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We study thermodynamic and dynamic properties of a rigid model of the fragile glass-forming liquid
orthoterphenyl. This model, introduced by Lewis and Wahnstrom in 1993, collapses each phenyl ring to a
single interaction site; the intermolecular site-site interactions are described by the Lennard-Jones potential
whose parameters have been selected to reproduce some bulk properties of the orthoterphenyl molecule. A
system of N=343 molecules is considered in a wide range of densities and temperatures, reaching simulation
times up to 1 ws. Such long trajectories allow us to equilibrate the system at temperatures below the mode
coupling temperature T at which the diffusion constant reaches values of order 10~ '© ¢cm?/s and thereby to
sample in a significant way the potential energy landscape in the entire temperature range. Working within the
inherent structures thermodynamic formalism, we present results for the temperature and density dependence
of the number, depth and shape of the basins of the potential energy surface. We evaluate the total entropy of
the system by thermodynamic integration from the ideal—noninteracting—gas state and the vibrational en-
tropy approximating the basin free energy with the free energy of 6 N —3 harmonic oscillators. We evaluate the
configurational part of the entropy as a difference between these two contributions. We study the connection
between thermodynamical and dynamical properties of the system. We confirm that the temperature depen-
dence of the configurational entropy and of the diffusion constant, as well as the inverse of the characteristic
structural relaxation time, are strongly connected in supercooled states; we demonstrate that this connection is
well represented by the Adam-Gibbs relation, stating a linear relation between logD and the quantity 1/TS...
This relation is found to hold both above and below the critical temperature 7.—as previously found in the
case of silica—supporting the hypothesis that a connection exists between the number of basins and the
connectivity properties of the potential energy surface.
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I. INTRODUCTION

Understanding the dynamic and thermodynamic proper-
ties of supercooled liquids is one of the more challenging
tasks of condensed matter physics (for recent reviews see
Refs. [1-4] and references therein). A significant amount of
experimental [5-9], numerical [10] and theoretical work
[11-15] is being currently devoted to the understanding of
the physics of the glass transition and to the associated slow-
ing down of the dynamics. Among the theoretical ap-
proaches, an important role has been played by the mode
coupling theory (MCT) [11,12], which, interpreting the glass
transition as a purely dynamical phenomenon, has consti-
tuted a significant tool for the interpretation of both experi-
mental [5,9,16—-19] and numerical simulation results [20—
22] in weakly supercooled states.

In recent years the study of the topological structure of the
potential energy (hyper-) surface (PES) [23,24] and the con-
nection between the properties of the PES and the dynamical
behavior of glass-forming liquids has become an active field
of research. Building on the inherent structure (IS) thermo-
dynamic formalism proposed a long time ago by Stillinger
and Weber [23], the PES can be uniquely partitioned in local
basins and properties of the basins explored in supercooled
states (average basin depth and basin volume) have been
quantified. Studies have mainly focused on two fundamental
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questions: (i) which are the basins relevant for the thermo-
dynamics of the system, i.e., which are the basins populated
with largest probability? and (ii) which are the topological
properties of the regions of the PES actually explored by the
system during its dynamics? From this point of view, the
PES approach has somehow unified, at least on a phenom-
enological level, the thermodynamic and dynamic ap-
proaches to the glass transition.

Numerical analysis of the PES has shown that trajectories
in configuration space can be separated into intrabasin and
interbasin components [25,26]. The time scales of the two
components become increasingly separated on cooling. The
intrabasin motion has been associated with the high-
frequency vibrational dynamics, while the structural relax-
ation (« relaxation) has been related to the process of explo-
ration of different basins. It has also been shown that on
lowering T, the system populates basins of lower and lower
energy [27,28]. The T dependence of the depth of the typical
sampled basins follows a 1/T law [29-31] for fragile liquids,
and, for strong liquids, it appears to approach a constant
value on cooling [32]. The number of basins () as a function
of the basin depth e;¢ has also been recently evaluated for a
few models [29,30,32-35], opening the possibility of calcu-
lating the so-called configurational entropy S. and its T de-
pendence. S, defined as the logarithm of the number of
accessible basins S.=kglog(), has been successfully com-
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pared with theoretical predictions [13,36]. At the same time,
the approaches and the techniques developed for the analysis
of the PES of structural glasses have spread to the field of
disordered spin systems, where similar calculations have
been performed [37] and similar conclusions have been
reached. The evaluation of S, for models of glass-forming
liquids allows us to numerically check, in a very consistent
way, the relation between S, and the systems characteristic
time 7, proposed by Adam and Gibbs [38], and recently “de-
rived” in a novel way [14]. Numerical support for a relation
between the T dependence of S, and the T dependence of 7,
although limited to very few models, is providing new physi-
cal insight on the connection between thermodynamics and
long time dynamical properties. The ideas developed within
the inherent structure formalism have also been generalized
to out-of-equilibrium conditions where the slow aging dy-
namics has been interpreted as the process of searching for
basins of increasingly deep energy [39-42].

