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We propose a method to generate a sequence of random numbers with long-range power-law correlations
that overcomes known difficulties associated with large systems. The method presents an improvement on the
commonly used methods. We apply the algorithm to generate enhanced diffusion, isotropic, and anisotropic
self-affine surfaces, and isotropic and anisotropic correlated percolation.
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I. INTRODUCTION

Recently, the study of physical systems displaying long-
range power-law correlation has attracted considerable atten-
tion. Long-range correlations have been found in a wide
number of systems, including biological, physical, economi-
cal, geological, and urban systems @1#. Attempts to study and
characterize such systems are often based on numerical
methods to generate correlated noise @2,3#. One of the most
used methods to generate a sequence of random numbers
with power-law correlations is the Fourier filtering method
~FFM! @2,4,5#. It consists of filtering the Fourier components
of an uncorrelated sequence of random numbers with a suit-
able power-law filter in order to introduce correlations
among the variables. This method has the disadvantage of
presenting a finite cutoff in the range over which the vari-
ables are actually correlated @4–6#. As a consequence, one
must generate a very large sequence of numbers, and then
use only the small fraction of them that are actually corre-
lated ~this fraction can be as small as 0.1% of the initial
length of the sequence @4,5#!. This limitation makes the FFM
unsuitable for the study of scaling properties in the limit of
large systems.

Here we modify the FFM in order to remove the cutoff in
the range of correlations. We show that in the modified
method the actual correlations extend to the whole system.
We also apply the method to generate several systems such
as fractional Brownian motion, self-affine surfaces, and long-
range correlated percolation.

II. FOURIER FILTERING METHOD

We start by defining the FFM @2,4,5# for the d51 case
(d is the dimension of the sample!. Consider a stationary
sequence of L uncorrelated random numbers $u i% i51, . . . ,L .
The correlation function is ^u iu i1l &;d l ,0 , with d l ,0 the
Kronecker delta, and the brackets denote an average with
respect to a Gaussian distribution. The goal is to use the
sequence $u i% in order to generate a new sequence $h i% with
a long-range power-law correlation function C(l ) of the
form

C~ l ![^h ih i1l &;l
2g ~ l →` !. ~1!

Here, g is the correlation exponent, and the long-range cor-

relations are relevant for 0,g,d , where d51. The spectral
density S(q) defined as the Fourier transform of C(l ) @7#
has the asymptotic form

S~q !5^hqh2q&;q
g21 ~q→0 !. ~2!

Here $hq% corresponds to the Fourier transform coefficients
of $h j%, and satisfies

hq5@S~q !#1/2uq , ~3!

where $uq% are the Fourier transform coefficients of $u i%.
The actual numerical algorithm for FFM consists of the

following steps.
~i! Generate a one-dimensional sequence $u i% of uncorre-

lated random numbers with a Gaussian distribution, and cal-
culate the Fourier transform coefficients $uq% @8#.

~ii! Obtain $hq% using ~2! and ~3!.
~iii! Calculate the inverse Fourier transform of $hq% to

obtain $h i%, the sequence in real space with the desired
power-law correlation function ~1!.

III. PRESENT METHOD

The FFM method has been applied in a number of studies
of correlated systems @1,4,5#. However, an analysis of the
method for large L shows that, by following the above pro-
cedure, one ends up with a sequence of correlated numbers
whose range of correlations, for d51, is only about 0.1% of
the system size. For example, from an initial sequence of
106 numbers, only 103 numbers show the desired power-law
correlations @4#. For d52, the range of correlations increases
to 1% of the system size @5#. In order to remove this artificial
cutoff in the correlations, we modify the FFM algorithm as
follows.

~a! To calculate the spectral density S(q), a well-defined
correlation function in the real space is needed. The function
C(l )5l

2g has a singularity at l 50. We replace ~1! with a
slightly modified correlation function that has the desired
power-law behavior for large l , and is well-defined at the
origin,

C~ l ![~11l
2!2g/2. ~4!

~b! The relation ~3! is based on the convolution theorem,
and therefore the desired correlation function ~4! must satisfy
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the proper periodic boundary condition. The function C(l )
can be naturally extended to negative values of l due to the
l
2 dependence. We define ~4! in the interval

@2L/2, . . . ,L/2# , and impose periodic boundary conditions,
i.e., C(l )5C(l 1L).

