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It is becoming common practice to partition glass-forming liquids
into two classes based on the dependence of the shear viscosity η
on temperature T . In an Arrhenius plot, ln η vs 1∕T , a strong liquid
shows linear behavior whereas a fragile liquid exhibits an upward
curvature [super-Arrhenius (SA) behavior], a situation customarily
described by using the Vogel–Fulcher–Tammann law. Here we
analyze existing data of the transport coefficients of 84 glass-
forming liquids. We show the data are consistent, on decreasing
temperature, with the onset of a well-defined dynamical crossover
η×, where η× has the same value, η× ≈ 103 Poise, for all 84 liquids.
The crossover temperature, T×, located well above the calorimetric
glass transition temperature Tg, marks significant variations in the
system thermodynamics, evidenced by the change of the SA-like T
dependence above T× to Arrhenius behavior below T×. We also
show that below T× the familiar Stokes–Einstein relation D∕T ∼ η−1

breaks down and is replaced by a fractional form D∕T ∼ η−ζ , with
ζ ≈ 0.85.

dynamical arrest ∣ dynamic transition ∣ supercooled liquids

The glass transition, attained by decreasing temperature or
increasing the system density, is one facet of the more general

dynamical arrest (jamming) phenomenon that impacts many
areas of science, representing today an intriguing topic that is
far from being completely clarified (1, 2). The phenomenon of
dynamic arrest, accompanied by a remarkable dynamic slowing
down, marks a dramatic change in the physical properties of
the system. The clarification of the underlying microscopic origin
of this slowing down represents a topic of much current research
in condensed matter physics. One approach to study this phenom-
enon is offered by the exploration of the temperature depen-
dence of transport coefficients (e.g., viscosity η, self-diffusion
constant Ds, and relaxation time τ) of a liquid supercooled into
a metastable state below its melting temperature TM , until it
either crystallizes or vitrifies. The manner in which η, Ds, and
τ approach their limiting values can provide information about
the nature of the arrest phenomenon. As T decreases below
TM , τ changes by several orders of magnitude, surpassing the time
required for experimental accessibility. An open question, trig-
gered by this marked change, is whether transport parameters re-
flect an underlying phase transition to a state in which quantities
become infinite (a “dynamic divergence”) (3). In the presence of
conflicting opinions (4–9), many models and theories have been
developed that focus on the temperature dependence of trans-
port parameters of liquids in their supercooled phase in particu-
lar, ηðTÞ. The corresponding behaviors are often characterized
by a super-Arrhenius (SA) behavior, which differs from the well-
known Arrhenius equation (AE: ln η∕η0 ¼ E∕kBT) by the pre-
sence of an upward curvature in the T dependence. To describe
these SA glass-forming materials near dynamical arrest, the
Vogel–Fulcher–Tammann (VFT) equation,

η ¼ η0 exp
!

BT0

T − T0

"
; [1]

has been widely used, where B and T0 are material-dependent
parameters. It must be stressed that such a form, contrary to the
AE one, predicts divergence at a nonzero temperature T0. The
diverging scales of τ, Ds, η contained within Eq. 1 are considered
important for understanding the nature of the glass transition and
arrested matter (10, 11). The temperature T0 has been associated
with the Kauzmann temperature TK (linked to an ideal glass tem-
perature) (1, 2), and a large class of experiments have used the
VFT formalism to relate T0 to the calorimetric glass transition
temperature Tg. In particular, Angell (12) has offered a classifica-
tion of the glass-forming liquids by using the concept of “fragility”:
“fragile” liquids obey Eq. 1 with T0 ¼ T0ðTÞ, whereas “strong”
liquids exhibit a pure AE behavior T0 ¼ const. From the analyses
of the thermal behavior of ηðTÞ, it has been conjectured that some
supercooled liquids can display a fragile-to-strong (FS) crossover
temperature Tg < T× < TM (see ref. 13 and references therein).
An analogous situation has been hypothesized for water at T× ∼
228 K (just to explain water anomalies such as the isothermal
compressibility KT) by assuming that the crossover corresponds
to a change in the liquid structure (14). Note that T× and TM
are material-dependent properties.

