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The anomalous behavior of thermodynamic response functions is
an unsolved problem in the physics of water. The mechanism that
gives rise to the dramatic indefinite increase at low temperature in
the heat capacity, the compressibility, and the coefficient of ther-
mal expansion, is unknown. We explore this problem by analyzing
both new and existing experimental data on the power spectrum
S(Q, ω) of bulk and confined water at ambient pressure. When
decreasing the temperature, we find that the liquid undergoes
a structural transformation coinciding with the onset of an ex-
tended hydrogen bond network. This network onset seems to give
rise to the marked viscoelastic behavior, consistent with the in-
teresting possibility that the sound velocity and response func-
tions of water depend upon both the frequency and wave vector.

Although water is one of the simplest molecules, it is in reality
a very complex liquid displaying more than 64 counterin-

tuitive anomalies, most of which have not been adequately
explained (1, 2). The best known of these is its density behavior:
unlike most liquids, water displays a maximum at 4 °C, and
becomes less dense rather than more dense when it freezes.
Other unexplained anomalies occur for response functions such
as the isothermal compressibility KT, the isobaric heat capacity
CP, and the thermal expansion coefficient αP. Moreover, if one
extrapolates these functions into the metastable supercooled
phase of water below the melting temperature (TM = 273 K at
atmospheric pressure), and above the homogeneous nucleation
temperature (TH ∼ 231 K), they behave as if they might diverge
at a singular temperature TS ∼ 228 K (1). Water is a glassy liquid
below the glass transition temperature Tg ∼ 130 K (2). Imme-
diately above Tg it transforms into a highly viscous fluid and ul-
timately crystallizes at TX ∼ 150 K. The region between TX and
TH is a “no-man’s land” within which bulk liquid water cannot be
studied (1). For these and other reasons, liquid water is one of
the most exciting research topics, and an enormous number of
studies have sought to elucidate the physical reasons for water’s
unusual properties.
There are four current hypotheses (1), two of which have

gained considerable attention: the singularity-free hypothesis (3,
4) and the liquid–liquid critical point (LLCP) hypothesis (5). The
LLCP hypothesis is based on two assumptions: (i) that water
displays the phenomenon of “liquid polymorphism” (6) and (ii)
as T decreases, the hydrogen bonds (HBs) begin to form an open
tetrahedrally coordinated HB network. If we begin with the
stable liquid phase and decrease T, the HB lifetime and the
cluster stability increase, and this altered local structure con-
tinues through the no-man’s land down to the amorphous phase
region. Amorphous solid water is widely believed to display
polymorphism: below Tg, low-density amorphous (LDA) and
high-density amorphous (HDA) structures (7) can be trans-
formed from one to the other by tuning the pressure. Hence
liquid water may have local structural features of two liquids,
low-density liquid (LDL) and high-density liquid (HDL), with
an altered local structure that is a continuation of the LDA and
HDA phases (5). In HDL, which predominates at higher pres-
sure and temperature, the local tetrahedrally coordinated HB

structure is not fully developed, but in LDL a more open HB
network begins to appear. Thus, water anomalies reflect the
“competition” between these differing local forms of the two
local liquid structures. The LLCP scenario also predicts a locus,
the Widom line, in the T–P phase diagram along which water’s
thermodynamic response functions attain their maximum values
(8). The Widom line reflects water’s response functions because
they are related to the correlation length. This line and the hy-
pothesized associated polymorphic transition is difficult to study
as it lies inside the no-man’s land, but the crystallization inside
this region can be retarded by confining water within nanoporous
structures so narrow that the liquid cannot freeze (9), or within
its own ice phase (10), or by using electrolytic solutions (11, 12).
Many experiments have been carried out on water confined in

nanopores (9, 13, 14). These studies show that when T is de-
creased to a certain point the water HB lifetime increases by
approximately six orders of magnitude, indicating the location of
the Widom line (9), and signs of LDL and HDL inside the
supercooled region are observed (14). At ambient pressure the
Widom line is crossed at TW(P) ∼ 225 K where a fragile-to-strong
dynamic crossover occurs (8, 9), the Stokes–Einstein relation is
violated (13, 15), and LDL local structure predominates over
HDL (14). These findings on confined water are subject to the
concern that water behavior may be affected by the silica pore
surfaces or the confinement constraints may affect its dynamic
behavior, resulting in a physical situation very different from that
of bulk water. The results on nanopore-confined water, however,
have been confirmed by a number of different techniques (10, 12,
16) that also show the crossover at ∼225 K and thus are con-
sistent with the possibility that the tetrahedral HB structure
recovers at temperatures pertinent to studies of the hypothesized
liquid–liquid transition (17).
To test the connection between water anomalies and water’s