~c! The discrete Fourier transform of ~4!— needed to ob-
tain hq using ~3!— can now be calculated analytically,

S~q !5

2p1/2

G~b11 ! S q2 D
b

Kb~q !, ~5!

where q takes values q52pm/L with m52L/2, . . . ,L/2,
Kb(q) is the modified Bessel function of order
b5(g21)/2, and G is the gamma function.

The modified Bessel functions satisfy the asymptotic re-
lations

Kb~q !5H G~b !

2 S q2 D
b

if q!1

A p

2q
e2q if q@1,

~6!

for b positive and by definition K2b5Kb . Then for small
values of q , ~5! gives the same asymptotic form as ~2!. How-
ever, the Bessel function introduces a cutoff for large q in the
sense that S(q) has a faster exponential decay. This cutoff,
while irrelevant to the long-distance scaling, is very impor-
tant for the validity of the whole Fourier analysis because it
avoids aliasing effects ~see Chap. 7 in @9#!. The cutoff in the
Fourier space is thus responsible for eliminating the cutoff in
real space observed in the FFM.

In order to perform the above steps numerically, we em-
ploy the fast Fourier transform @9,10#. Due to the periodic
boundary condition imposed on the correlation function, it
follows that the correlated sample satisfies the same period-

icity. If one requires a sequence with open boundary condi-
tions, we generate twice as many numbers and then split the
sequence into two parts @11#.

To test the actual correlations of the generated sample
$h i% we calculate C(l ) averaging over different realizations
of random numbers. Figure 1 shows a plot of the actual
correlations obtained for different values of g and for a se-
quence of L5221 numbers. It is seen that the long-range
correlations exist for the whole system. The nominal values
of g obtained from the best fits are also the same, within the
error bars, as the desired input values.

To summarize the method, the correlation function we
propose is well-defined and satisfies the correct power-law
behavior in the real space. Its Fourier transform has the cor-
rect power law at small frequencies, and presents a cutoff for
large frequencies that avoids aliasing effects, and leads to the
infinite long-range behavior in real space. An alternative
method in which S(q) was calculated numerically, in con-
trast to the analytical expression ~5!, is given in @12#.

IV. APPLICATIONS

In the following we apply the proposed method to several
physical problems.

A. Generating fractional Brownian motion „FBM…

We map the variables $h i% onto the steps of a correlated
random walk, and define the position of the walker at step
t by x(t)5( i51

t h i . Then, x(t) corresponds to a t-step FBM,
and the sequence of increments $h i% is called fractional
Gaussian noise ~FGN! @13#. An important quantity is the
mean-square displacement of the FBM whose asymptotic be-
havior is

^ux~ t !2x~ t0!u
2&;ut2t0u

22g. ~7!

Thus the long-range correlations lead to enhanced diffu-
sion @14# ^ux(t)2x(t0)u

2&;ut2t0u
2H for 0,g,1 with

FIG. 1. A log-log plot of the
average correlation C(l ) of 50
correlated samples obtained with
the proposed method for L5221.
Shown are results for different val-
ues of the desired g 5 0.2, 0.4,
0.6, and 0.8 ~from top to bottom!.
The dashed lines represent the best
fits which yield the nominal values
of g5 0.1960.02, 0.3960.02,
0.6060.03, and 0.7960.03. The
correlations are calculated until
L/2 due to the periodic boundary
conditions.
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H512g/2 @15#. Figure 2 shows the plots of the mean
square displacement for different degree of correlations. The
fits confirm the validity of the long-range correlations among
the variables in the whole system size.

B. Generating long-range correlations in d dimensions
The algorithm can be easily generalized to higher dimen-

sions. In a d-dimensional cube of volume Ld the desired
correlation function takes the form

C~ lW !5S 11(
i51

d

l i
2D 2g/2

, ~8!

with the corresponding periodic boundary condition
C(lW )5C(lW 1LW ). The spectral density is

S~qW !5

2pd/2

G~bd11 ! S q2 D
bd

Kbd
~q !, ~9!

where q5uqW u, q i52pm i /L , 2L/2<m i<L/2, i51, . . . ,d ,
and bd5(g2d)/2. In the two-dimensional case the corre-
lated variables are defined in an xy square lattice $h i , j%.
Figure 3 shows a test of the actual correlations obtained in
two dimensions for different degree of correlations, and for a
system of L5211.