In this paper we study the properties of the PES for a rigid
model [Lewis and Wahnstrom (LW)] of the fragile glass
former orthoterphenyl (OTP), first introduced by Lewis and
Wahnstrom [43] and recently revisited by Rinaldi et al. [44].
We have studied the properties of the PES in a temperature
range in which the diffusion coefficient varies by more than
four orders of magnitudes for five different density values.
This work attempts to build a bridge between models of
more direct theoretical interest, like Lennard-Jones (LJ) and
soft spheres, and models which appear to reproduce, even if
in a crude way, properties of complex materials. In this re-
spect, orthoterphenyl is the best candidate, being one of the
most studied glass-forming liquids [17]. The LW model is a
three-sites model, with intermolecular site-site interactions
described by the LJ potential. This model is among the sim-
plest models for a nonlinear molecule. The limitation consti-
tuted by the fact that it does not take into account the internal
molecular degrees of freedom (see [45] for a more realistic
model), is overruled by the observation that its simplicity—it
can be considered as an atomic LJ with constraints—allows
one to reach simulation times of the order of ws. Hence a
significant sampling of the PES in a large temperature and
density range is possible. Moreover, this model constitutes
an ideal bridge between simple atomic models and molecular
models, being possible to treat it under several approxima-
tions [44].

The paper is structured as follows: In Sec. II we briefly
recall the main results of the IS formalism. In Sec. III we
show the calculation of the configurational entropy as a dif-
ference between the total entropy and the vibrational entropy.
In Sec. IV we give some numerical details. We present our
results in Sec. V, which is divided into subsections detailing
the calculation of the total entropy by thermodynamical in-
tegration from the ideal gas state, the study of the vibrational
properties of the PES, and the calculation of the configura-
tional entropy. In the end we study the link between configu-
rational entropy and the diffusion constant, investigating the
validity of the Adam-Gibbs equation. In Sec. VI we finally
discuss our results and we draw some conclusions. In Appen-
dix A we report the analytical calculation of the total entropy
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of a system of LW molecules in the noninteracting “‘ideal
gas” limit.

II. INHERENT STRUCTURE THERMODYNAMICS
FORMALISM

In this section we briefly review the IS formalism in the
NVT ensemble [23,46], the extension to the NPT ensemble
poses no particular problems [23]. This formalism has be-
come an important tool in the numerical analysis of classical
models since it is numerically possible to calculate in a very
precise way the inherent structures (defined as the local
minima of the PES) and hence compare the theoretical pre-
dictions with the numerical results. Given an instantaneous
configuration of the system, a steepest descent path along the
potential energy hypersurface defines the closest IS.

In the IS formalism, the partition function of a system is
written as a sum over all the PES basins. Basins of given IS
energy contribute non-negligibly to the total sum if their IS
energy is very low, if their volume is very large, and/or if
they are highly degenerate, i.e., several basins are character-
ized by this IS energy. This corresponds to partitioning the
phase space in the local energy minima of the PES and their
basins of attraction. Such a partition is motivated by the fact
that in supercooled states, the typical time scales of the in-
trabasin and interbasin dynamics differ by several orders of
magnitude and hence the separation of intrabasin and inter-
basin variables becomes meaningful.

In the 6 N-dimensional configuration space, the partition
function Z for a system of N rigid molecules can be written
as

AAGA )Y
‘= (A—N) f dqexp[—V(q")/kpT], (1)

where " denotes the positions and orientations of the mol-
ecules, V(q") is the potential energy, / w» Where u=x,y,z
are the principal moments of inertia of the molecule,
A,=Q2wlkgT)"?h, and N=h(Q2mwmkpT)~"* is the
de Broglie wavelength.

Let QQ(E;g) denote the number of minima with energy
E;s, and f(T,E;g) the average free energy of a basin with
basin depth E;g. f(T,E}g), which takes into account both the
kinetic energy of the system and the local structure of the
basin with energy E;g, is defined by

(AAA)Y 1
AN Q(Es)

f(T’EIS) =— kBTll’l

X

basins

dq"exp[ = (V—E5)/kpT]|.

Ryasin

2)

where R, is the configuration volume associated with the
specific basin. The partition function can then be rewritten as
a sum over all basins in configurational space, i.e.,

041205-2



DYNAMICS AND CONFIGURATIONAL ENTROPY IN THE. ..

Es+f(T,Eps)
%5

Z=2, Q(Es)exp
Eg

=2 exp

( - TS(Es)+Es+f(T,E)
Ejg

where the configurational entropy S.(E;g) has been defined
as

S (Ers)=kpn[Q(Es)]. (4)

In the thermodynamic limit, the free energy of the liquid
can be calculated using

Fle(T)1=eis(T)+ f[T,e;s(T)] =TS [es(T)],  (5)

where e;¢(T), the average value of the IS energy at tempera-
ture T, is the solution of the saddle point equation

af Js.

OE; T =0. (6)

1+ —°=
JE 15

The liquid free energy expression Eq. (5) has a clear inter-
pretation. The first term in Eq. (5) takes into account the
average energy of the PES minimum visited, the second term
describes the volume of the corresponding basin of attraction
and the kinetic energy, and the third term is a measure of the
multiplicity of the basin.