Another feature of fluids near the arrest is that their dynamics
result frommicroscopic cooperative processes. There is a growing
body of evidence that, upon cooling, a liquid does not become a
glass in a spatially homogeneous fashion (15–19). The system
becomes increasingly spatially correlated due to the growing of
characteristic length and time scales of dynamically correlated
regions of space as T decreases (9, 15, 20–24). For example, there
is an explicit dependence of the α-relaxation time τ on the typical
length scale ξ, τ ¼ exp½μξðTÞ∕T%, where μ represents a typical
free energy per unit length (9). This phenomenon is often called
“spatially heterogeneous dynamics” (20, 25–27), because there are
spatial regions in which the structural relaxation time can
differ by orders of magnitude from the average over the entire sys-
tem. Furthermore, the presence of these dynamic heterogeneities
has been argued to give rise to the breakdown of the Stokes–Ein-
stein (SE) relation and to the dynamic FS crossover (16–19) in a
region located inside the supercooled phase at some temperature
in the interval from Tg to TM . Because the derivation of the SE
relation assumes uncorrelated motion of particles, it is reasonable
that the onset of correlations could result in its breakdown. On
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these bases, the SE violation represents a useful element to study
deeper aspects of the glass transition (17, 28) and other relevant
phenomena observed in the interval TM − Tg. A recent example is
the study of the SE violation using a mode coupling theory (MCT)
approach incorporating activated hopping processes (29). Experi-
mental (30–32) andmolecular dynamic simulation (33–35) studies
made in confined and bulk supercooled water show that the SE
violation is accompanied by a dynamic FS crossover at the same
temperature T× ∼ 225 K, with Tg < T× < TM .

The existence of a temperature T×, marking dynamical
changes of fragile supercooled liquids below TM , has been already
considered in the past (5, 13, 36–42). This is due to problems such
as the existence of the dynamical divergence associated with the
VFT form and the possibility that neither T0 nor Tg is relevant to
describe and understand slowing down in transport parameters of
supercooled liquids.

Belonging to this scenario is also the idea that the VFT ap-
proach lacks physical meaning. Very recently, by considering a
glass-forming system composed of particles interacting via soft
potentials, Eckmann and Procaccia explicitly demonstrated that
the configurational entropy is finite at any temperature (9); i.e., a
Kauzmann temperature TK , where the liquid is out of the equili-
brium, does not exist and thus the VFT may be considered only a
fitting formula. Furthermore, a recent study (40) of the dielectric
relaxation times τðTÞ, nearly simultaneous with ref. 9, confirms
the suggestion that there is no compelling evidence for the
VFT prediction that transport parameters diverge at a finite T
and provides a demonstration, in terms of an Avramov form
τðTÞ ¼ τ0 expðB∕TnÞ, that the use of the VFT does not represent
a fruitful route to explain supercooled liquid dynamics by analyz-
ing τðTÞ for 42 ultraviscous glass-forming fluids. The scenario
proposed in this work agrees with the main findings of ref. 9,
and its validity has been proved by considering the segmental re-
laxation data of glass-forming polymers as T → T0 (43): The time
scales related to the arrest may not diverge at nonzero tempera-
ture. Similar findings have been reported also for polymers and
small molecule glass formers (see, e.g., references 7–9 of ref. 43),

suggesting that the main finding of the model proposed for soft
systems can have a larger generality.

A common theme of many works on glass-forming liquids is
that, inside the region of the supercooled phase limited by such
a crossover temperature T×, their transport parameters such as
viscosity (5, 13, 39) and dielectric relaxation time (38, 40, 41) can
have universal features. For example, using for η a eT ¼ Tg∕T re-
presentation (39), one obtains a master curve only for T < eT,
whereas for T > eT deviations occur and the highest T data are
fit using the VFT formula.

In a very recent case, the analysis of the relaxation times and
the viscosities (of 58 liquids) in terms of the parabolic form
½ðTo∕TÞ − 1%2 exhibits a degree of universality inside the interval
T× < T < To (41), where To is defined as an onset temperature
where the liquid dynamics crosses over from that of a simple
liquid to that of a strongly correlated material like a glass former.
As with T×, also To depends on the material. The result is that
above To liquid transport has a weak T dependence, whereas in a
region inside the SA liquid behavior all the transport data appear
to collapse into one parabola. However, such an approach holds
only inside the range T× < T < To (41).

