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We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolationlike
porous media with spatial correlations. We model convection in the mass transport process using the velocity
field obtained by the numerical solution of the Navier-Stokes and continuity equations in the pore space. We
find that the resulting statistical properties of the tracer show a transition from a subdiffusion regime at low
Péclet number to an enhanced diffusion regime at high Péclet number.

PACS number~s!: 61.43.Gt, 47.55.Mh, 66.30.2h

I. INTRODUCTION

The phenomenon of hydrodynamic dispersion—the un-
steady transport of a neutral tracer in a carrier fluid flowing
through a porous material—has been widely investigated in
the fields of petroleum and chemical engineering @1–4#. One
can identify different regimes of tracer dispersion according
to the Péclet number Pe[vl /Dm , which is the ratio be-
tween the typical time for diffusion l

2/Dm and the typical
time for convection l /v . Here v is the velocity of the carrier
fluid, l a characteristic length scale of the porous media, and
Dm the molecular diffusivity of the tracer.

In the small-Péclet-number regime, molecular diffusion
dominates the way in which the tracer samples the flow field.
In the large-Péclet-number regime, also called mechanical
dispersion, convection effects are significant; the tracer ve-
locity is approximately equal to the carrier fluid velocity, and
molecular diffusion plays little role. The tracer samples the
disordered medium by following the velocity streamlines. In
a random walk picture, we may think of a tracer particle
following the direction of the velocity field, and taking steps
of length l and duration l /v .

The classical approach to model dispersion in porous me-
dia is to consider microscopically disordered and macro-
scopic isotropic and homogeneous porous materials. Under
these conditions, dispersion is said to be Gaussian and the
phenomenon can be mathematically represented in terms of
the convection-diffusion equation @2#. This traditional for-
malism, which is valid for Euclidean geometries, cannot be
adopted to describe the global behavior of hydrodynamic
dispersion in heterogeneous systems. Specifically, in the case
of percolation porous media, the breakdown of the macro-
scopic convective-diffusion description is a direct conse-
quence of the self-similar characteristic of the void space
geometry.

The movement of a tracer in a fluid flow field with a
broad velocity distribution is an interesting phenomenon that
displays a rich variety of physical behaviors. Consider, e.g.,
fluid flow in percolation clusters near the percolation
threshold—a model system relevant to a porous medium
with stagnant small-velocity zones that are linked with large-
velocity zones. In this case the typical time for convection
l /v is without bound since the velocity can be arbitrarily

small in some fluid elements of the void space. Saffman
showed @1# that the mean square duration of a tracer step is
not finite but diverges logarithmically unless an upper cutoff
is introduced into the typical time step. This upper cutoff is
imposed by the mass transport mechanism of molecular dif-
fusion.

Molecular diffusion is expected to affect the tracer motion
in two ways @1#.

~i! A quantity of material may cross from one streamline
with fluid velocity v to another by lateral diffusion if the
time step for convection l i /v is larger than t1, where t1

5l
'

2 /2Dm is the characteristic time for molecular diffusivity
effects to become appreciable @5# and l i and l ' are the
longitudinal and lateral pore lengths, respectively ~with re-
spect to the flow direction! @1#. Thus, if l i /v@t1, the tracer
has enough time to diffuse across the pore, and the time step
associated with such a move is Dt5t1. When l i /v!t1, the
time duration of a convective step is smaller than the time
required for molecular diffusion, and the tracer moves with
the carrier fluid taking a step of duration Dt5l i /v .

~ii! An amount of material may be transported by diffu-
sion along the pore. The same considerations as in point ~i!
lead to a time step Dt5l i /v in which convection dominates
when l i /v!t05l i

2/2Dm . Here the typical length scale is
the longitudinal length of the pore l i . If l i /v@t0, diffusion
dominates and the tracer takes a time step Dt5t0.

Here we propose a model of tracer dispersion in a porous
medium. The porous medium is composed of blocks of im-
permeable material that occupy, with a given probability p, a
square lattice. We consider a lattice at the site percolation
threshold, so an incipient spanning cluster is formed that
connects the two ends of the lattice. Previous studies mod-
eled the convective local ‘‘bias’’ for the movement of the
neutral tracer in the porous media assuming Stokes flow @2#.
Even at macroscopically small-Reynolds-number conditions,
this assumption might be violated in real flow through po-
rous media, especially in the case of heterogeneous materials
~e.g., percolationlike structures! where a broad distribution
of pore sizes can lead to a broad distribution of local fluxes.
As a consequence, inertial effects might be locally relevant.
To avoid this problem, we use the steady-state velocity field
obtained by solving the full set of Navier-Stokes in the per-
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colation geometry. Then we study the transport properties of
a dynamically neutral tracer moving in the flow field.

