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Abstract

Sedimentary rocks have complicated permeability patterns arising from the geological pro-
cesses that formed them. We concentrate on pattern formation in one particular geological pro-
cess, avalanches (grain flow) in wind-blown or fluvial sands. We present a simple experiment
and numerical model of how these avalanches cause segregation in particle size that lead to char-
acteristic laminated patterns. We also address the longstanding question of how such patterns are
generated. We analyze data on two sandstone samples from different, but similar, geological en-
vironments, and find that the permeability fluctuations display long-range power-law correlations
characterized by an exponent H. For both samples, we find H ~ 0.82—0.90. These permeability
fluctuations significantly affect the flow of fluids through the rocks. We demonstrate this by
investigating the influence of long-range correlation on percolation properties, like cluster mor-
phology. We relate these properties to characteristics important for hydrocarbon recovery such
as breakthrough time for injected fluids and recovery efficiency.

1. Introduction

Sedimentary rocks have complex correlated patterns that influence the flow and re-
covery of hydrocarbons. These patterns arise from the complicated geological processes
that formed the rocks. It is a major experimental and theoretical challenge to understand
how the process forms the patterns. For oil companies it is also extremely important
to understand how the patterns influence recovery and to make quantitative predictions
of the influence.
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In this paper we address the following points:

(1)

(1)

(iii)

(iv)

The formation of periodic laminae of fine and coarse grains in sedimentary struc-
tures 1s a widespread phenomenon [1-8], its origin remains an open question.
Fig. 1{a) shows a section of a Triassic, planar cross-bedded Aeolian sandstone
from Lochabriggs near Dumfries, Scotland where a typical example of stratifi-
cation pattern is observed. We address the longstanding question of how such
periodic patterns are generated by proposing a “table top” experiment [9]. The
experiment reproduces the successive layers of fine and coarse particles observed
in sedimentary structures.

We confirm the spatial patterns predicted with the experiment by comparing with

real rock sampies. Fig. 2(a) shows the result of the experiment [9]. The size segre-

gation into alternating layers is quite similar to that found in the geological sample
and in stratigraphic records. We note two features:

(a) Alternation. We clearly see the formation of alternating layers consisting of
small and large particles.

(b) Segregation. We observe that the layers are built up in such a way that small
particles are segregated in layers near the top of the slip-face, while larger
particles form layers near the substrate at the bottom.

We propose a physical explanation of the process involved. A numerical computer

model of sand dune dynamics is developed that confirms the plausibility of the

physical mechanism [9] (Fig. 2(b)).

We quantify the spatial correlations in rocks. Permeability in sandstone can change

by many orders of magnitude over very short distances. Not only are there large

fluctuations in permeability but the permeability can exhibit strong anisotropy.

Deriving methods to describe these spatial patterns i1s a major challenge. Both the

efficient recovery of hydrocarbon and contaminant dispersal and control in ground

water is affected by the understanding of such spatial patterns. Traditionally, these

patterns have been modeled with a finite range correlation scale. We analyze a

detailed permeability map and show that the data are consistent with a long-range

correlation model [14].

2. Rock slab data

The Aeolian sandstone shown in Fig. 1{a) was formed by wind-blown sand [1].
A small sand accumulation (sand bar or dune) is formed as the unidirectional wind
moves material along the bed. As the wind continues, sand is moved from the up-
stream side of the dune to the crest of the dune, and the slope of the sand bar be-
comes steeper. When the initial dune reaches a critical angle or slope, a downstream
slip-face is developed where avalanches of sand begins. After this, new material is
brought to the top of the dune until another avalanche occurs. The evidence of such

sedimentary process can be traced in the layered structure of the Lochabriggs sample
of Fig. 1(a).
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Fig. 1. (a) Permeability map of the Lochabriggs sample. The complete sample consists of two slabs of