HB network, we consider thermodynamic results on confined
water and bulk water sound propagation data. In specific, we
consider the velocity dispersion (18–20) asking to what extent is
sound velocity in water v a function of the probe wave vector ð~QÞ
and the frequency (ω). Water structure has a viscoelastic be-
havior that is reflected in the scattered spectra and that persists
under ambient conditions. We study the two compressibilities
(isothermal χT and adiabatic χS), the coefficient of thermal ex-
pansion (αP), and the specific heat (Cp), each of which reflect
a correlation with some thermodynamic fluctuation: χT reflects
the volume 〈δV2〉, χS = [ρv2]−1 the pressure 〈δP2〉, CP the entropy
fluctuations 〈δS2〉, and αP the entropy and volume cross-
correlations 〈δSδV〉.
In most liquids, volume and entropy fluctuations decrease

as T decreases, but in water they increase. In most liquids, δS
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and δV are positively correlated, but in water δS and δV are
anticorrelated when T < 277 K. The local ordering around each
water molecule may be related to the microscopic cause of these
anticorrelations and the reason that αp can be negative at a cer-
tain temperature (1).
The relationships among the sound-propagation velocity, the

isothermal and the adiabatic compressibility, the specific heat,
and the coefficient of thermal expansion are

v2 =
1
ρχS
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Thus, studying sound velocity can help better understand
water behavior.
Scattering experiments on bulk water, from the stable to the

supercooled phase (14, 18, 21–24), indicate a strong dispersion,
v = v(Q, ω), that on the basis of the previous equations is linked
to the compressibilities.
Because of water’s viscoelastic properties, when sound prop-

agates in bulk water it disperses. We thus observe both an “ordi-
nary” sound velocity and a relaxed high-frequency mode, which
is present when Q > 1 nm−1 and propagates with a velocity close
to that in amorphous ice (∼3,200 m/s) (18). This sound disper-
sion—observed using light scattering in the supercooled phase
and inelastic X-ray scattering (IXS) in the high-frequency re-
gime [ω/2π ∼ 1013 Hz (19)] inside the stable phase (260 < T <
370 K)—is due to structural relaxation, as proposed by a molec-
ular dynamics (MD) simulation study (20). Here we show that
this sound behavior is reflected in the isothermal compressibility
as χT = χT(Q, ω), and hence may be a relevant factor in un-
derstanding the thermodynamic anomalies in water. Using sound-
propagation experiments we can trace the effects of the structural
relaxation on χT. As in critical phenomena, sound dispersion and
attenuation in water can be attributed to the relaxation of the
density fluctuations that determine the behavior not only of the
isothermal compressibility KT, but also of CP and αP.
The idea that HB networks characterize supercooled water

has been supported by experiments on the power spectrum S(Q,
ω), defined as the Fourier transform (over r and t) of the gen-
eralized pair correlation function G(r, t) (1). In this conceptual
framework, many studies have produced evidence for the exis-
tence of relaxing structures in the liquid, whose size increases as
T decreases (14, 18, 21–24), and for their effects on the trans-
port, configurational, and vibrational properties of the system. In
the time domain, as T decreases the HB average relaxation time
(〈τ〉) strongly increases (up to many orders of magnitude), and
the parallel frequency domain is characterized by viscoelasticity
and strong dispersions in sound propagation (9, 18, 19).
These data on three response functions of bulk water as a func-

tion of T up to ∼ 240 K indicate diverging characteristics (Methods
and refs. 23–27). In confined water in which CP(T), ρ(T), and
αP(T) have been measurable inside the no-man’s land (T ≥ 180 K),
there is evidence of very different behavior. Fig. 1 shows these
quantities in both the bulk and the confined phases (17, 28–31).
Measurements of χT and χS in confined water have not yet

appeared in the literature, but the difference between the two,
Δ(T) = TαP2/ρCP (Eq. 2), can be obtained from the corre-
sponding response functions (Fig. 1). Fig. 2 shows Δ(T) for 200 <
T < 330 K. Because Δ = 〈δSδV2〉/〈(δS)2〉kBTV is related to the
entropy and volume cross-correlations, its maximum indicates
their increase in the interval 200 < T < 270 K reflecting the HB
networking (1).
The behavior of sound velocity dispersion is reflected in the