II. MODEL OF TRACER DISPERSION IN A POROUS
MEDIUM

We treat the competition between the effects of convec-
tion and diffusion. The velocity field presents a broad scale-
invariant power-law distribution of magnitude values, and
we find that there are regions of very small velocity in which
the tracer can be trapped. If convection is important, the
tracer follows the streamlines in the flow field. When a very
small velocity region is reached, molecular diffusion effects
cannot be neglected, since by diffusion the tracer may access
the stagnant zones—where it then spends a long time. We
shall see that the statistical properties of the tracer—e.g., the
first-passage time and the root mean square displacement—
show a transition from a subdiffusion regime to an enhanced
diffusion regime as the Péclet number is increased. The ex-
istence of the stagnant zones is also related to the geometri-
cal properties of the medium—whether it is correlated or
uncorrelated in the occupancy variables of the percolation
cluster.

We start by describing the disordered medium and the
velocity field. Our basic model of a porous medium is a
percolation model at threshold @6# modified to introduce cor-
relations among the occupancy units @7#. Transport in porous
media with a broad distribution of conductance values is
dominated by those regions where the conductances are
larger than some critical value. This critical value corre-
sponds to the smallest conductance such that the set of con-
ductances above the threshold forms a conducting spanning
cluster @8#. This cluster is the critical percolation cluster at
the threshold which we use in our simulations.

We assume the existence of long-range correlations be-
cause it provides a better mathematical representation for
transport properties in real porous rocks @9#. For instance, the
permeability of sandstone can fluctuate over short distances,
and these fluctuations significantly affect any fluid flow
through the pore space. Previous models assumed that these
fluctuations were random and without short-range correla-
tions. However, permeability is not the result of a simple
random process. Geologic processes, such as sand deposition
by moving water or wind, impose their own kind of correla-
tions.

The mathematical approach we apply to describe this situ-
ation is correlated percolation. In the limit where correlations
are so small as to be negligible @6#, a site at position rW is
occupied if the occupancy variable u(rW) is smaller than the
occupation probability 0<p<1; the variables u(rW) are un-
correlated random numbers with uniform distribution in the
interval @0,1# . To introduce long-range power-law correla-
tions among the variables, we convolute the uncorrelated
variables u(rW) with a suitable power-law kernel @10#, and
define a new set of occupancy variables h(rW) with long-
range power-law correlations that decay as r2g, where r

[urWu ~in the following we will set g50.4).
We solve the full set of Navier-Stokes and continuity

equations at the percolation threshold of a square lattice with
64364 cells and cell edge L51 m. Grid element lengths

with 1/4 of the solid cell edge, l i5l '5l 5L/256, have
been adopted to discretize the governing balance equations
within the pore space domain @11#. Figure 1~a! shows a typi-
cal velocity field, while Fig. 1~b! shows the probability dis-
tribution of the velocity magnitudes averaged over three re-
alizations of the percolation clusters. We find that the data
are well fit by a broad power law of the type @11#

P~v !;v20.71. ~1!

Next we analyze the transport properties of a neutral
tracer moving in the fluid. We use a discrete random walk
model for the tracer motion. Previous discrete particle mod-
els @12# consider that the entrance probability to a region is
proportional only to the flux. It has been shown @3,13# that
these models fail when there is a broad distribution of ve-

FIG. 1. ~a! Typical streamlines of the velocity field in a corre-
lated percolation cluster. ~b! Velocity magnitudes probability distri-
bution averaged over three realizations of the percolation clusters.
~c! Tracer diffusion in the porous medium shown in ~a!, for Pe
51.4. We release a walker and the black dots indicate the sites
visited by the walker.
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locities, where regions of small velocity coexist with regions
of large velocities. To circumvent this problem, we include
molecular diffusion in our discrete particle model according
to the Saffman theory of dispersion in porous media. We
define the walker motion as a competition between flow-
driven convection and molecular diffusion. To allow for
comparison among different regimes of tracer dispersion, we
define a macroscopic Péclet number as Pe[Vl /Dm , where
V51 m/s is the fluid velocity at the inlet boundary of the
lattice. At a given position rW in the pore space, we define the
time scale for convection

tc[l /v~rW !, ~2!

and a time scale for diffusion

td[l
2/2Dm5Pe l /@2V# . ~3!

Consider the walker at a site rW and fluid velocity v(rW),
with four nearest neighbor sites. The probability of choosing
each of the four nearest neighbor sites is defined according to
the rates of convection and diffusion which are equal to the
inverse convection time and the inverse diffusion time, re-
spectively @3,13#. We call site 1 the nearest neighbor site
where the velocity v(rW) points to. Then the jumping rate to
site 1 is

R151/tc11/td . ~4!

The jumping rate to the rest of the sites is equal to the dif-
fusion rate

Ra51/td ~a52,3,4 !, ~5!

since the tracer can access these sites only by diffusion. Thus
the probability to jump to the nearest neighbor sites is

pa[RaY (
b51

4

Rb , a51, . . . ,4. ~6!