448 mm by 246 mm and 10 mm thick, and again only three faces were used in this study. The permeability
was measured every 12 and 4 mm in the x and y directions, respectively, so that a grid of ny = 38 by
n, = 61 was obtained. Notice the strong anisotropy of this sample manifested by the crests elongated along
the y’ direction. (b) Permeability map of the Hollington sample. The complete sample consist of two slabs,
measuring 474 mm by 276 mm and 10 mm thick. Three faces at heights z = 0, z = 10, and z = 20 mm
were used to study the permeability pattern (the z = 0 face is shown in this figure). Unfortunately, the
measurements of one face were corrupted by instrumentation error and so only three faces could be used.
The permeability was measured every 10 mm in the x direction and every 4 mm in the y direction, so a
grid of n, =48 by n, = 69 permeability values was obtained.
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(b) X

Fig. 2. (a) Photograph of the experimental sandpile showing the periodic layers. (b) Image obtained with
the proposed sandpile model.
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3. Experiment

To understand the origin of the layering segregation we begin by developing the fol-
lowing “table-top” experiment [9]. The experimental sctup consists of a vertical Hele-
Shaw [10] cell with a gap of 5 mm separating two transparent plates of 300 mm by
200 mm (see Fig. 2(a)). We close the left edge of the cell leaving the right edge free,
and we pour, next to the left edge, an equal-volume mixture of white fine silica sand
(typical size 0.4 mm) and dark coarse sugar crystals (typical size 0.9 mm). We choose
this quasi-two-dimensional geometry since the actual geological system is translation-
ally invariant atong the transverse direction (due to the unidirectional flow of sand).

Fig. 2(a) shows the result of the experiment. We note the two main features: (a)
alternation, and (b) segregation.

4. Process model and numerical computer model

The main physical mechanism responsible for the formation of the layers appears
to be related to the segregation effect and also to the existence of two critical angles
controlling the avalanche process [9]. Indeed, real sandpiles are known [11-13] to be
stable until the angle of the sandpile ¢ reaches a critical maximum angle of stabil-
ity ¢,,. When 8 > 0,,, the sandpile produces a spontaneous avalanche. The avalanche
stops when 0 decreases below a second critical angle of repose 8,. The oscillation of ¢
between (), and ), as sand is continually added produces the periodic layers observed
in the experiment, and presumably in geological data as well.

We next develop a mean field numerical sandpile model [9], defined in a semi-infinite
(1+1)-dimensional lattice corresponding to the experimental setup. Particles are chosen
one at a time. They are selected at random to be either small or large. Each particle is
released near the left edge of the semi-infinite lattice. If the local angle it makes exceeds
a critical angle of stability 0,, it is moved one place to the right, and this process
is continued until it makes a stable angle or it reaches the substrate. Then the other
particles are moved (successively one to the right) until the entire pile is stable — i.e.,
all angles are below the repose angle 6,. The deposition now starts again, and the above
process is iterated until a large sandpile of typically 10° particles has been formed.

Fig. 2(b) shows the resulting morphology of the model. Diflerent colors represent
different particle size, being white for the smaller particles and dark for the larger
particles. The size segregation into alternating layers is quite similar to that found ex-
perimentally (Fig. 2(a)), which in turn is reminiscent of the stratification structure of
the geological Lochabriggs sample (Fig. 1(a)).

5. Spatial correlations and connectivity

Next we discuss spatial patterns in permeable rocks. We analyzed two samples:
one the aeolian Lochabriggs (Lo) sample shown in Fig. 1(a), and the second sample
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a Triassic, fluvial trough cross-bedded sandstone from Hollington (Ho) near Stafford
in the East Midlands of England (Fig. (b)) [14]. The deposition process is similar.
Now the grains are deposited under water. Eddying on the slip face of the sand bar
influences the avalanching slightly.