response functions of bulk water, as is clear when one uses

scattering techniques to measure S(Q, ω). Experiments covering
a wide energy range (Methods and refs. 18, 19, 32–37) reveal the
existence in pure bulk water of a sound velocity dispersion as the
effect of a relaxing HB structure, a phenomenon that can be re-
lated to the hypothesized water polymorphism. The HB structure
relaxes and exhibits both hydrodynamic “normal-liquid” and
“solidlike” regimes. This latter regime is characterized by finite
clusters of HB water molecules, the density fluctuations corre-
spond to a more stable local HB structure, and the sound velocity
increases rapidly (20). Note that the measured sound velocity
over a wide ω range of 104 < ω < 1013 Hz is characterized by
a positive dispersion showing a minimum (vmin) at a certain
temperature. For further details, see Methods.
Fig. 3 shows χT calculated from sound propagation data using

Eq. 2. Using the literature data for Δ(T) (the blue data of Fig. 2),
we see that the experimentally measured isothermal compressibility
of bulk water depends on the frequency and the wave vector, and
thus χT= χT(Q, ω). This response function has a clear maximum that

A

B

C

Fig. 1. Experimental data for (A) CP(T), (B) ρ(T), and (C) αP(T) in its bulk (blue
line) and confined (red line) phases. These lines connecting the experimental
data points are essentially guides for the eye. The blue ones, corresponding to
bulk water, are the same used to fit literature data (25, 26). Confined water
data also include the CP values measured using normal calorimetry (red dots)
(28) and NMR (red triangles) (29), and the density and αP(T) measured using
FTIR spectroscopy (17, 30) (the density and thermal expansion coefficient data
for T < 140 K are for amorphous water). Inside the no-man’s land, confined
water exhibits a density minimum at ∼200 K (experimentally observed in
confined water, ref. 30, and suggested in bulk by MD simulations, ref. 31),
a CP(T) maximum at ∼230 K, and a αP(T) minimum, also at ∼230 K.
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is more pronounced in the supercooled phase, especially when Q
attains its largest values (the hypersound data) and when the T be-
havior of the “normal” sound data measured in intermediate fre-
quency regime experiments by Brillouin scattering (BS) and
inelastic UV scattering (IUVS) differs greatly from that of low-
frequency ultrasound data. Hence the structural relaxations cause
a maximum in χT ðχmax

T Þ that is strongly affected by the transferred
scattered momentum and the temperature. For the highest Q val-
ues (Q= 0.0994 nm−1) thismaximum is seen inside the stable liquid
phase (T∼ 285 K) and, if we decreaseQ, it continuously evolves to
the lowest T values (e.g., for Q = 0.0171 nm−1 the maximum is
seen deep inside the supercooled regime at T ∼ 245 K).
Fig. 3 shows that the χT maximum ðχmax

T Þ is T and Q de-
pendent. Its value increases when the temperature [like the
corresponding hydrodynamic χT = χT(Q → 0) value] and the
exchanged wave vector Q are decreased. In bulk water this be-
havior—a relaxed sound velocity vhf and a high-frequency com-
pressibility value χhfT ðω→∞Þ—is caused by the HB network
structure. This means that a dynamically correlated structure
(i.e., a cluster that has a characteristic length ξ) can relax, a process
that is strongly dependent on T, Q, and ω. The anomalous T de-
pendence, unlike that in normal liquids (Methods), is a consequence
of the HB lifetime. As T decreases, the HB lifetime increases
rapidly, exhibiting super-Arrhenius behavior (approximately one
order of magnitude in the range 293 > T > 243 K, i.e., from < 1 ps
to about 10 ps). As T decreases, ξ increases and the largest cluster

becomes more stable in time. This explains why, at the largest
values of Q, scattering experiments in the THz regime in the stable
liquid phase can detect the HB-relaxing cluster.
At a certain Q value, χT increases with decreasing T up to

a maximum value imposed by the corresponding volume fluctu-
ations δV. Note that the decrease in χT after this maximum is
caused by the relaxation of its high-frequency solidlike values, as
shown in Fig. 3, which appear to be temperature-independent
ðχhfT ðω→∞Þ∼ 107bar−1Þ. The increase in χmax