The conclusions of (40–42), the theoretical indication (9),
together with the finding of cited works invocating the existence
of a crossover temperature (5, 13, 36–41) propose that VFT must
be reconsidered for the explanation of the dynamical arrest. We
have examined the temperature behavior of the viscosity and
the other transport coefficients of many liquids. Our aim is to
demonstrate that the dynamical FS crossover represents a gener-
al property of glass-forming liquids. For this, we have used the
power law that originally predicted the dynamical FS crossover
in glass-forming materials (13),

η ¼ η0

#
T − T×

T×

$−θ
; [2]

to analyze the viscosity [and alsoDsðTÞ and τðTÞ] of a larger num-
ber of diverse systems (Table 1) and to have an estimation of the

Table_1. Glass-forming liquids included in the present analysis. The symbols are those used in Figs. 1–3. More details (including references, temperatures,
fitting data, and some further information) are provided in Supporting Information.
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FS crossover temperature T×. Fig. 1 A and B, plotting log η vs
1∕T, report for salol and bulk water, respectively, a comparison
between this form, the parabolic and the Avramov ones. The
power-law approach works better than the others. In the salol
case these simple data plotting evidence directly the two strong
and fragile ηðTÞ behaviors and thus the dynamical FS crossover
located at T× ≃ 256 K; the FS crossover is not observable in bulk
water [unlike confined water (30–32)] because the system can be
supercooled only for a limited T range. The power-law form
originally proposed to study the ηðTÞ behavior of supercooled
liquids (13) is the same used to study water compressibility
(14). We must mention the agreement among the viscosity cross-
over temperature value obtained for salol, directly from Fig. 1A,
by means of Eq. 2 (T× ≃ 262 K) and by the MCTanalysis of the
light scattering α and β relaxation times (256 < Tc < 266 K)
(36, 37).

Fig. 1C is a reduced AE plot ðln η − ln η0Þ∕E vs. 1∕T and
provides, as in the salol case (Fig. 1A), direct evidence of the
dynamical FS crossover for 48 glass-forming liquids. Because
the dynamical crossover in the transport parameters is observed
in a large set, 51, of the liquids considered here, it is natural to

inquire whether the behavior illustrated for these liquids is typical
of all liquids. Fig. 1C, Upper Inset, displays the viscosity of SiO2

and GeO2. For both glass formers, we observe differences from a
pure strong liquid, and a continuity in ηðTÞ on crossing the calori-
metric Tg. Such a situation, observable in many materials, is in-
triguing: The dynamical arrest at Tg appears to have no influence
on dynamical quantities. However with respect to the measured
CP, strong and fragile liquids have different behaviors. The SA T
dependence often coincides, on approaching Tg, with a relatively
large change in CP, whereas Arrhenius strong liquids often display
very small changes.

Fig. 2 plots ðη∕η0Þ−1∕θ vs. T∕T× in a single master curve for 80
liquids. In the insets, analogous master curves for Ds (12 liquids)
and τ (8 liquids) are reported. We stress that the master curve, a
scaled representation of Eq. 2, makes sense only for T > T×,
where the three master curves can be superposed.

The relevant indication from our present results is that the
crossover temperature T× is more significant for classifying the
flow properties of liquids approaching the dynamical arrest tem-
perature than the temperature T0 of the VFTequation (i.e., TK )
or the glass transition temperature Tg. In fact, many believe that