Permeability on the small scale of both rock samples was measured by standard
mini-permeametry [14,15]. The mini-permeameter is a tube through which a gas (air
in laboratory measurements) is blown into the rock sample at a fixed pressure. The
flow rate of the gas into the rock sample is measured. The permeability k is then the
ratio of the flow rate O to the pressure drop AP (which is applied pressure minus
atmospheric pressure) multiplied by the viscosity of the gas u.

e,
k=2 (1)
Corrections must be made for the compressibility of the gas and the flow geometry,
which is hemispherical from the injection point. The end of the permeameter in contact
with the rock is made of a flexible plastic ring to ensure a good seal. The probe comes
in a variety of sizes to measure permeability fluctuations on different length scales; for
our measurements the probe had a 1 cm diameter.

The permeability maps so obtained are shown in Figs. 1(a) and 1(b). By inspection,
we see that local permeability varies significantly within a very short length scale,
suggesting that the permeability may not be an independent random process.

We plot the permeability histograms for the Sample Ho in Fig. 3. The high perme-
ability zone has a typical permeability of 3300 mD, the low permeability zone has a
typical permeability of 30 mD. Local permeability is proportional to the square of the
grain radius for uncompacted, well-sorted, clean, quartzite sandstone. The high perme-
ability zone consists of interbedded fine and coarse grain material and hence has a
much higher variability. The low permeability zone is more homogeneous, consisting
of more exclusively fine grained material.

Next we measure the spatial correlations in permeability. We study the correlations
of the permeability field k(i j) (i,j = 1,...,ny,n,) along the x and y directions (see
Fig. 1). To this end, we first integrate the permeability variables along both directions
separately, by calculating the “net displacements” x;(/) and y;(¢):

/ —_—
VGEDNECHENIVEENVES R A) (2)
and
yilf) = ZI (k(i.j) — k(i) (=1,....n), (3)
i=

where k(j) = (1/n,)3°1", k(i.j) and k(i) = (1/n,) Z;':i k(i,j) [16]. Then we calculate

the variance ¥V, (/) = (x(/)? — mz)”z and V() = (y(/)? — y(/)z)'/2 as a function
of the lag # [16]. The scaling behavior of the variance

V)~ A iy ~ 4 (4)
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Fig. 3. Normalized permeability distributions for the Sample Ho corresponding to (a) low permeability zone,
and (b) high permeability zone. In both figures we plot the distributions corresponding to three different
faces of the sample. The distributions are fitted by Gaussian functions. We notice the large difference in the
mean value of the permeability between the low and high permeability zones.

can distinguish between short- and long-range correlations. For uncorrelated permeabil-
ity variables, H = % while % < H < | implies persistent long-range correlations among

the variables. The correlation exponent H describes the “roughness of the permeability
landscape™ [17,18].

The method described so far is called r.m.s. fluctuation analysis which however,
1s known to fail if (1) the signal is nonstationary [19], or (ii) the signal is highly
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correlated A/ ~ 1 [20]. In case (i), the r.m.s. method detects spurious correlations due
to the patchiness of the signal [19], while in case (ii) the r.m.s. method gives smaller
effective exponents (in particular when small samples are used) because the variance
has an upper bound ¥ (/) < ¢ and thercfore the method cannot detect fluctuations with
exponent H >1 [20]. In our case we find that, apart from possible nonstationarities,
the permeability values are strongly correlated.

To overcome the limitations of the r.m.s. method, we will analyze the spatial cor-
relations of the permeability by using detrended fluctuation analysis (DFA) [19] and
wavelet analysis [21]. The DFA method [19] consists of subtracting the local trend
(defined as the ordinate of a linear least-squares fit to the permeability values) in each
window of size 7 defined in (5).

The wavelet transform (WT) of a given function f(x) is defined as

Tw(xp.a) = é / fx) ¥ (x ~x0) dx , (5)

a

where ¥ is the analyzing wavelet, x; the translation parameter, and @ the scale param-
eter. After performing the WT with a given wavelet, we can determine the values x;(a)
at which Ty has local extrema. The sum of the absolute values of the local e¢xtrema
raised to the power g exhibits power-law dependence on the scale a,

Za,g)= 2 |Twlxda)a)f ~ a7, (6)
{xta)}
defining the exponent t(g).
The function Z(a,qg) is directly related to the scaling properties of the gth moment
of the signal f{(x). For certain values of g, the exponents 7(g) have known meaning.