T inside the meta-
stable supercooled phase again reflects the growth of ξ (or δV) as
T decreases.
Although the hydrodynamically measured χT appears to di-

verge, the presence of a structural relaxation and all of the trends
observed in the χT = χT(Q, ω) suggest that the behavior of χT is
analogous to that of Δ(T) (Fig. 2). Thus, if χT(Q → 0) is mea-
sured for T < 243 K (the lowest T value available, ref. 25) there
will be a maximum at a certain temperature. This observation is
supported by the fact that we cannot expect an indefinite de-
crease in the bulk water density by decreasing the temperature.
Although a density minimum has been observed in confined
water, the measured value (ρ = 0.94 g/cm3) in the LDA phase at
120 K (38) may be the limit for bulk water.
Figs. 2 and 3 show data associated with system fluctuations

(Fig. 2 for both the bulk and the confined phases). They indicate
that in bulk water, unlike in normal fluids, density fluctuations
become increasingly pronounced as T decreases. Fig. 3 shows, in
addition, a relaxation process revealing also that the volume
fluctuations (χT = 〈δV2〉P,T/kBTV), depending on the probe wave
vector Q, cannot grow indefinitely. Also the initial growth in Δ =
〈δSδV〉2/kBTV〈δS2〉, for T < 273 K, which is related to a volume-
entropy cross-correlation (and to an anticorrelation: V increases
as S decreases), cannot evolve indefinitely, so the behavior of the
confined water (Fig. 2), with a maximum in Δ at ∼225 ± 5 K,
must be the same as for bulk water if it can be supercooled to
that temperature range. The maximum in these anticorrelations
must correspond to an inversion in the system fluctuations
caused by a decrease in the density fluctuations as seen in

Fig. 2. The Δ(T) = TαP
2/ρCP obtained from the corresponding response

function data measured in bulk (blue data) and confined (red data) water.
Note that as T decreases the Δ values slowly decrease from the high tem-
perature region down to approximately the density maximum temperature
and then begin to rapidly increase, reaching a maximum at ∼227 K. The low
values found in the high T region are recovered at ∼200 K. The temperature
at which this maximum is located is approximately the same as that of the
dynamical crossover and that at which the violation of the Stokes–Einstein
relation in the transport functions occurs (13). In addition to the maximum
obtained inside the T region for confined water, a careful observation of the
Δ(T) data also reveals a flex point at ∼240 K in the T interval for bulk water.
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Fig. 3. The bulk water isothermal compressibility χT = χT(Q, ω) evaluated
according to Eq. 2 from the relaxing sound velocities. Shown are the com-
pressibility values corresponding to the “fast” sound vhf measured in the
Brillouin, IXS, and INS (open squares) scattering techniques together with
those corresponding to the US and acoustical levitation (AL) data (open
circles), and the hydrodynamic values gathered from thermodynamic
measurements (solid line) (25). Note that for the temperatures studied these
low-frequency data coincide within experimental error, although a small
rounding off in the AL data are seen at the lowest temperatures (T < 245 K).
The T behavior of “normal” sound data measured in inelastic scattering
experiments at the intermediate frequency regime (BS and IUVS), are
reported as triangles (the BS data) and diamonds (the IUVS data).
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confined water. The maximum in Δ(T) has the same value as the
maximum in CP(T), and the minimum in αP(T) occurs at the
crossover temperature at which the structure changes from an
HDL region to an LDL region, as proposed by the hypothesized
water polymorphism.
Finally, we estimate the temperature at which bulk water

reaches a maximum in χT by considering the temperature (Tmax)
of the observed χmax

T , which corresponds to the experimental Q
values, i.e., we evaluate the Tmax value in the hydrodynamic limit