A

B

C

Fig. 1. (A) The shear viscosity of salol, which displays a dynamical crossover (star) from super-Arrhenius to Arrhenius at 1∕T× ≈ 3.91 × 10−3 K−1 (256 K).
For T > T×, we fit the data using three approaches: power law (13), Avramov (40), and parabolic (41). For T < T×, we fit the data by an Arrhenius form function.
(B) The shear viscosity of water in a region T > T× studied by means of the same functional forms as in A. The viscosity literature data for bulk water are
available only for a limited temperature range above the crossover that has been observed only for confinedwater (30). In bothA and B, the power lawwell fits
the data in all the interval T > TX better than the other forms that work only in opposite regions of that interval (the Avramov works for the highest T , and the
parabolic holds only for the lowest). The power-law fitting gives for water: η0 ¼ 0.138cP, T× ¼ 225& 5 K, and θ ¼ 1.67& 0.04. (C) Shear viscosity η for 48
different glass-forming liquids, showing Arrhenius behavior at the lowest temperatures. A dynamical crossover is displayed by all 48 liquids. (Lower Inset)
Enlargement of the low coordinate region, including 15 glass-forming liquids. (Higher Inset) Arrhenius plot of η for SiO2 and GeO2: The behavior of both
liquids is not purely that of strong glass formers. The crossing of the glass transition temperature Tg does not correspond to any change in η behavior; in
particular, its behavior is continuous and regular. Table 1 defines the symbols for each liquid.
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the VFT is only a convenient fitting formula (9, 40–42), whereas
for Tg there is no compelling evidence of any singular character-
istic in the fluid transport properties around it. Rather it appears
that when T decreases, the transport coefficients do not diverge
but on crossing T× alter their temperature dependence and
reassume an AE form.

In order to further examine our crossover temperature results,
we evaluate (Fig. 3 insets) the Stokes–Einstein ratio RSE ≡Dsη∕T
and the Debye–Stokes–Einstein (DSE) ratio RDSE ≡ η∕τT. We
see in both these quantities a breakdown very close to T×. A
recent study in terms of the extended MCT (44) demonstrates,
in agreement with other experimental observations in some
glass-forming liquids (18, 19, 45–47), that these SE and DSE

violations occur very close to T× and are a manifestation of
the decoupling of transport coefficients (35) whose microscopic
origins can be due to the onset of typical length scales that in-
crease rapidly as T decreases (6, 9). In particular, the dynamical
heterogeneity picture implies correlations between time scale
and length scale: The increase in the time scale, as arrest is ap-
proached, leads to a growing length scale of dynamically corre-
lated regions in space (20, 24), suggesting that supercooled
liquids might display dynamical scaling. In these conditions,
the supercooling imposes that below a certain temperature the
SE (and the DSE) relation gives way to the fractional SE relation
Ds ∼ τ−ζ , where the index ζ is related with the characteristic
spatial-temporal length scales of the “spatially” heterogeneous
dynamics (18, 19, 45–47). The following has been proposed
(28): ζ ¼ αðTÞ∕βðTÞ with α and β being temperature-dependent
scaling exponents of Ds and τ, respectively. Analogous arguments
hold for the viscosity η.

Fig. 3 represents the liquid transport parameters in terms of
our scaling approach. For all the liquids we studied, the onset
of the breakdown takes place at the same value of viscosity,
η× ∼ 103 Poise, a value that is 8–10 decades lower than the value
generally found near Tg. However, the main finding is that the
two obtained master curves are consistent with a remarkable de-
gree of universality. It is certainly relevant that this result emerges
directly from the values of two transport parameters measured
independently. The crossover temperature arises from a universal
behavior rather than a definition linked to a specific cooling
rate like the calorimetric Tg. In both the fractional SE and the
DSE, the decoupling in transport properties takes place at the
crossover temperature Tx where the system recovers Arrhenius
behavior.

From the two scaled plots we calculate an exponent ζ with
almost the same value, ζ ¼ 0.85& 0.02. Fig. 3 highlights a precise
correspondence at T× among (i) the dynamical FS crossover,
(ii) the breakdown of the Stokes–Einstein and the Debye–
Stokes–Einstein relations, and (iii) the dynamical heterogene-
ities. In addition, the measured ζ value (ζ ¼ 0.85& 0.02) agrees
with the finding of other experimental (18, 19, 32, 47) and
theoretical studies predicting the presence of a crossover from
hierarchical SA dynamics for short length scales to pure Arrhe-
nius at larger ones (6, 28) and that of the extendedMCTapproach
for which the crossover is caused by the change in the dynamics
from the one determined by the cage effect to that dominated by
hopping processes (44).