In particular, ©(2) is related to the scaling exponent of the Fourier power spectra:
S(f)~ f~F with § =2+ 7(2), and therefore

2)=2H — 1. (7)

Thus, ©(2) > 0 indicates the presence of long-range correlations (/4 > %), and 7(2)=0
(H = 21) indicate the absence of correlations. The wavelet method is free from restric-
tions related to nonstationarities and to the presence of large correlations [21].

The results for the permeability correlations for the Sample Ho are shown in Fig. 4.
In Fig. 4(a), we show the correlations for both high and low permeability zones, mea-
sured in the x and y directions. In this case, before calculating the variance, the per-
meability is normalized by dividing by the standard deviation calculated independently
for each direction. The data are consistent with power-law correlations; using the DFA
method, we find

H, = 0.89 + 0.06, H, =090 =x0.06 (Ho: DFA). (8)

Results for the correlations along the x direction are shown separately for the high and
low permeability zones in Fig. 4(b). The correlations are satisfactorily modeled by a
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Fig. 4. Log-log plot of the variances of the permeability calculated using the DFA method for the sample Ho.
{a) Variances ¥(/} and V,(/) along the x and y directions, respectively, averaged over the three different
faces of the sample, and averaged over the high and low permeability zones together for J(£) and over
the high permeability zone for ¥,{#). The power-law relationship between the variance and the separation
distance ¢ is characterized by exponents H, = 0.89+£0.06 and H, = 0.90£0.06. The exponents are the same
within error bars indicating the isotropy of the correlations in the xy plane. (b) Variance ¥ (/) calculated
along the x direction for the high and low permeability zones, separately. Data are averaged over the three
different faces of the sample. Both set of data are consistent with a power law H, ~ 0.89, showing that the
spatial correlations are the same in both zones.
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Fig. 5. Log-log plot of the variance calculated along the y’ for the high permeability zone of Sample
Lo, averaged over the three different faces of the sample. Along the 3 direction, a correlation exponent
of H = 0.85 = 0.06 is found. However, along the x’ direction, a periodic pattern is observed. Thus, the
anisotropy in this sample is manifested in a change of behavior from long-range correlation scaling along
¥’ to periodic morphology along x’.

power law where H, =~ 0.89, independent of the magnitude of the overall permeability.
These values are confirmed, within the error bars, using the wavelet analysis. We find
that

H, = 0.82 +0.06, H, =084 £0.06 (Ho: Wavelet) . (9

As seen in Fig.1(a), the high permeability zone of sample Lo presents strong anisotropy
with anisotropic axes (x, y’) not coincident with the coordinate frame (x,y) (see
Fig. 1(a)). We calculate the variance along the )’ direction (parallel to the direction
of the crests) and find (Fig. 5) using the DFA method

H, =085+006 (Lo: DFA), (10)

a value that is consistent with our findings for the Sample Ho. Using wavelet analysis,
we find

H,r =0.84 £ 0.06 (Lo: Wavelet) . (11)

Along the x” direction a periodic morphology is observed with a wavelength of about
60 mm. This introduces a characteristic length scale so that no scale invariance power
law correlations are expected along this direction. The existence of this laminar periodic
structure is consistent with a depositional model of sand dune dynamics [9].

Thus, for both methods we find that / > % thereby demonstrating the presence of
long-range correlations in the Ho and Lo samples.
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6. Model

We incorporate the spatial correlation properties of real systems into the framework
of the percolation problem [22], to investigate the effects that this has on the various
quantities of interest, and to consider the consequent implications.

As an example, imagine an oil reservoir made from a river system. The old river
channels represent good sand with high permeability. The other rock (shale) has poor
permeability. Hence, for many purposes it can be modeled by a conductor/insulator or
percolation system. The sand bodies may be thought of as some shapes distributed in
space. They may tend to avoid each other or stack next to each other. Fortunately, for
the petroleum industry, they may also overlap, so it is possible for large “clusters” of
sand bodies to exist.

