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Exact-enumeration approach to random walks on percolation clusters in two dimensions
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We present a useful method for the study of random walks on disordered systems, and apply it to the
problem of diffusion on percolation clusters at criticality. The method is based on the exact enumeration
of all possible random walks of a certain size on a given cluster. In particular, we calculate the mean-
square end-to-end distance, the probability of return to the origin, and a diffusion chemical exponent d‘(,
(that describes the chemical distance traveled by the random walker) as functions of the number of steps.
Also we present for the first time data showing clearly the difference between the myopic and blind ants,

and find much more rapid convergence for the blind ant.

The study of diffusion laws in disordered systems has re-
cently attracted a great deal of attention, in part because of
the immediate physical importance of the problem, and
more recently because of the remarkable Alexander-Orbach
(AO) discovery! that the fracton dimension d; =2d,/d, = %

on percolation clusters independent of dimension. Here, df
is the fractal dimension of the substrate and d, is the ex-
ponent describing the rms distance traveled by a random

walker after taking N steps (i.e., N~ R™).

Previous studies of diffusion on percolation clusters have
been confined to the conventional Monte Carlo simulation
method,?-7 where a small fraction of all possible, very long
(N steps) random-walk configurations are generated and the
averages then performed over this set of configurations. In
the exact enumeration method to be described below, we
enumerate exactly walks, typically N =5x 10° steps for each
cluster configuration, and average these over typically 1000
different clusters. For example, on the triangular lattice at
the percolation threshold (p,=0.5), we can assume the
average number of nearest neighbors of a site to be
0.5x6=3; then we enumerate all possible N-step walks ex-
actly corresponding to 3" configurations. For N ~ 10° this
represents much more ‘‘information’® than obtained by
Monte Carlo methods. We shall see that this exact
enumeration procedure reduces the error bars considerably
compared to Monte Carlo? calculations using a comparable
amount of computer time (Fig. 1).

Method. Before proceeding to describe the exact
enumeration method we note that for the ant in a labyrinth
problem, one can have two different types of ants: a blind
ant and a myopic ant.®

The difference is simple to state in operational terms.
Consider, for concreteness, a square lattice in which a frac-
tion of the sites are open and the remainder blocked. For
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the blind ant, at each time step a coin with four possible
outcomes is tossed. If the outcome corresponds to an al-
lowed possibility, the ant moves; otherwise it remains at its
present position. For example, suppose the outcome is
north and the site on the north is open: then the ant moves
one step north. Suppose, however, that the outcome is east
and the site on the east is blocked. Then the ant stays at its
present site and one unit of time is said to elapse.

The myopic ant is not so “‘blind’’: it realizes that not all
four paths are open, in general, and chooses among only
the open sites. For example, if the sites on the north and
south are open, and the other two are blocked, then the ant
throws a coin with only two possible outcomes. Thus, the
myopic ant moves at every time step.

In Figs. 2(a) and 2(b) we illustrate the exact time evolu-
tion of the probability distribution function for the blind ant
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FIG. 1. Graph of d,, vs N comparing Monte Carlo data (A,O)
with exact-enumeration data (®). The triangles refer to diffusion
on the triangular lattice, the squares to diffusion on the square lat-
tice.
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(b) Blind Ant

FIG. 2. Time evolution of the probability distribution function
for three successive instants of time for the cases of (a) the myopic
ant and (b) the blind ant.

and the myopic ant, respectively. The key to the above ex-
act enumeration procedure is that the probability of the ant
being at any site (j) at some time ¢ is determined solely by
the probabilities of being at the nearest neighbors of site ()
at time ¢ —1.

An algorithm for the simulation of diffusion was
developed. We first store the cluster in a matrix keeping
track of the nearest neighbors of each site. To simulate the
diffusion we have two matrices M, (), M,()) that store the

probability distribution function of the random walker at
times ¢ and ¢’, where () represents the set of all sites in the
cluster. Thus, given the distribution function at time ¢
M,(j), the distribution function at time ¢+ 1 is given by

z(p)
M () =3 M(Dw(ij) . 1
i=1

Here, i indexes the nearest neighbors of j [z(,) can take on
values from 1 to z, where z is the coordination number] and
w(i,j) is the probability of the walker coming to j from i
The w(ij) depend on whether we are simulating the blind
ant or the myopic ant. Having obtained M,41(/), we can go
back and obtain the distribution function at time ¢+ 2 by

M,y () =23 My (DWW (L)) . )
i
Once we have the probability distribution function at some

time ¢ we may calculate various spatial averages, e.g., the
mean-square end-to-end distance,

(=2 MNIrNP* . (3)
J

The probability of returning to the origin P,(0) is just
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M,(j=0). This procedure may easily be continued to
t ~10° steps for clusters of ~ 10° sites, computation time
increasing linearly with the number of sites in the clusters.
Specifically, on an IBM 3081 it takes approximately one
minute of central processing unit (CPU) time to simulate a
1000-step walk on an 8000-site cluster.