It can be rigorously shown [31,46,29] that, if the density
of state (J(E ) is Gaussian, and if the basins have approxi-
mately the same shape or are, to a good degree, harmonic,
the important relation holds,

1
ers(T)ex T (7)

On lowering 7, basins with lower E;¢ energies and lower
degeneracy are populated, i.e., both e;¢ and S, decrease with
T.

III. EVALUATION OF THE CONFIGURATIONAL
ENTROPY

The Eq. (5) provides a natural starting point for a numeri-
cal evaluation of the configurational entropy. Indeed, the free
energy F(T,V) per molecule can be split in the usual way as
a sum of an energy and an entropic contribution. Considering
Eq. (5) we write

F(T)=E(T)—TS(T)
=—TS(T)+e;s(T)+E,(T)=TS,(T), (8

where the index v indicates the vibrational quantities (intra
basin components). In order to evaluate these quantities we
calculate the basin free energy as the free energy of 6 N—3
independent harmonic oscillators [34] plus a contribution
that takes into account the basin anharmonicities. Then we
can write
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_( S)kBT
E(T)=|6-5| >

S(T):SU(T)+SC(T):Sharm(T)+Sanh(T)+Sc(T)a

tes(T)+ Upn(T), )

and
6N—-3
31 fo, (T)
Sharm_(6_ﬁ)_1v nzl 6T | (11)

where the frequencies w,, are the square root of the eigenval-
ues of the Hessian matrix calculated in the inherent struc-
tures.

Thus, the total entropy is the sum of two contributions:
S.(T) which accounts for the multiplicity of basins of depth
e;s(T), and S,(T) which accounts for the “volume™ of the
basins. The last equations give us, in a very transparent way,
the physical meaning of the partition of the PES; moreover,
they provide us with a very efficient way to calculate the
configurational entropy as a difference between the total en-
ergy of the system and the vibrational entropy.

The total entropy S can be evaluated via thermodynamic
integration, starting from a known reference point. Every
variation of total entropy can be generally written as the sum
of variation along isochores and isotherms in the form

Then the change of entropy along an isochore between two
temperatures 7 and T is

_ rdT’
ASV=S(V,T)—S(V,T)=JT7CU(T’) (13)

and the change along an isotherm between two volumes V
and Vis

AS,=S(V,T)=S(V,T)
1 _ Voo
== E(V,T)—E(V,T)+j7 dVP(V,T)}. (14)
\4

In the present case, to evaluate the total entropy of the liquid
we start from the known expression of the ideal gas of LW
molecules, reviewed in the Appendix. To evaluate the basin
free energy f(T,e;s(T)), we select as a reference point the
free energy of (6N—3) independent harmonic oscillators
(whose distribution of frequencies can be calculated evaluat-
ing the eigenvalues of the Hessian matrix evaluated in the IS
structure) and add corrections to take into account the basin
anharmonicities.The harmonic contribution to the entropy is
given by Eq. (11).

Assuming that the anharmonic contribution is indepen-
dent from the basin depth, the anharmonic corrections to the
entropy at T can be calculated integrating the quantity
dU /T, where U, is implicitly defined in Eq. (9), from
T=0 to T [see Eq. (13)].
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TABLE 1. Densities, volumes, and simulation box lengths cal-
culated.
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TABLE II. Temperatures (in K) for which calculations are per-
formed.

k pi (g/em’) Vj (nm’) Ly (nm) P1 P2 P3 P4 pPs
1 1.036 126.647 5.022 170 190 230 280 320
2 1.060 123.883 4.985 185 200 240 300 340
3 1.083 121.120 4,948 190 210 260 320 360
4 1.108 118.356 4910 195 230 280 340 380
5 1.135 115.593 4.871 210 250 300 360 400
220 280 320 380 420

240 300 340 400 440

IV. NUMERICAL DETAILS 260 320 360 420 460

280 340 380 440 480

The LW OTP molecule [43] is a rigid three-site planar 300 360 410 460 530

isosceles triangle; the length of the two short sides of the 480

triangle is 0=0.483 nm and the angle between them is 6
=5m/12 (75°). Each site represents an entire phenyl ring of
mass m=6m =78 amu, where m, is the mass of the car-
bon atom. For each pair of interacting molecules, nine site-
site interactions are evaluated according to the site-site inter-
action potential

+)\1+A2r, (15)

where r is the site-site distance, €=5.276 klJ/mol, o
=0.483 nm A =0.461 kJ/mol and A ,= —0.313 kJ/(mol nm).
The parameters of the potential are selected to reproduce
some bulk properties of the OTP molecule [43] such as the
temperature dependence of the diffusion coefficient and the
structure. The values of A; and A, are selected in such a way
that the potential and its first derivative are zero at r,
=1.2616 nm. Such a potential is characterized by a mini-
mum at 7=0.542 nm of depth —4.985 kJ/mol. The integra-
tion time step is 0.01 ps. The shake algorithm is implemented
to account for the molecular constraints.