In order to quantify these ideas, we consider the correlated percolation model
[23-26]. In the limit where correlations are so small as to be negligible a site in
the square lattice is occupied at random with a probability p [22]. However, the fact
that we find spatial correlations in the rock suggest that the process can be better
modeled using the correlated percolation model where each site is not independently
occupied, but is occupied with a probability that depends on the occupancy of the
neighborhood. For a method of generating long-range correlations, see Section 7. We
analyze the structural and dynamic properties of the resulting connected structure. It
is worth noting that the percolation model applies not only to the scale of the pore
structure but also to larger scales such as the lamination scale. For both the discrete
(sand/shale) and continuous systems (permeability), it is important to know how long-
range correlations influence the macroscopic connectivity and flow.

The impact of correlations is apparent from Fig. 6. Fig. 6(a) is for conventional un-
correlated percolation, and Fig. 6(b) is for percolation with long-range scale-invariant
correlations. Both figures are plotted at the critical concentration p., above which fluid
can flow since there exists an “incipient infinite cluster” that forms just when a con-
nected path breaks through. The occupancy probability p corresponds to the net to
gross or volume fraction of good sand in actual sand systems. It is apparent by visual
inspection that the clustering properties for the two cases differ dramatically. For ex-
ample, by comparing Figs. 6(a) and (b), we see that the clusters are much larger and
more compact in the case of long-range correlations. This implies that there are fewer
dead-ends and hence less unswept oil. Therefore, the recovery percentage increases for
such strongly correlated systems. Our preliminary results indicate an increase of about
10% in the recovery percentage of correlated systems in comparison with uncorrelated
systems.

Fig. 7 shows the changes with the correlation exponent y of the fractal dimension of
the minimum path, d,,;, (the shortest path that one can get through the cluster from
one to the other). The correlation exponent y measures the degree of correlation in
the system, being uncorrelated for y = 2 and strongly correlated for y = 0. Again we
see a striking dependence of this property upon the degree of correlations. The fractal
dimension of the minimum path approaches one (the minimum path becomes equal to
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Fig. 6. Percolation at the critical concentration: (a) uncorrelated case, and (b) correlated case.
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Fig. 7. Fractal dimension d,;, as a function of the degree of correlations.

the Euclidean distance between the points) as y — 0O (strong correlations), meaning
that the cluster becomes more compact in agreement with the above behavior. The fact
that the shortest streamlines are “straighter” leads to shorter breakthrough times. As
the tortuosity of the streamlines is reduced, we expect dispersion of the front to be
reduced and hence better recovery efficiency.

Similar analyses have been performed with other quantities characterizing the con-
nectivity properties of the percolation clusters. For example, we find that the critical
concentration p, increases as a function of y. Therefore, one would expect better over-
all connectivity at lower net to gross in the correlated case than in the uncorrelated
case. The quantitative changes with the degree of correlations indicate the errors that
are being made with currently used uncorrelated models.

7. Method of generating long-range correlations

One of the most used methods to generate a sequence of random numbers with
power-law correlations is the Fourier filtering method (Ffm) [25,27,28]. It consists of
filtering the Fourier components of a uncorrelated sequence of random numbers with
a suitable power-law filter in order to introduce correlations among the variables. This
method has the disadvantage of presenting a finite cutoff in the range over which the
variables are actually correlated [25,28]. Other methods present similar problems (see,
for instance, Ch. 9 in Feder’s book [27]). As a consequence, one must generate a
very large sequence of numbers, and then use only the small fraction of them that are
actually correlated (this fraction can be as small as 0.1% of the initial length of the
sequence [25,28]). This limitation makes the Ffm not suitable for the study of scaling
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properties in the limit of large systems.
Here we modify the Ffm in order to remove the cutoff in the range of correlations.

We show that in the modified method the actual correlations extend to the whole
system [29].

7.1. Conventional Fourier filtering method (Ffim)

We start by defining the Ffim for the d = | case (d is the dimension of the sample).