A common suggestion of these approaches is that the observed
dynamical changes of the SA glass-forming liquids have a struc-
tural origin–a situation that can be easily understood by recogniz-
ing that the SE relation defines an effective hydrodynamic radius
(correlation length). The temperature decreasing determines a
growth of these correlated regions whose length can in principle
diverge originating the slowing-down characteristic of the critical
processes (i.e., the invoked ηðTÞ divergence at a finite tempera-
ture). A phenomenon not observed here because at a certain tem-
perature this “apparent” criticality evolves toward a nondivergent
behavior. The reason of this may be that in supercooled liquids
the growth process originates solely disordered and finite regions
of correlations (a sort of finite polydisperse dynamical clustering)
whose molecules are more “sluggish” than the less correlated.
The internal motions of such clusters are dynamical and strongly
dependent on the temperature; a T decreasing causes their pro-
gressive slowing down up to a temperature at which they are prac-
tically frozen and an intercluster dynamics results more favored.
Such a temperature is the crossover one: Above it the molecular
motion, identified by DS (and thus reflected in τ and η), depends
essentially on the clusters dynamics. It is just the cluster polydis-
persity and the interaction between each other that give rise to
hierarchical relaxation times that are reflected in the time depen-
dence of the density–density correlation functions Fðq;tÞ as the

Fig. 3. (Lower Inset) Onset of the breakdown of the SE law for nine liquids
analyzed. (Upper Inset) Breakdown of the DSE law for six liquids. In both
cases the breakdowns occur just below the corresponding crossover tempera-
ture, identified using the power-law approach of Eq. 2. Themain plot shows a
scaled representation of the fractional SE and of the fractional DSE, lower
and upper data, respectively. In both cases, for all the liquids studied, the
scaling exponent ζ takes almost the same value, ζ ¼ 0.85& 0.02. We note
that the onset of the breakdown of the fractional SE and DSE takes place
at the same value of viscosity, η× ≈ 103 Poise. These data demonstrate a
remarkable degree of universality in the temperature behavior of the trans-
port properties of supercooled liquids.

Fig. 2. Data collapse for the shear viscosity η for 80 different liquids (includ-
ing the 48 liquids of Fig. 1C, displaying Arrhenius behavior at the lowest T ).
Shown is the scaled viscosity ðη∕η0Þ−1∕θ as a function of the scaled tempera-
ture T∕T×, where T× is the crossover temperature. Whereas 48 liquids of
Fig. 1C display an evident crossover, for the remaining 32 liquids (including
water of Fig. 1B) we estimate T× using Eq. 2; all fluids are characterized by
viscosity values covering at least four orders of magnitude. The scaling expo-
nent θ takes on slightly different values for each of the 80 liquids we studied,
with θ ≈ 2& 0.3. (Insets) Self-diffusion constant Ds for 12 different liquids,
and the characteristic structural relaxation time τ for 8 liquids.
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well-known superexponential decays and in the transport para-
meters like η as the SA behavior.

These two dynamics, intracluster and intercluster, have a dif-
ferent physical scenario: The first assumes the existence of a mul-
tibasins energy landscape with a corresponding large frequency
(and thus correlation time) distribution and the second of a
two-state basin with a single frequency permitted. At the highest
temperatures the multibasins dynamics, i.e., the SA behavior, is
clearly favored. Each of these basins is characterized by a tem-
perature-dependent weight factor, and the T decreasing implies
not only their progressive numerical reduction but also a decreas-
ing of their weight up to negligible values. At this stage the only
relevant dynamics is the molecule migration from a cluster to
another one, i.e., a process with only one typical energy scale:
the Arrhenius energy.