We study a (N,V,E) system composed by N=343 mol-
ecules (1029 LJ interaction sites) at five different densities
(see Table I) for several temperatures at each density (Table
II). The overall total simulation time, comprising thermaliza-
tion and production runs at all the thermodynamic points
investigated, exceeds 10 us. We carefully check the ther-
malization of the system at the lowest temperatures. The
lengths of the thermalization runs cover a time interval dur-
ing which each molecule has moved (on average) a few
times o. This time is calculated by monitoring the mean
square displacement. We study also the time dependence
of the intermediate scattering function F(Q,,t)
=<pQM(t)p3M(O)); here Q,, is the value of momentum Q

locating the first maximum of the static structure factor
S(Q). We confirm that this correlation function has decayed
to zero during the equilibration time. Moreover, we ensure
that no drift in the one-time quantities is observed during the
production run. The lengths of the equilibration runs range
from a few nanoseconds at the highest temperatures to sev-
eral hundred nanoseconds at the lowest temperatures. We
have been able to equilibrate the system in a 7" range over

which the diffusion constant changes from 10°° to
10719 e¢m?/s, i.e., over four orders of magnitude.

After the thermalization run, the production run takes
place. The length of each run is always several times longer
than the estimated relaxation time. This allows us to collect,
for each thermodynamic point, a set of configurations which
are to a good extent uncorrelated from one an other.

Two additional simulations are performed to connect the
range of densities and temperature studied with the ideal gas
reference point. The system at density p, is simulated for
temperatures ranging from 280 to 5000 K to evaluate the T
dependence of the potential energy. A second set of simula-
tions at constant 7 (T=5000 K) in the volume range 10?
—10° nm?® is performed to calculate the excess pressure
(i.e., the pressure beyond the ideal gas contribution).

To calculate the inherent structures visited in equilibrium
we perform conjugate gradient minimizations to locate the
closest local minima on the PES. We use a tolerance of
10715 kJ/mol in the total energy for the minimization. For
each thermodynamical point we minimize at least 100 con-
figurations and we diagonalize the Hessian matrix of at least
50 configurations to calculate the density of states. The Hes-
sian is calculated choosing for each molecule the center of
mass and the angles associated with rotations around the
three principal inertia axis as coordinates.

Error bars have been calculated for all the simulation re-
sults points presented in the paper [47]. Due to the length of
the production runs, several times longer than the relaxation
times, only configurations sufficiently uncorrelated have
been used to calculate the different observables. The error
bars have then been calculated using the standard relation for
calculating errors. We show the error bars only when the
amplitude of the error is larger than the size of the symbol
used for the data point.

V. RESULTS
A. Dependence of the total entropy on 7 and p

To estimate the total entropy for the model we proceed in
three steps as shown in Fig. 1. The thermodynamic path has
been chosen to avoid the liquid-gas first order line.
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h
VS V4V3V2V1
10° )
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Volume [ nm : 1

FIG. 1. Thermodynamic integration paths used to calculate the
total entropy at the thermodynamical points of interest starting from
the ideal—noninteracting—gas state. Details are given in the text.

(1) Integration along the isotherm T(=5000 K from
(Ty,V=00) (perfect gas) to (T,, V,=118.356 nm?), corre-
sponding to point C, in Fig. 1. The ideal gas contribution to
the total entropy is discussed in the Appendix. The entropy at
Cy can be calculated as

U(Ty,Vs) VadV
( ](—)- u +J ‘ Pex(V7T0)=
0

S(To,V4)=Sia(Ty,V4)= T
» Iy

(16)

where P,, is the pressure that exceeds the pressure of the

ideal gas, i.e., the contribution to the pressure due to the

interaction potential and U is the system potential energy.

The values of the pressure P, (T=T,,V,N=343) as a func-

tion of V are reported in Fig. 2(a). P, (T=T,,V,N=2343)
has been fit using the virial expansion

4

P, (T=T,,V.N=343)= >, a,V~**". (17)
k=1

The a; values are reported in Table III, from which we esti-
mate the first virial coefficient at T,

By(Ty)=a,/(kzTyN*)=0.596 nm?. (18)

In Fig. 2(b) we plot the potential energy as a function of
volume along the T=T isotherm.

The total entropy at the reference point Cy is S(Cg)
=294.8 J/(mol K), resulting from the sum of three contri-
butions

S,4(Co)=339.03 J/(mol K), (19)

vadV
= J T_Pex(V, Ty)=—44.9 J/(mol K), (20)
« T

and
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10° O MD results
— Fit polynomial of degree 3
102 L ——— Virial
— 10"
[
€ 10}
“q0t [
o510
100
10° [ (a) T=5000[K]
10*1 1 1
10’ 10’ 10° 10°
Vinm®]
5
%‘ 0
]
Z -5
> 10
jon
-15
(b) T=5000[K]
=20 5 3 v 5

10 10

Vinm®]

FIG. 2. (a) Excess pressure at 7=5000 K as a function of vol-
ume. The open circles are the MD results. The dashed line is the the
first term of the virial expansion to the excess pressure; the solid
line is a third order polynomial fit to the entire set of data. (b)
Potential energy at 7=5000 K as a function of volume.