Consider a stationary sequence of I uncorrelated random numbers {u;},—; ;. The
correlation function is
<uiu1+/> ~ 0.0, (12)

with 0, the Kronecker delta, and the brackets denote an average with respect to a
Gaussian distribution. The goal is to use the sequence {u;}, in order to generate a
new sequence, {#;}, with a long-range power-law correlation function C(£) of the
form

C(Y= iy ~4 " (£ — o). (13)

Here, 7 is the correlation exponent, and the long-range correlations are relevant for
0 <y <d, where d == 1. The spectral density S(q) defined as the Fourier transform of
C(7) has the asymptotic form

S(g) = lngh-) ~a~ (g —0). (14)
Here {#,} correspond to the Fourier transform coefficients of {#;}, and satisfies
Ny = (S(gN" uy, (15)

where {u,} are the Fourier transform coefficients of {«;}.

The actual numerical algorithm for Ffm consists of the following steps:

(1) Generate a one-dimensional sequence {u;} of uncorrelated random numbers with
a Gaussian distribution, and calculate the Fourier transform coefficients {u,}. (In
practice, one can generate directly {u,} from a sequence of uncorrelated random
numbers.)

(ii) Obtain {n,} using (14) and (15).

(iii) Calculate the inverse Fourier transform of {r,} to obtain {#,}, the sequence in
real space with the desired power-law correlation function (13).

7.2. New method

The Ffm method has been applied in a number of studies of correlated systems
[25,28]. However, an analysis of the method for large L shows that, by following the
above procedure, one ends up with a sequence of correlated numbers whose range
of correlations, for d = 1, is only about 0.1% of the system size. For example, from
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an initial sequence of 10° numbers, only 10° numbers show the desired power-law

correlations [28]. For 4 = 2, the range of correlations increases to 1% of the system

size [25]. In order to remove this artificial cutoff in the correlations, we modify the

Ffm algorithm as follows [29]:

(a) To calculate the spectral density S(g), a well-defined correlation function in the
real space is needed. The function C(#) = /7 has a singularity at / = 0. We
replace (13) with a slightly modified correlation function that has the desired
power-law behavior for large 7, and is well-defined at the origin

C(/)y= (1 +/2y2, (16)

(b) The relation (15) is based on the convolution theorem, and therefore the desired
correlation function (16) must satisfy the proper periodic boundary condition. The
function C(/) can be naturally extended to negative values of ¢ due to the /*
dependence. We define (16) in the interval [—L/2,...,L/2], and impose periodic
boundary conditions, i.e. C(¢) = C(£ + L),

(17)

) (147272 if0</<L/2—1,
DT A @ L2l <L

(c) The discrete Fourier transform of (16) — needed to obtain #, using (15) — can
now be calculated analytically,

27.[| 2

: B
5@ = 551 (5) Ko@) (18)

where ¢ takes values g = 2mm/L with m = —L/2,...,L/2, Kg(q) is the modified
Bessel function of order f = (v — 1)/2, and I" is the gamma function.
The modified Bessel functions satisfy the asymptotic relations

I'(p)y rgn" .
- (3) itex1,
Kplg) = = (19)

V’ Z(f" if g1,

for f# positive and by definition K_j; = Kg. Then for small values of g, (18) gives
the same asymptotic form as (14). However, the Bessel function introduces a cutoff
for large ¢ in the sense that S(qg) has a faster exponential decay. This cutofl, while
irrelevant to the long-distance scaling, is very important for the validity of the whole
Fourier analysis because it avoids aliasing effects (see [30, Ch. 7]). The cutoff in the
Fourier space is thus responsible for eliminating the cutoff in real space observed in
the Ffm method.