(Q → 0). For the scattering models ξ ∼ 1/Q we plot ξ vs. 1/Tmax

(Fig. 4) and observe the same power-law fit as that derived when
the mode coupling theory (MCT) approach is used to predict the
temperature of the dynamic crossover, i.e., T× = 228 ± 5 K, in
terms of the transport parameters (39). This is approximately the
same temperature of the Δ(T) and CP(T) maxima and the αP(T)
minimum (Figs. 1 and 2) measured in confined water. An iden-
tical scaling result has been obtained for the corresponding
structural relaxation times measured using a different spectro-
scopic technique, the time-resolved optical Kerr effect (40).
The consistent appearance of this crossover temperature in

the thermal response functions in bulk and confined water and
also in their transport parameters (9, 13, 41) is surprising. We
hypothesize the cause is the HB network structure of water and
its relaxation, and that this relaxation strongly affects the physical
properties of both bulk and confined water.
The existence of an LLCP is not the only hypothesis that

attempts to explain supercooled water’s anomalous thermody-
namic properties. Other scenarios range from the idea that the
anomalous thermodynamic properties do not diverge at a single
critical temperature but at a range of pressure-dependent tem-
peratures to the idea that there is a multiplicity of critical points
in the supercooled water phase (see, e.g., ref. 42). Simulation
studies have recently proposed two interesting possibilities re-
garding the existence of two different phases in supercooled
water. In one MD simulation the existence of a liquid–liquid
critical point for the ST2 water model together with the two
distinct liquid states is supported (43). In the other, a link be-
tween water anomalies and the crystallization rate of ice is
demonstrated (44). This latter coarse-grained simulation sug-
gests that the crystallization rate of water reaches a maximum
around 225 K, below which ice nuclei form faster than the LDL
water phase can equilibrate; i.e., spontaneous crystallization
occurs before liquid–liquid separation can equilibrate. This ap-
proach is based on the assumption that the sharp increase in the
fraction of four-coordinated molecules in supercooled liquid
water explains its anomalous thermodynamic behavior and
controls the rate and the mechanisms of ice formation. In
principle, the maxima observed here in χT at different wave

Fig. 4. The water network correlation length corresponding to the tem-
perature of χT(Q) maxima as a function of 1/T. Dotted line represents the
ideal MCT power-law fitting curve with T× = 228 ± 5 K, whereas the expo-
nent is θ ∼ 2. Note that this result is approximately the same as that pre-
viously obtained by fitting the anomalous contribution χAT ðTÞ (23, 24) and
the specific heat CP(T) (26) in pure bulk water. Within the framework of
extended MCT such a temperature represents the crossover to a water dy-
namics driven by hopping processes among clusters with a characteristic
length proportional to ξ.
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Fig. 5. The measured viscoelastic behavior of bulk water (sound velocity data). (Bottom) The v(T) data measured using the BS (18, 32) and IUVS (full symbols) (33)
techniques at different wave vectors (Q). At the top are the vhf(T) data obtained using IXS (19, 34) and IUVS. The LDA data (large open dark red circles) (37) are
also shown for comparison. The US data vus are measured by using the AL technique at 54 kHz (35), the SS technique at 100 MHz (36), and the IXS technique in the
THz regime (19, 34). The intermediate ω ranges are measured using BS (1–10 GHz) (18, 32) and IUVS (0.2–100 GHz) (33). For the sake of comparison the value of the
longitudinal sound velocity measured in the LDA phase by means of the ultrasound at 5MHz (37) and the values of vus and vhf measured at 273 K using the IXS
technique are also shown. Note that the AL data differ slightly from the US data and are, within experimental error, nearly constant when T < 245 K.
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vectors and temperatures can be related to water crystallizing
into ice, but for Q > 0.07 nm−1 the corresponding χT maxima are
located inside water’s stable liquid phase, i.e., T > TM. In addi-
tion, because the relaxed high-frequency sound velocity vhf of the
HB structure has been experimentally demonstrated to be ac-
cessible within the temperature range ∼ 250–320 K, it cannot be
explained by the presence of any form of ice.
A recent thermodynamic model for supercooled water, based

on a scaling field approach with an appropriate parametric
equation of state (42), describes all available experimental
thermodynamic data for both bulk and confined water. The
shape of the response functions, specifically the minimum in αP
and the maximum in CP, are predicted for the bulk phase at
approximately the same temperature as that observed in the
confined state T× = 228 ± 5 K. Hence finite-size effects may
account for some of the differences between confined and bulk
results, so a maximum in Δ(T) = TαP2/ρCP similar to that pro-
posed in Fig. 2 can also be the case for bulk water. Finally, the
Anisimov model indicates that χT for bulk water has a maximum
at ambient conditions located at approximately T×. Because this
χT maximum is pressure dependent, it is associated with the two
coexisting liquid phases and relates to the LLCP hypothesis. The
same arguments also hold on the basis of the water structural
relaxation observed using sound relaxation. Note that further
improving this approach to describing liquid–liquid criticality
has demonstrated an explicit crossover equation of state that
explains the liquid–liquid phase transition in metastable water
through the entropy-driven nonideality of two states associated
with two different HB network structures (45). Because it is
renormalized by order-parameter fluctuations, the equation of
state reproduces the asymptotic critical anomalies (as introduced
through the original scaling theory; ref. 42) and reduced to the
regular mean-field behavior away from the critical point.
We next compare the viscoelastic relaxation in supercooled