U(Cy)

0

=0.64 J/(mol K). (21)

(2) Integration along the isochore V=V, from T, to T*
=380 K, corresponding to point C; in Fig. 1. To evaluate
the entropy along this isochore we use

S(T*,V,)=S(Ty.,Vs)+3Rlog(T*/T,)

. fT*d_T Vi T) o)

r, T dT

TABLE III. Fitting coefficients for the excess pressure as a func-
tion of 1/V at T=5000 K and at T=380 K.

a; (MPa nm3( 1) p¥ (MPa nm3¢*1)

~.

1 4835.96272x 10° 15943.2

2 1000.53765% 10° —256.591
3 9654.69470% 10° 1.1745

4 3873.87001 % 10'° —0.00111551
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FIG. 3. (a) Integration step 2. Potential energy (open circles) at
the density p, in the entire temperature range considered; the solid
line is the fit of the data to Eq. (23). The inset shows the lowest
temperature region in order to stress the accuracy of the fit. (b) and
(c) Integration step 3. Potential energy (b) and pressure (c).

Figure 3 (a) shows the potential energy for the V=V, isoch-
ore. To calculate the integral in Eq. (22), we fit the potential
energy using the functional form which best interpolates the
calculated points

U(Vy,T)=ug+u, T+ u,T, (23)

obtaining the values uy=—94.405,u,=0.533,u,=0.00183
(energy in kJ/mol).

The total entropy at the reference point C; is S(C;)
=191.8 J/(mol K), resulting from the sum of three contri-
butions:

S(Cy)=308.6 J/(mol K), (24)
3R log(1/5000)= — 64.3 J/(mol K), (25)
and

JTMT&U(V“’T)— 52.5 J/(molK 26
SRS MK (26)

(3) Integration along the isotherm 7T* from V, to a “ge-
neric” V. To determine the total entropy difference for all
studied densities we calculate
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TABLE IV. Total entropy at five densities for the reference tem-
perature T*.

k S(T*) [J/(mol K)]
1 192.80
2 188.21
3 183.54
4 177.95
5 172.12

S(T*,V)_S(T*,V4):S,d(T*, V)_S,‘d(T*,V4)

+ %[U(T*,V)—U(T*,V@]

vav'
+ V4FP”(T ,V ) (27)

Figures 3(b) and 3(c) show, respectively, the potential energy
and the excess pressure as a function of volume at T=T%*,
For convenience we fit P,, with a third order polynomial

4
mx(T’*:V)=k2l pEVETY (28)

where the values of the coefficients p are given in Table IIL
The resulting total entropy at 7% for all studied densities is
reported in Table IV. These values are used as reference
entropies for the 7" dependence of S. For each of the studied
isochores, we calculate the 7" dependence of the total entropy
according to Eq. (22). In this low T range, the potential en-
ergy is very well represented by the Rosenfeld-Tarazona law
[48]

UV, T)=UyV)+ a(V)T*? (29)

consistent with what was found for LJ systems. In Fig. 4 we
show the temperature dependence of the potential energy at
all densities. The best-fit Uy(V) and a(V) values are re-
ported in Table V. The calculated total entropies at each con-
sidered density are plotted in Fig. 5.

TABLE V. The first two columns are the coefficients for the
potential energy U(T,V)=Uy(V)+ a(V) T33: the second two col-
umns are the coefficients for the inherent structures e;o(V,T)
=A(V)+B(V)IT.

pr  Ug (kI/mol) a (kITK */mol) A (kI/mol) B (kI T/mol)

1 —86.30 0.4385 —79.11 —285
2 —88.94 04716 —80.14 —436
3 —92.07 0.5231 —81.88 —676
4 —95.23 0.5762 —81.36 —965
5 —96.06 0.5731 —81.89 —1100
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-
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=
e
-79 - - - :
20 25 30 35 40

TS/S[KJ/’S]

FIG. 4. Potential energies at the different densities as a function
of T35, The straight solid lines show the validity of the Rosenfeld-
Tarazona law, Eq. (29).

B. Dependence of the inherent structure energies on 7 and p

In Fig. 6 we show the temperature dependence of the
energy of the calculated inherent structures together with a fit
[according to Eq. (7)] in the form

B(V)
ers(V.T)=A(V)+ - (30)

The values of the fitting coefficients A(V) and B(V) are
reported in Table V. On lowering temperature the system
populates minima of lower and lower energy. It is worth
noting that, in contrast to the case of the actual potential
energy, the slope of these curves varies strongly with densi-
ties.

From the 7" and V dependence of e;¢ the anharmonic po-
tential energy can be calculated according to Eq. (3). Figure
7 shows U ,,,(T) for two densities (symbols). We also show
a cubic extrapolation (solid lines) in the form of

U T)=c,T?+ 5T, (31)
—
— 190 | E
N4 M
3170 | 1
g |
g |
= 150 | :
= |
E 130 t Py |
= &—ap, I
E ~——*p, :
S 1ot o—op, !
= —¥p, : T*
90 ‘ : L
100 200 300 400 500

Temperature [ K ]

FIG. 5. Temperature dependence of the total entropy as calcu-
lated by thermodynamic integration from the ideal gas reference
state. Only points in the temperature range where MD measure-
ments have been performed are shown. The reference temperature
T*=380 K is also shown (dashed line).
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FIG. 6. Energies of the inherent structures at the different den-
sities as a function of 1/7. The straight lines confirm the validity of
Eq. (30) in the entire temperature range considered.