Constant-l ensemble. The chemical distance / between two
points is the minimum number of bonds that link the two
points.®? Its importance lies in the fact that clusters in the
grand canonical ensemble may be characterized by either /
(as measured from the origin) or s (the number of sites in
the cluster).® In particular, for diffusion-related studies, it
is plausible that the more natural choice of variable is /
Hence, we suggest that diffusion-related problems should be
simulated at constant /, instead of fixing the number of sites
in the cluster. We find that this renders the calculations far
more efficient because it provides a criterion for the
minimum size cluster needed for an N-step walk (avoiding
end effects). This is an important observation and one that
we employ consistently in our simulations, resulting in con-
siderable savings in computation time. Our simulations
were performed at /ma=220. To see whether boundary ef-
fects are important we also performed several runs with
Imax =300 and obtained identical results to 10 significant fig-
ures. The chemical length exponent d; is defined by

d . . oy
(sy ~ 1" (s) is the average number of sites within a
chemical distance /. The chemical diffusion exponent d, is

!

defined by?® (/) ~NW"; (I) is the average chemical dis-
tance traveled by the random walker after N steps. Also, d
and d/, are related to d,, and d; by®

difdy=djdj=7v . (4)

From our simulations we can calculate d, by calculating the
N dependence of (/) using

=3 MGDI, (5)
J

where M,;(j,D) is the probability of being at site jlocated at a
chemical distance / from the origin.

Results. To calculate the diffusion exponents d,, d;, and
dl, on percolation clusters at criticality, we enumerated ex-
actly all walks up to 5000 steps long on each cluster (on the
triangular lattice with p.=0.50 exactly; the cluster was
grown by the cluster growth method,!® omitting all small
clusters), and averaged over 1000 different clusters. In par-
ticular we calculate (r2)y and (r*)y to determine d,,
Py(0), the probability of returning to the origin after N
steps [which scales as ~ N ’/2)], to determine d, directly,
and (/) y and {/2) y to calculate dj.

We can calculate all these exponents by the method of
successive slopes which is used in series expansion methods.
This procedure is equivalent to finding a local fractal dimen-
sionality* Dy of some quantity 4 by the relation

Dy=IIn({A)Yy4+1/{A) )/ [In(N+1)/N]

In Fig. 1 we show results for d, obtained by this method
and compare with recent Monte Carlo simulation results.*
The Monte Carlo data appear quite scattered in comparison
with the exact enumeration data. The use of the exact
enumeration method, therefore, renders the data sufficient-
ly smooth that one can extract the true exponent by 1/N ex-
trapolations customarily used in series expansion methods.
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FIG. 3. (a) Graph of d,, vs 1/N, for 5000-step walks on the tri-
angular lattice obtained from (r*) y (®) and (r2) 5 (x). The error
bars associated with each point are +0.015 for (r2) 5 and +0.011
for (r%) 5. (b) Graph of dl, vs 1/N for 5000-step walks on the tri-
angular lattice from (/2) y (®) and (/) y (x). Error bars associat-
ed with each point are +£0.015. (c) Plots of d; vs 1/N for 5000-step
walks on the triangular lattice obtained from Py(0). Error bars as-
sociated with each point are +0.020.

Plots of the effective exponents d,,, d), and d; vs 1/N are
shown in Fig. 3. Typical error bars for points beyond 2000
steps are (a) (r*): #0.011 and (r?): %0.015 for 4, (b)
Py(0): +0.017 for d;, and (c) (/): £0.015 and (/):
+0.015 for d,,.

Our extrapolated results are as follows:

(Py(0)): d;=1.31%0.02 , ‘ (6a)
(ry: d,=2.860£0.02, (r*): d,=2.875+0.02 , (6b)
(I): dl=2.44+0.02, (P): d,=2.47+0.02 , (6¢)
dy=2ds/d,=132£0.01 . (6d)

FIG. 4. Plot of d,, vs N comparing blind ant (x ) and myopic ant
(@).

Note that d; calculated from 2dy/d,, is consistent with, but
more accurate than, the value from Py(0).

As our final estimates we give df=2.460+0.025,
d,=2.87 £0.02, and d;,=1.32 £0.01. Hence, even though
these results seem to exclude the AOQO conjecture
(dy=3=2.845, d,=+=1333...) the subjective esti-
mates of the error bars make it impossible in this case to
rule out the AO conjecture convincingly. For the chemical
length exponent d; we find from d=(ds/d,)d, that
dy=1.63 £0.02, consistent with other recent estimates.?®

Lastly, we note that the exact enumeration method
presented above is sufficiently sensitive to distinguish
between the blind ant and the myopic ant, at least for walks
< 1000 steps long. Furthermore, although both converge
to the same asymptotic behavior, it seems that the blind ant
converges so more rapidly than the myopic ant (Fig. 4); we,
therefore, chose to perform all our simulations for accurate
determination of the exponents d,,, d;, and d!, by using the
blind ant algorithm.

In summary, we have introduced and applied an exact
enumeration method of generating random walks on per-
colation clusters. Working in the constant-/ ensemble, we
obtain accurate estimates of the diffusion exponents d;, d,,,
and d;. Also we present the first numerical data that indi-
cate, at least for walks of < 1000 steps, the clear difference
between the rate of convergence of exponents obtained
from the myopic ant and the blind ant.
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