C. Generating FBM in two dimensions

The two-dimensional correlated numbers $h i , j% can be
used to generate two-dimensional FBM. We propose the fol-
lowing definition @16#,

FIG. 2. Log-log plot of the mean square dis-
placement for the FBM, for the same values of
the desired g as in Fig. 1 ~from bottom to top!.
The slopes of the linear fits yield 22g5

1.7860.02, 1.6060.02, 1.4260.03, and
1.2360.03, respectively, in agreement with (7).

FIG. 3. Log-log plot of the
correlations along the diagonal di-
rection in a square lattice of
2113211. Shown are results for
different values of g50.4, 0.8,
1.2, and 1.6 ~from top to bottom!,
and we take averages over 50
samples. The fits yield nominal
values of g50.4160.02,
0.8160.03, 1.2060.03, and
1.5960.04.
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h~ t ,s ![(
i51

t

h i ,s1(
j51

s

h t , j . ~10!

After some algebra, we find that when the numbers
$h i , j% are long-range correlated then

^uh~ t ,s !2h~ t0 ,s0!u
2&;u~ t2t0!

2
1~s2s0!

2u12g/2. ~11!

Thus, using the correlated numbers with 0,g,2, FBM can
be generated with exponent given by H512g/2 and
0,H,1. A landscape with this scaling behavior is also
called a self-affine surface @17#.

D. Generating anisotropic long-range correlations
Many physical systems display not only correlations but

also anisotropy @1# reflected in different correlation expo-
nents along different directions. We generalize the algorithm
for this case. We propose a correlation function suitable for
two-dimensional anisotropic systems

C~r ,w !5r2gxcos2w1r2gysin2w , ~12!

where (r ,w) are the polar coordinates. The spectral density is

S~q ,wq!5

p3/2G~11bx/2!

212bxG~22bx/2!

cos2wq

qbx

1

p3/2G~11by/2!

212byG~22by/2!

sin2wq

qby
, ~13!

with bx522gx , and by522gy . Then the proposed
method can be applied to generate anisotropic correlated
numbers. This method might be suitable for the simulation of
geological reservoir systems for which strong anisotropy is
found @1#. Moreover, after generating the anisotropic vari-
ables h , we can apply the procedure outlined in Sec. IV C in
order to obtain an anisotropic self-affine surface.

E. Correlated percolation problem

A qualitative check of the impact of long-range correla-
tions for physical systems can be obtained by applying the
proposed method to a concrete physical problem: the corre-
lated percolation @18#. The properties of long-range corre-
lated site percolation in the square lattice have been recently
studied @5#. However, these studies were limited to systems
not larger than 1043104 sites. The method we present here
allows us to study this problem in the limit of large systems.

FIG. 4. Site percolation in the square lattice of
102431024 for different degrees of correlations
and concentrations. ~a! and ~b! correspond to the
correlated case with g50.2, while ~c! and ~d!
correspond to the uncorrelated percolation prob-
lem, below and at the threshold for both cases,
respectively. Unoccupied sites are in black and
occupied sites are in white. ~e! shows the case of
anisotropic percolation generated with the
method of Sec. IV D for gx50.2 and gy51.8,
and for the same concentration as in ~a!. We no-
tice how the clusters are elongated along the di-
rection of the smaller exponent ~strong correla-
tions!. The figures are generated using the same
seed for the random number generator.
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Figure 4 illustrates the results obtained for site percolation on
a square lattice of 102431024 sites. We see that the intro-
duction of long-range correlations among the occupancy
variables strongly affects the morphology of the system. In
the correlated case the clusters look more compact than in
the uncorrelated case. The lack of correlations in the uncor-
related case is seen from the presence of many small black
holes inside the large clusters @Fig. 4~d!#. Also, at small con-
centrations there are only small clusters @Fig. 4~c!#, while for

the correlated case, large clusters are present even at low
concentration @Fig. 4~a!#.
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