As shown in Fig. 7, the anharmonic contribution is rather
small, in agreement with previous findings for the LJ model.
For this reason, the low signal to noise level does not allow
a well-defined characterization of the ¢, and c3 values. To
decrease the number of free parameters, we consider ¢, to be
volume independent, and we fit simultaneously, according to
Eq. (31), ¢, and the V dependence of c3. As we will show in
the following, the anharmonic contribution to the entropy is
much smaller than the harmonic one and hence the choice of
¢, and c3 does not affect significantly the resulting configu-
rational entropy estimate.

C. Density of states and vibrational harmonic entropy

In this section we study the shape of the basins by inves-
tigating the properties of the density of states and we calcu-
late the vibrational harmonic entropy. In Figs. 8(a) and 8(b)
we show the temperature and density dependence of the den-
sity of state, namely the histogram of the square root of the
eigenvalues of the Hessian calculated for the inherent struc-
tures. The distribution is characterized by only one peak, not
showing any clear separation between translational and rota-

0.0 : ; :
—01f 1
= i |
\E -0.2 .
=
2 03 f " ]
3 0.4
C oal o /1
E - P 1 o 6 o]
S s OPs T o0 1
-0.6 I | I I
0 100 200 300 400 500

Temperature [ K ]

FIG. 7. Anharmonic contributions to the energies, at the two
indicated densities, together with the appropriate cubic fit, Eq. (31).
This contribution is integrated to directly calculate the anharmonic
contribution to the vibrational entropy.
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FIG. 8. (a) Density of states at fixed density p, at the three
indicated temperatures. This quantity is the histogram of the square
root of the eigenvalues of the Hessian calculated for the inherent
structures. (b) Density dependence of the density of state at fixed
temperature 7=320 K. The dashed line indicates the isosbestic
frequency w*~44 cm™' at which all the curves intersect. The rel-
evance of this feature is discussed in the text.

tional dynamics; the width of the distribution increases on
increasing temperature. The position of the maximum is
found to be to a good extent independent of temperature; at
variance it increases with density as the width does. These
features show that the LW PES basins have shapes that are
function of the energy depth and of the density.

It is worth noticing one particular feature of Fig. 8(b); all
the curves cross at a value of the frequency w*~44 cm .
The presence of this isosbestic frequency (in analogy with
the well-know isosbestic frequency observed in the Raman
spectrum of water [49]) supports the possibility that a two-
state model [50] may provide a reasonable description of the
change of the density of states with temperature and, corre-
spondingly, of the change of the density of states with the
basin depth.

In Figs. 9(a) and 9(b) we plot the quantity
N_IE,EZISIOg(w,\./wO) as a function of T and of the ey, re-
spectively. The scale frequency w is chosen as 1 cm™'.
This quantity is an indicator of the average curvature of the
basins and, being a sum of logarithms, is very sensitive to the
spectrum tails. As shown in Fig. 9(a) N~ lEfZﬁlog(wk/wo)
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FIG. 9. (a) Temperature dependence of the average basin curva-
tures N~ IEGN zlog(cuA/cuo) this quantity, being a sum of loga-
rithms, is very sensitive to the spectrum tails. wo=1 cm™ ' sets the
frequency scale. (b) Relation between the energy of the inherent
structures and the average basin curvatures. The straight lines con-
firm the correlation between shape and depth of the inherent struc-
tures accessed by the system.

increases with temperature along isochores and increases
with density along isotherms.

As noted previously for the LT [51,29] and for the simple-
point charge extended (SPC/E) model for water [30], the
dependence of N”Efi]ﬁlog(wk/wo) from e;¢ can be well
approximated by a linear dependence, i.e.,

6N-3

—Z

=1

ho,(T)

| AV We(T). ()

TABLE VI. Coefficients of the fit to the form
N2 log(@ o) =a(V)+b(V)er(D).

P a(V) b(V)
(mol/kJ)
| 47.1 0.342
2 412 0.259
3 36.5 0.192
4 32.1 0.132
5 28.9 0.869
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FIG. 10. Main panel: Harmonic contribution to the vibrational
entropy as calculated from the eigenvalues of the Hessian for the
inherent structures. Inset: Anharmonic contribution to the vibra-
tional entropy as calculated by integration of the anharmonic con-
tribution to the potential energy, as discussed in the text.

where T, defines the T scale (Tj=1 K). The values of the
coefficients a(V) and b(V) are reported in Table VI. This
dependence indicates that deeper and deeper basins have
larger and larger volumes (their average frequency being
smaller). The fact that basins of different depths have differ-
ent volumes introduces an important contribution to Eq. (6)
since the term df/de g is different from zero. The implication
of this nonzero contribution has been discussed recently in
Refs. [29,51,52].

In Fig. 10 we show the harmonic contribution to the en-
tropy as calculated from Eq. (11). This contribution is obvi-
ously increasing with temperature and along isotherms in-
creases decreasing density. The lines are interpolations of the
data using the fits of Fig. 9.