III. NUMERICAL SIMULATIONS

We first discuss the case of the large Péclet number, Pe
51.4, so the value of td is such that diffusion only occurs in
regions of small fluid velocity. A typical tracer trajectory is
shown in Fig. 1~c!. We see that the tracer particle performs a
walk with long trajectories following the streamlines of the
fluid followed by periods where it gets trapped in small ve-
locity zones. These ‘‘stagnant zones’’ in the pore space differ
significantly from the dangling ends of the analogous elec-
trical problem ~i.e., the parts of the infinite cluster connected
by only one site to the backbone!. The tracer enters these
regions by diffusion, and requires a long time to escape.
After escaping, the particle performs another trajectory fol-
lowing the streamlines until it penetrates into the next small
velocity region. The tracer trajectory resembles a quasi-one-
dimensional trajectory of ‘‘channels and blobs.’’ The ‘‘chan-
nel and blobs’’ picture is the analog for this problem of the
traditional ‘‘links and blobs’’ picture associated with anoma-
lous diffusion in percolation clusters @14–16#.

We analyze the probability density of transit time P(t) for
a given system size L, i.e., the time required for the tracer to

traverse the system size L from the inlet line, for a given
Pe51.4. We find @Fig. 2~a!# that the transit time probability
density for a fixed L and Pe has a non-Gaussian shape as
found in experiments and simulations @2–4#. Moreover, we
find that the average time required for the tracer to traverse a
given distance x from the inlet line, 0,x,L , follows a
power law @Fig. 2~b!#

^t&;xb ~7!

FIG. 2. ~a! Probability density of the transit time P(t) for a
given system size and Pe51.4, averaged over three realizations of
the percolation clusters, showing a non-Gaussian behavior. ~b!

Mean value of the transit times as a function of the traverse distance
x for different Péclet numbers, averaged over three realizations of
the percolation clusters. ~c! Transit time exponent as a function of
the Péclet number. The upper limit corresponds to the value of the
exponent of the anomalous diffusion in correlated percolation clus-
ters dw . The lower limit corresponds to the minimum path expo-
nent dmin @17#, and in between those limits we find that our data can
be approximated by a logarithmic dependence with Pe.
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where b.1.08 when Pe51.4.
The transit time exponent b is not universal and depends

on Pe @Fig. 2~b!#. In fact, we find that there is a regime of
subdiffusion at low Péclet numbers where b.2, and diffu-
sion dominates over convection. At higher Péclet numbers
there is a transition to an enhanced diffusion regime domi-
nated by convection where 1,b,2. Moreover, we expect
two limiting regimes. If convection dominates completely
~mechanical dispersion!, then the tracer should follow the
minimum path along the spanning percolation cluster. The
minimum path length l min scales as l min;xdmin where dmin is
the fractal dimension of the minimum path distance between
two points separated by a linear distance x @6#. If the tracer
moves with a constant velocity, we can identify the mini-
mum path distance with the transit time, so b5dmin . This is
the lower limit of the transit time exponent, and we confirm
this prediction since we obtain b*dmin when Pe is large
@Fig. 2~c!# @17#.

The other limit at larger diffusivities—the anomalous dif-
fusion case @16#—corresponds to the regime dominated com-
pletely by diffusion, and the transit time scales as ^t&;xdw,
where dw is the random walk fractal dimension. The value
dw depends on the degree of correlation, with dw52.87 for
the uncorrelated percolation limit @6# and dw52.41 @7# for
the correlated percolation problem we study (g50.4). We
see that the limiting cases of our calculations agree with
these predictions @Fig. 2~c!#. Between these two limiting
cases, we find that the transit time exponent can be approxi-
mated by

b~Pe!;log~Pe!. ~8!

We also perform simulations on uncorrelated percolation
clusters. We find an enhanced diffusion regime and a subdif-

fusion regime as well. However, due to the tortuosity of the
uncorrelated percolation clusters at the threshold, the regions
of low velocity where the walker is trapped are not present as
we found in the case of enhanced diffusion at high Péclet
numbers in correlated clusters shown in Fig. 1~c!. Thus, we
conclude that the existence of the ‘‘channels and blobs’’
structure found in the case of dispersion in correlated clusters
at high Péclet numbers is a by-product of the dynamical
properties of the tracer moving in a broadly distributed ve-
locity field plus the geometrical properties of the particular
porous medium treated here. The compact features of long-
range correlated percolation clusters allows the tracer to per-
form large steps following the streamlines of the fluid with-
out encountering obstacles during the random walk process.

IV. DISCUSSION

In summary, we find a transition from a subdiffusion re-
gime to an enhanced diffusion regime as the Péclet number
is increased. In the enhanced diffusion regime the trajectory
of the tracer particle is reminiscent of a ‘‘channels and
blobs’’ picture. Interestingly, this fact should be relevant to
elucidate the mass and momentum transport mechanisms re-
sponsible for the dispersion regime called ‘‘holdup disper-
sion’’ @2#. Tracer experiments indicate that this regime of
strong dependence between dispersion measurements and
Péclet number is typical of percolationlike porous materials.
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