On considering the above reported results, we consider that
the arrested process may be characterized by a crossover in the
dynamical properties (13, 14, 39, 41). In addition, we have already
the demonstration that the singularity implied by a genuine struc-
tural arrest appears not to be supported by the existing experi-
mental data (40, 41), and the VFT equation seems to lose any
physical basis (40). We showed, from analyses of the temperature
dependence of transport coefficients of many liquids (84), using a
scaling law approach (13), the existence of a well-defined fragile-
to-strong dynamic crossover temperature T× in the supercooled
liquid regime. We thus conclusively demonstrated that this phe-
nomenon is a general property of all glass-forming liquids. Based
on these considerations, we propose the following:

i. The FS crossover phenomenon has a larger generality than the
traditional Angell classification of liquids into two separate
classes of glass formers: fragile and strong;

ii. Transport coefficients [and the isothermal compressibility
KðTÞ] show significant change of behavior but only near T×;

iii. The FS crossover, the appearance of the fractional Stokes–
Einstein violation, the Debye–Stokes–Einstein violation,
and the dynamical heterogeneities are directly linked with T×.

Thus we conclude that (a) T× appears to be more relevant
than Tg or T0 for understanding the physics of dynamical arrest
phenomena and (b) the universality attained in the master curves
from the scaled description of the Stokes–Einstein and of the
Debye–Stokes–Einstein violations appears as a “ground-break-
ing” reality indicating a previously undescribed route to explore
arrested processes.

Methods
We considered three thermodynamical coefficients—viscosity, self-diffusion,
and relaxation time—of 84 glass-forming liquids. The majority we studied in

both the stable and the supercooled temperature phase. Fig. 1A and B report
the ηðTÞ data fitting for salol and bulk water, respectively, by using the three
different approaches discussed in the text. For the salol data we note both
the Arrhenius and SA behaviors, with a crossover at T× ∼ 256 K, but for bulk
water there are available data only in the SA region up to 237 K. The situa-
tion illustrated in Fig. 1 A and B is representative of what we observe for all
the studied liquids, and from the corresponding analysis we obtain η0, T×, To,
and the exponent θ. For T× we observe that the values we obtain are nearly
coincident with those arising from Fig. 1C (the T value at which the straight
line representing the AE behavior crosses the SA data points). The To values
obtained in the present study agree well with those of ref. 41.

The literature gives ηðTÞ for 80 liquids. Among them, 48 give direct
evidence, by means of the AE law, of the FS crossover (see Fig. 1C). Such
an approach allows a direct estimation of T×. Of the remaining 32 liquids,
7 liquids exhibit data in the supercooled region (i.e., for T lower than
TM), and 25 liquids exhibit data in the stable liquid phase.

For a wide T range, including the supercooled region, we have also
analyzed the self-diffusion coefficient Ds for 12 liquids and the relaxation
time τ for 8 liquids. Of these liquids, 9 have both η and Ds, and 6 have
the measured η and τ. We took all the liquid data from the literature,
and the corresponding details are reported in Supporting Information. After
the direct estimation of T× for the 48 liquids that clearly show the FS cross-
over (Fig. 1C), we have used Eq. 2 to evaluate η0, T×, and θ for all 84 fluids. A
comparison between the temperatures T×, separately obtained for the 48
liquids of Fig. 1C by means of this procedure and by direct evaluation, shows
that these are approximately the same.

We use the parameters η0, T×, and θ, evaluated according to the above
described procedures (for η, Ds, and τ), to generate Fig. 2, which shows
the scaled viscosity ðη∕η0Þ−1∕θ as a function of the reduced temperature
T∕T×. We obtain a single master curve that represents the viscosity of all
80 liquids. We find TM > T×, and that the exponent θ takes slightly different
values for each of the liquids, with θ ≃ 2.0& 0.3. From Fig. 2 it is evident
how T× marks the border point between the two dynamical regimes, the
fragile and the strong. The same situation is represented in the two insets
for Ds (12 liquids) and τ (8 liquids).

Fig. 3 analyzes the data in terms of the scaling law approach for the SE and
DSE violations. More precisely Ds vs. η (lower data) and 1∕τ vs. η (upper data)
are plotted in a log–log scale to detect the “fractional” SE and the DSE viola-
tions, respectively (6, 28). The data clearly show two different scaling beha-
viors above (dashed lines) and below (solid lines) the fragile-to-strong
crossover temperature T×. From both the figures it is evident that, for all
liquids studied, the onset of the breakdown takes place at approximately
the same viscosity η× ≈ 103 Poise and that the curves are universal in the sense
that the data for different fluids superpose.
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