liquid water with the relaxation of critical density fluctuations near
the vapor–liquid critical point, where the observed sound dis-
persion is caused by critical density fluctuations, the isobaric heat
capacity CP anomaly cancels the χT anomaly, and the dispersion
of the χS anomaly is described by the frequency-dependent fluc-
tuation-induced anomaly in the isochoric heat capacity CV.
This is why the hypersonic sound speed near the vapor–liquid

critical point does not show a T-dependent anomaly. Hence the
sound dispersion and attenuation are attributed to the relaxation
of the critical fluctuations only. In other words, in the mean field
approximation there is no dispersion of sound velocity near the
vapor–liquid critical point because there is no CV anomaly.
On the other hand, in supercooled water the relaxation is

caused by the relaxing structure and the density fluctuations
follow the structural fluctuations. Thus, it is possible that the
pronounced effects of structural relaxation are associated with
viscoelasticity, even in the main field approximation.
In conclusion, only by treating water as a viscoelastic system

(i.e., a system governed by an underlying extended structure) is it
possible to understand the microscopic origin of water anomalies.
The proposed scenario here has been developed using a dynamic
approach; i.e., all of the studied quantities reflected by the mea-
sured power spectrum, S(Q, ω), are explored in the wave vector
and frequency phase diagram (or length and time), and thus they
allow a data completion not possible in simulation studies.

Methods
Scattering experiments measure thermodynamic response functions by
measuring the correlations in their fluctuations. The power spectrum S(Q, ω)
is the Fourier transform with respect to both r and t of the generalized pair
correlation function G(r, t). Both the adiabatic and the isothermal com-
pressibilities of a liquid can be obtained from the S(Q, ω).

The structure factor S(Q) in the hydrodynamic limit is S(0) = kBTρNχT. As-
suming that water exhibits “critical” behavior, it was proposed that

χT = χAT + χNT (23, 24); i.e., a “normal” compressibility, χNT , displaying the
thermal behavior of a typical fluid and a “singular” compressibility, χAT ,
displaying critical behavior. The same approach was proposed for CP(T) (26)
and αP(T) (25). Calorimetry, ultrasound (US) propagation, and hypersound
Brillouin scattering (BS) experiments (24) were used to isolate the anomalous
component in the bulk water response functions by measuring each ideal
normal contribution separately. All of the apparently diverging functions fit
a power-law form (the solid red line) analogous to that of ideal mode
coupling theory χAT ðTÞ≈ jT=T× − 1j−θ and predict T× ∼ 225 ± 2 K, a value
identical to that found in the confined water transport parameters that
support the existence of a dynamic crossover (9, 13).

In the case of structural relaxation, v = v(Q, T) can be evaluated as v(Q, T) =
Γ(Q, T)/Q, where Γ is the maximum of the current I = ω2S(Q, ω), and the
measured structure factor S(Q) gives the isothermal compressibility χT as S(0) =
kBTρNχT in the hydrodynamic limit (Q → 0).

The studied response functions are: the compressibilities (isothermal and
adiabatic) χT = (∂ ln ρ/∂ ln P)T = −V−1(∂V/∂P)T, χS = (∂ ln ρ/∂ ln P)S = −V−1(∂V/
∂P)S; the coefficient of thermal expansion αP = −(∂ ln ρ/∂T)P = −V−1(∂S/∂P)T;
and the specific heat Cp = T(∂S/∂T)P. In terms of their corresponding ther-
modynamic fluctuations (δV, δP,δS), they are: χT = 〈δV2〉P,T/kBTV, χS = kBT/V
〈δP2〉V,S, CP = 〈δS2〉/kB, and αP = 〈δSδV〉/kBTV.

