di Palermo, Palermo, I-90128, Italy

bDipartimento di Energetica ed Applicazioni di Fisica, Universit�a di Palermo, Applicazioni di Fisica,
Viale delle Scienze, Palermo, I-90128, Italy

cDepartment of Mathematics, Budapest University of Economic Sciences, Főv�am t�er 8,
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Abstract

We discuss some apparently “universal” aspects observed in the empirical analysis of stock
price dynamics in �nancial markets. Speci�cally we consider (i) the empirical behavior of the
return probability density function and (ii) the content of economic information in �nancial time
series. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analyses and modeling of �nancial markets started in 1900 with the pioneering
work of the French mathematician Bachelier [1]. Since the 1950s, the analysis and
modeling of �nancial markets have become an important research area of economics
and �nancial mathematics [2]. The researches pursued have been very successful, and
nowadays a robust theoretical framework characterizes these disciplines [3–6]. In par-
allel to these studies, starting from the 1990s a group of physicists became interested
in the analysis and modeling of �nancial markets by using tools and paradigms of
their own discipline (for an overview, consider, for example, [7–11]). The interest of
physicists in such systems is directly related to the fact that predictability has assumed
a meaning in physics over the years, which is quite di�erent from the one originally
associated with the predictability of, for example, a Newtonian linear system. The
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degree of predictability of physics systems is nowadays known to be essentially lim-
ited in nonlinear and complex systems. This makes the physical prediction less strong,
but on the other hand the area of research covered by physical investigations and of
its application may increase [12].
The research approach of physicists to �nancial modeling aims to be complementary

to the ones of �nancial mathematicians and economists. The main goals are to (i)
contribute to a better understanding and modeling of �nancial markets and (ii) promote
the use of physical concepts and expertise in the multidisciplinary approach to risk
management.
In this communication, we review some results of our work on (i) the statistical

properties of returns in �nancial markets and (ii) the characterization of the simulta-
neous dynamics of stock prices in a �nancial market. Speci�cally, we recall statistical
properties of price changes empirically observed in di�erent markets worldwide. In
particular, we discuss studies performed on the New York stock exchange [13,14], the
Milan stock exchange [15] and the Budapest stock exchange [16]. The communication
is organized as follows, we �rst discuss the results of empirical analyses performed in
these di�erent markets and then we address the problem concerning the presence of
economic information in a �nancial time series.

2. Statistical properties of price dynamics

The knowledge of the statistical properties of price dynamics in �nancial markets is
fundamental. It is necessary for any theoretical modeling aiming to obtain a rational
price for a derivative product issued on it [17] and it is the starting point of any
valuation of the risk associated with a �nancial position [18]. Moreover, it is needed
in any e�ort aiming to model the system. In spite of this importance, the modeling of
such a variable is not yet conclusive. Several models exist which show partial successes
and unavoidable limitations. In this research, the approach of physicists maintain the
speci�city of their discipline, namely to develop and modify models by taking into
account the results of empirical analysis.
Several models have been proposed and we will not review them here. Here, we

wish to focus only on the aspects which are “universally” observed in various stock
price and index price dynamics.

2.1. Short- and long-range correlations

In any �nancial market — either well established and highly active as the New
York stock exchange, “emerging” as the Budapest stock exchange, or “regional” as
the Milan stock exchange — the autocorrelation function of returns is a monotonic
decreasing function with a very short correlation time. High-frequency data analyses
have shown that correlation times can be as short as a few minutes in highly traded
stocks or indices [14,19]. A fast decaying autocorrelation function is also observed in
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the empirical analysis of data recorded transaction by transaction. By using as time
index the number of transactions emanating from a selected origin, a time memory as
short as a few transactions has been detected in the dynamics of most traded stocks of
the Budapest “emerging” �nancial market [16].
The short-range memory between returns is directly related to the necessity of

absence of continuous arbitrage opportunities in e�cient �nancial markets. In other
words, if correlation were present between returns (and then between price changes)
this would allow one to devise trading strategies that would provide a net gain con-
tinuously and without risk. The continuous search for and the exploitation of arbitrage
opportunities from traders focused on this kind of activity drastically diminish the
redundancy in the time series of price changes. Another mechanism reducing the re-
dundancy of stock price time series is related to the presence of the so-called “noise
traders”. With their action, noise traders add into the time series of stock price in-
formation, which is unrelated to the economic information decreasing the degree of
redundancy of the price changes time series.
It is worth pointing out that not all the economic information present in stock price

time series disappears due to these mechanisms. Indeed the redundancy that needs to
be eliminated concerns only price change and not any of its nonlinear functions [20].
The absence of time correlation between returns does not mean that returns are

identically distributed over time. In fact, di�erent authors have observed that nonlinear
functions of return such as the absolute value or the square are correlated over a time
scale much longer than a trading day. Moreover, the functional form of this correlation
seems to be power-law up to at least 20 trading days approximately [19,21–26].
A �nal observation concerns the degree of stationary behavior of the stock price

dynamics. Empirical analysis shows that returns are not strictly sense stationary stochas-
tic processes. Indeed the volatility (standard deviation of returns) is itself a stochastic
process. Although a general proof is still lacking, empirical analyses performed on
�nancial data of di�erent �nancial markets suggest that the stochastic process is locally
non-stationary but asymptotically stationary. By asymptotically stationary we mean that
the probability density function (pdf) of returns measured over a wide time interval
exists and it is uniquely de�ned. A paradigmatic example of simple stochastic processes
which are locally non-stationary but asymptotically stationary is provided by ARCH
[27] and GARCH [28] processes.