D. Vibrational anharmonic entropy

Integration of the anharmonic energy U, , obtained from
Eq. (9) according to Eq. (13), gives directly the anharmonic
contribution to the entropy. For the LW case, U,,, is de-
scribed by the polynomial in T of Eq. (31), and we obtain

3
Sun(T)=2¢,T+ EC3T2. (33)

The inset of Fig. 10 shows the anharmonic contribution to
the vibrational entropy as calculated by integrating the an-
harmonic contribution to the potential energy. This contribu-
tion is negative showing that, in the range of densities and
temperatures studied, the leading anharmonic contribution
acts in the direction to decrease the volume of the basin.

E. The configurational entropy

In Fig. 11 we plot the configurational entropy calculated
subtracting the vibrational (sum of the harmonic and anhar-
monic terms) from the total entropy for the five studied iso-
chores. As expected the degeneracy of basins increases on
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FIG. 11. Volume and temperature dependence of the configura-
tional entropy S, calculated as the difference between the total and
the vibrational entropy. Solid lines are interpolations of the calcu-
lated points to Eq. (34).

lowering density, in agreement with the evidence that a glass
transition may be induced along an isothermal path by pro-
gressively increasing the pressure. Considering Egs. (10),
(11), (30), (32), and (33), the configurational entropy can be
described in the entire density and temperature range consid-
ered by means of the functional form

- ( 3 B(V)
SAT)=S(1)~|6-% }

+a(V)+b(V)[A(V)+T

3
—2¢,T— =c5T%

. (34)

These curves are plotted in Fig. 11 as solid lines. In the range
of temperatures and density studied, S./R per molecule var-
ies from about 4 to 3, a figure not very different from the
estimated configurational entropy of orthoterphenyl, based
on an analysis of the T dependence of the measured specific
heat [53,54]. We recall that the LW model represents each

= 200 . ; . :

M M
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FIG. 12. Temperature dependence of the different contributions
to the total entropy (closed triangles) at the fixed selected density
p4: harmonic (open squares), configurational entropy (closed
circles), and anharmonic (open diamonds).
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FIG. 13. Diffusion constants together with the corresponding
power law fits (solid lines) predicted by the MCT. The breakdown
of this prediction and the crossover to an activated dynamics is
evident. See text for a discussion of this point. (a) As a function of
temperature. (b) As a function of the inverse temperature in order to
stress the exponential dependence at the lowest temperatures.

phenyl group as one single interaction site and it does not
account for the the molecule flexibility. The similar estimate
of S, seem to suggest that steric effects are dominant in
controlling the configurational entropy. Finally, in Fig. 12 we
plot the temperature dependence of all the contributions to
the entropy at p,.

F. Diffusion and the Adam-Gibbs relation

In order to investigate the connection between the long
time dynamics of the system and the underlying PES, we
calculate the center-of-mass diffusion coefficient D(7T) from
the mean-square displacement (r%(¢,T)) via the Einstein re-
lation

D(T)= limé(rz(t,T)) (35)

t—

To guarantee a proper diffusive regime, at all densities simu-
lations are performed until the average mean square displace-
ment is greater than 0.1 nm? at the lowest temperatures and
10 nm? at the highest. The inverse of the diffusion coeffi-
cient provides an estimate of the characteristic structural re-
laxation time of the LW model.
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FIG. 14. MCT parameters as calculated from the diffusion con-
stants. Main panel: Critical temperature T.(V) (open circles) to-
gether with the value calculated in Ref. [44] (closed circle). The
dashed line is only a guide for the eye. Inset: Power law exponent

(V).

The D values calculated are shown in Fig. 13. Figure
13(a) shows the dependence on T, while Fig. 13(b) shows the
dependence on 1/T. Figure 13(a) also shows the best fits to
the power law

D(T)=(T—=T.)" (36)

predicted by the ideal MCT in weakly supercooled states.
The consistency of the MCT prediction for a wide range of D
values confirms the analysis of Rinaldi et al. [44] where ex-
plicit ideal MCT calculations were presented and success-
fully compared with the numerical results along one isobar.
Figure 13 shows also that clear deviations from the ideal
MCT take place when the diffusion value becomes smaller
than 10~8 cm?/s. The representation of D as a function of
1/T shown in Fig. 13(b) shows that the ideal MCT region is
followed by a T region where new types of processes become
effective in controlling the molecular dynamics. These pro-
cesses, termed hopping processes, transform the ideal MCT
divergence of characteristic times into a crossover. In the
region of D values between 10~% cm?/s and 10~ '© cm?/s,
limited from below by the present numerical resources, data
are consistent with an apparent Arrhenius dependence with
parameters which could well become 7 dependent if studied
in a larger range of D values [3].

The ideal MCT critical temperatures and y values, deter-
mined by the fit of the D values to Eq. (36), as a function of
density are shown in Fig. 14. The density dependence of T
is almost linear. The exponent y seems to increase on in-
creasing density, but the noise does not allow us to rule out
the possibility of a constant value. The filled circle indicates
the value of the critical temperature 7.=265 K determined
from an isobaric run in Ref. [44].