The behavior of the response functions in bulk water can be charac-
terized by the sound velocity dispersion, i.e., v = v(ω, Q), as evidenced by
scattering, e.g., visible light Brillouin (BS) (18, 32) in the supercooled liquid
region, and in the stable liquid phase [IXS (19), neutron (INS), and IUVS (33)].
These techniques have made possible the study of sound propagation from
the moderately low (BS) and high (IXS and INS) ω regimes of S(Q, ω) (1–10 GHz
using BS; 0.2–100 GHz using IUVS, and up to the THz range using IXS) (18, 19).
The IXS scattered intensities I(E, Q) measured at different Q as a function of
the energy E(meV) in the range 270 < T < 370 K, have proposed—in the plane
E–Q (0 ÷ 30 meV and 1 ÷ 15 nm−1)—the existence of pure liquid water with
two dispersing branches of collective modes, both ω dependent. One of the
branches has a sound velocity vhf of ∼3,200 m/s, and the other a more normal
vus of ∼1,500 m/s. This sound velocity dispersion has been confirmed by using
the BS, IUVS, and IXS experiments performed in supercooled bulk water in
which Q is changed. This has been done in the visible light range (8 × 10−3 <
Q < 3 × 10−2 nm−1) (18, 32), and in the IUVS range (3 × 10−2 < Q < 0.1 nm−1)
(33) and, after examining the T behavior of the elastic modulus M(ω), a relaxed
high-frequency sound velocity vhf ∼ 3,000 m/s is obtained. In this latter case the
process has been more correctly interpreted by assuming that water is a vis-
coelastic system and thus has a relaxing dynamic structure. More precisely, this
dispersion is caused by relaxation processes in the local water structure origi-
nating in the HBs, exhibiting both a hydrodynamic normal liquid regime and
a high-frequency solidlike regime. Because this latter regime is characterized
by finite HB clusters of water molecules, the density fluctuations respond to
the more stable (frozen) liquid and the sound velocity increases rapidly (20),
a phenomenon that can be related to the hypothesized water polymorphism.

Fig. 5 shows the bulk water viscoelasticity indicated by the sound prop-
agation results. In the BS (18, 32) and IUVS data (33) we see that the mea-
sured sound velocity v = v(Q) over a large temperature range 240 < T < 340 K
(the stable liquid phase) is strongly dependent on the momentum trans-
ferred wave vector Q. Shown are data measured in three frequency regimes
(over a wide ω range of 104 < ω < 1013 Hz).

In characterizing sound velocity in bulk water we find that

i) values of vhf, measured at ω > 109 Hz, slowly increase (within an exper-
imental error) as T decreases;

ii) the US–stimulated scattering (SS) velocity data, vus(T ), measured at
108 Hz, nearly coincide with the corresponding data measured using
the pulsed echo technique at 107 Hz (23, 24), and they continue to
decrease as T decreases; and

iii) unlike the US data, the BS and the IUVS data show a strong wave-vector
dependence accompanied by a positive dispersion with a minimum (vmin)
at a certain temperature.

Hence the minimum velocity temperature is strongly dependent on the
probe wave vector Qexp, and for each Qexp the speed of sound v(Q, T) evolves
from the US value toward vhf as a function of decreasing temperature. In all
of the experiments producing this v(Q, T) behavior (18, 32, 33), the inelastic
contributions to the S(Q, ω) are characterized by a marked broadening as T
decreases. For the viscoelastic models this behavior is the result of a typical
relaxation process evolving on a time scale that matches the reciprocal fre-
quencies (time and length scales) of the longitudinal modes. Thus, when we
decrease T and increase Q the structural relaxation drives the transition (Fig.
3) of the longitudinal mode v(Q, T) from the adiabatic limit vus to the high-
frequency limit vhf. This behavior is seen in the physical properties of all glass-
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forming systems (and supercooled liquids)—structural relaxation allows
a transition from the viscous to the elastic regime. It was recently shown that
structural relaxation causes the transport properties of all supercooled liquids
to be characterized by a dynamic crossover from super-Arrhenius to Arrhenius
behavior (41). Using mode coupling to examine the hopping processes among
these relaxing structures (39) we find the crossover temperature of the tran-
sition from liquidlike to solidlike behavior toward dynamic arrest (or glass
transition). This crossover temperature can be verified using the power law
form proposed by the ideal MCT.

Note Added in Proof. After this work was submitted, we learned of some very
interesting results (46) that offer theoretical arguments supporting the
proposal of Kumar and Stanley (47), based on computer simulations, of
a minimum of thermal conductivity, associated with the maximum of com-
pressibility near the Widom line.
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