2.2. The distribution of returns

The pdf of returns shows some “universal” aspects. By “universal” aspects we mean
that they are observed in di�erent �nancial markets at di�erent periods of time provided
that a su�ciently long time period is used in the empirical analysis. The �rst of these
“universal” or stylized facts is the leptokurtic nature of the pdf. A leptokurtic pdf
characterizes a stochastic process having small changes and very large changes more
frequently than in the case of Gaussian distributed changes. Leptokurtic pdfs have
been observed in stocks and indices time series by analyzing both high-frequency and
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daily data. Thanks to the recent availability of transaction-by-transaction data, empirical
analyses on a transaction time scale have also been performed. One of these studies
performed by analyzing stock prices in the Budapest stock exchange shows that return
pdf is leptokurtic down to a “transaction” time scale [16].
The origin of the observed leptokurtosis is still debated. There are several mod-

els trying to explain it. Just to cite (rather arbitrarily) a few of them: (i) a model
of L�evy stable stochastic process [29]; (ii) a model assuming that the non-Gaussian
behavior occurs as a result of the uneven activity during market hours [30]; (iii) a
model where a geometric di�usive behavior is superimposed on Poissonian jumps [31];
(iv) a quasi-stable stochastic process with �nite variance [32]; and (v) a stochastic
process with rare events described by a power-law exponent not falling into the L�evy
regime [33–35]. The above processes are characterized by �nite or in�nite moments.
In an attempt to �nd the stochastic process that best describes stock price dynamics, it
is important to try to preliminarily conclude about the �niteness or in�niteness of the
second moment.
The above answer is not simply obtained [38] and careful empirical analyses must be

performed to reach a reliable conclusion. It is our opinion that an impressive amount of
empirical evidence has been recently found supporting the conclusion that the second
moment of the return pdf is �nite [13,33–37]. This conclusion has a deep conse-
quence on the stability of the return pdf. The �niteness of the second moment and the
independence of successive returns imply that the central limit theorem asymptotically
applies. Hence, the form expected for the return pdf must be Gaussian for very long
time horizons. We then have two regions — at short time horizons we observe lep-
tokurtic distributions whereas at long time horizons we expect a Gaussian distribution.
A complete characterization of the stochastic process needs an investigation performed
at di�erent time horizons. During this kind of analyses, non-Gaussian scaling and its
breakdown has been detected [13,14].

3. Collective dynamics

In the previous sections we have seen that “universal” facts suggest that the stock
price change dynamics in �nancial markets is well described by an unpredictable time
series. However, this does not imply that the stochastic dynamics of stock price time
series is a random walk with independent identically distributed increments. Indeed
the stochastic process is much more complex than a customary random walk.
One key question in the analysis and modeling of a �nancial market concerns the

independence of the price time series of di�erent stocks traded simultaneously in the
same market. The presence of cross-correlations between pairs of stocks has been
known since a long time and it is one of the basic assumptions of the theory for
the selection of the most e�cient portfolio of stocks [39]. Recently, physicists have
also started to investigate theoretically and empirically the presence of such cross-
correlations.
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It has been found that a meaningful economic taxonomy may be obtained by starting
from the information stored in the time series of stock price only. This has been
achieved by assuming that a metric distance can be de�ned between the synchronous
time evolution of a set of stocks traded in a �nancial market and under the essential
ansatz that the subdominant ultrametric associated with the selected metric distance is
controlled by the most important economic information stored in the time evolution
dynamics [40].
Another kind of study is devoted to the detection of the statistical properties of eigen-

values and eigenvectors of the covariance matrix of n stocks simultaneously traded.
Also, with this approach the hypothesis that the dynamics of stock price in a portfolio
of n stocks is described by independent random walks is falsi�ed [41–43]. Moreover,
information about the number of terms controlling eigenvectors can be detected.
The observation of the presence of a certain degree of statistical synchrony in the

stock price dynamics suggests the following conclusion. Consideration of the time
evolution of only a single stock price could be insu�cient to reach a complete modeling
of all essential aspects of a �nancial market.

4. Summary

This communication brie
y discusses some of the stylized “universal” facts that are
observed in �nancial markets and are considered robust by several researchers working
in the �eld. Starting from these results, one can devise studies trying to enrich and
expand this knowledge to provide theoreticians and computer scientists the empirical
facts that need to be explained by their models progressively proposed. The ultimate
goal is to contribute to the search for the best model describing a �nancial market,
one of the most intriguing “complex systems”.
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