We finally study the link between configurational entropy
and diffusion coefficient, investigating the validity of the
Adam-Gibbs equation. Figure 15 shows log D as a function
of 1/(TS); for all studied isochores, log D vs 1/(TS ) is well
described by a linear relation, with coefficients which are
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FIG. 15. Test of the Adam-Gibbs relation log D(T)*(1/TS ) for

five different densities. Note that this linear relation holds both
above and below the estimated critical temperatures 7',..

volume dependent, as previously found for the LJ liquid
[29], for the SPC/E model for water [34] and for the BKS
model for silica [32].

We note in passing that deviations from linear behavior
are observed at large values of log D, where intrabasin and
interbasin dynamics time scales are no longer separated. At
high T, it has been proposed [55] that entropy—as opposed
to configurational entropy—is the relevant thermodynamic
quantity controlling dynamics.

VI. DISCUSSION AND CONCLUSIONS

In this article we have studied systematically the proper-
ties of the potential energy surface for a simple three-site
rigid model designed to mimic the properties of the fragile
glass-forming liquid ortho-terphenyl. The choice of this
simple model, which collapses the entire phenyl ring into
one interaction site, allows us to run very long trajectories
and to study in supercooled states the molecular dynamics up
to 1 us, allowing the determination of diffusion coefficients
down to 1071% cm?/s.

We have found that, as in the atomic LJ case, by cooling
along an isochore, basins of the PES of deeper and deeper
energy are explored. The basin volumes are functions of the
depth in agreement with previous studies. Using the inherent
structure thermodynamic formalism, we have calculated the
number of basins of the PES and their depth, in the region of
depth values probed by our simulations. As a result, we pre-
sented a full characterization of the the temperature and den-
sity dependence of the basin depth, degeneracy, and vol-
umes.

These results are used to provide a consistent model for
the intrabasin vibrational entropy. This, together with the nu-
merical calculation of the total entropy via thermodynamic
integration starting from the ideal gas state, allow us to cal-
culate the configurational entropy—the difference between
the total entropy and the vibrational one. This quantity is of
primary interest both for comparing with the recent theoret-
ical calculations [13,36] and to examine some of the pro-
posed relation between dynamics and thermodynamics
[38,14,56] connecting a purely dynamical quantity like the
diffusion coefficient to a purely thermodynamical quantity

PHYSICAL REVIEW E 65 041205

(S.). To examine such a possibility we compare for five
different isochores the 7" dependence of D with the Adam-
Gibbs relation. In the entire range of 7 and densities studied
the Adam-Gibbs relation appears to provide a consistent rep-
resentation of the dynamics for the LW model.

It is important to observe that a linear relation between
logD and 1/(TS,) holds both above and below the ideal
MCT critical temperature 7., in agreement with a similar
finding for the silica case [32]. Recent works based on the
instantaneous normal mode technique [57] for several repre-
sentative models [58—62] provide evidence that above T, the
system is always located in a region of the PES close to the
border between different basins. The number of diffusive di-
rections significantly decreases above T, and, if only data
above T, are considered, the number of diffusive directions
would appear to vanish at 7,.. Hence dynamics above T, is a
dynamics of ““borders” between basins and there is no clear
reason why such dynamics should be well described by the
Adam-Gibbs relation, which focuses on the ‘“‘number’ of
basins explored. The observed validity of the AG relation—
both above and below T .—reported in this manuscript sup-
ports the hypothesis that a direct relation exists between the
number of basins and their connectivity [60,62]. Tt is a chal-
lenge for future studies to confirm or disprove this hypoth-
esis.
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APPENDIX: IDEAL GAS ENTROPY FOR THE LW MODEL

In this appendix we calculate the partition function of a
system of N LW molecules in the noninteracting—ideal
gas—case.

The three moments of inertia for the single molecule are

2 4
I_ngmazcosz(z) =1.248X10"* kgm?,

0
1= 2m(r2sin2( 5) =2204X10"* kgm?, (A1)
and

2

2 0 0
Z cos?| = -2 2] = —44 2
3 cos (2)+2 sin (2” 3.452X10 kg m*.

I.=mo
We define the following quantities:

6mmkpg
h2

_ 8kl

l_L 9
h2

., R (A2)

where w denotes x, y, or z. The translational and rotational
partition functions for the single molecule are, respectively
[63],

041205-11



S. MOSSA et al.

Z(T,V)=V(AT)?, (A3)
Zo(T,V)= %\/E VR,R,R T3, (A4)

so the total partition function for an ideal gas of LW OTP
molecules can be expressed as

Zi(T,V,N)= ———

N
(ZZVZ;R) ‘ (A5)

We approximate N!~N"e V. The free energy F,;, and the
entropy S, of the non-interacting system then become

PHYSICAL REVIEW E 65 041205
Fif(T,V,N)=—kgTIn[ Z;,(T,V,N)]

1
72+ InVyARR,R,

=N

+3InT—InN+1

1 9
Sid(T’V7N):_ EﬁFid(T7 VvN) (A6)

:NkB

1
4+ Elnﬂ'—ln2

VAR, R,R. Tﬂ ]
N

+1In (A7)

where the term In2 is due to the two possible degenerate
angular orientations of the molecule [63].
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