In order to perform the above steps numerically, we employ the Fast Fourier trans-
form [30]. The calculation of the regular Fourier transform involves O(L?) operations.
Using the fast Fourier transform algorithm the process is computed in O(L logL) op-
erations, which gives a drastic difference in computing time, and makes this method
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top to bottom). The dashed lines represent the best fits which vield the nominal values of 7 = 0.19 4 0.02,
0.3940.02, 0.604+0.03 and 0.79 £0.03. The correlations are calculated until L/2 due to the periodic boundary
conditions. (b) Comparison between the usual Ffm and the proposed method. We see how the correlations
are extended until 0.1% of the system size in the case of the usual Ffm, while the correlations span all the

system size when our method is used instead. In both cases we average over 50 samples; we use [ = 22!
and p = 0.4,

very fast. Due to the periodic boundary condition imposed on the correlation function
in (17), it follows that the correlated sample satisfies the same periodicity. If one re-
quires a sequence with open boundary conditions, we generate twice as many numbers
and then split the sequence into two parts. Another numerical detail that should be con-
sidered is that the correlation function in the Fourier space is not defined for ¢ = 0.
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Fig. 9. Log—log plot of the correlations along the diagonal direction in a square lattice of 2'! x 2! Shown
are results for different values of y = 0.4,0.8,1.2 and 1.6 (from top to bottom), and we take averages over
50 samples. The fits yield nominal values of y = 0.41 4+ 0.02, 0.81 £+ 0.03, 1.20 + 0.03 and 1.59 £ 0.04.

This comes from the fact that we are using a continuum limit to calculate the Fourier
transform instead of the discrete definition. However, the zero frequency only adds
an additive constant to the numbers, and does not affect the scaling properties of the
sequence. This singularity can be avoided anyway, by assigning a suitable numerical
value 0 < my < 1 instead of m = 0.

To test the actual correlations of the generated sample {#;} we calculate C(¢) av-
eraging over different realizations of random numbers. Fig. 8(a) shows a plot of the
actual correlations obtained for different values of y and for a sequence of L — 27!
numbers. It is seen that the long-range correlations exist for the whole system. The
nominal values of v obtained from the best fits are also the same, within the error bars,
as the desired input values. In Fig. 8b), we compare the proposed method with the
usual Fourier filtering method.

To summarize the method, the correlation function we propose is well-defined and
satisfies the correct power-law behavior in real space. Its Fourier transform has the
correct power law at small frequencies, and presents a cutoff for large frequencies that
avoids aliasing effects, and leads to the infinite long-range behavior in real space.

7.3.  Generating long-range correlations in d dimensions

The algorithm can be easily generalized to higher dimensions. In a d-dimensional
cube of volume L the desired correlation function takes the form

) - (1 T i-f‘?) - (20)

i=1
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with the corresponding periodic boundary condition, C(£) = C(£ + L). The spectral
density is

277'.(/’2
r'(fs+1)

where ¢ = |q|. ¢; = 2mm;/L, —L2<m; <Lj2, i = 1,...,d, and f; = (y — d)/2. In
the two-dimensional case the correlated variables are defined in a (x, ¥) square lattice
{n:,;}. Fig. 9 shows a test of the actual correlations obtained in two dimensions for
different degree of correlations, and for a system of lateral size L = 2!1.

P
S() = () k@, 1)

8. Conclusions

Spatial patterns in permeable rocks exist and require quantitative methods to describe
them. In the particular case of Aeolian systems (such as the Lochabriggs sample), we
show that the observed periodic stratified pattern can be understood with a “table-top”
experiment. We propose a physical explanation for the formation of layers, which is
related to a size segregation effect and also to the existence of two critical angles con-
trolling the avalanche process. Finally, we develop a stochastic model of sand dune
dynamics that confirms the plausibility of this physical mechanism. While these results
apply only to aeolian systems, the finding of long-range correlations in sandstone ap-
pears to be true independent of the geological process involved. For the two samples
studied so far it has been shown that the correlations can be well modeled using a
power law.

These spatial patterns have very great consequences for prediction of, for example,
hydrocarbon recovery or contaminant transport in ground water. The fact that there
exist long-range correlations implies that contaminant transport might be less dispersed
than would be predicted from a short range correlation model.
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