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We proposeandtesta modelthat describesthe morphologyof cities, the scalingof the urbanperimeterof
individual cities, and the areadistributionof systemsof cities. The model is alsoconsistentwith observable
urbangrowthdynamics,our resultsagreeingbothqualitativelyandquantitativelywith urbandata.The result-
ing growth morphologycan be understoodfrom interactionsamongthe constituentunits forming an urban
region,andcanbe modeledusinga correlatedpercolationmodel in the presenceof a gradient.
@S1063-651X~98!04012-4#

PACSnumber~s!: 05.40.1 j, 89.50.1 r

I. INTRODUCTION

Traditionalapproachesto urbanscienceasexempli®edin
thework of Christaller@1#, Zipf @2#, StewartandWarntz@3#,
Beckmann@4#, and Krugman@5# are basedon the assump-
tion that cities grow homogeneouslyin a mannerthat sug-
geststhat their morphologycanbe describedusingconven-
tional Euclidean geometry.However, recent studies have
proposed@6#that the complexspatialphenomenaassociated
with actual urban systemsis rather better describedusing
fractal geometryconsistentwith growth dynamicsin disor-
deredmedia@7±9#.

Predictingurban growth dynamicsalso presentsa chal-
lengeto theoreticalframeworksfor clusterdynamics,in that
different mechanismsclearly drive urbangrowth from those
which havebeenembodiedin existing physicalmodels.In
this paper,we developa mathematicalmodelthat relatesthe
physicalform of a city andthesystemwithin which it exists,
to the locationaldecisionsof its population,thusillustrating
how paradigmsfrom physicalandchemicalsciencecanhelp
explain a uniquely different set of naturalphenomenaÐthe
physicalarrangement,con®guration,andsizedistributionof
townsandcities. Speci®cally,we arguethat the basicideas
of percolationtheorywhenmodi®edto includethe fact that
the elementsforming clustersare not statistically indepen-
dentof oneanotherbut arecorrelated,cangive rise to mor-
phologiesthat bearboth qualitativeand quantitativeresem-
blanceto the form of individual cities andsystemsof cities.
Someof theseresultswerebrie¯y describedin Ref. @10#.

We considertheapplicationof statisticalphysicsto urban
growth phenomenato be extremely promising, yielding a
variety of valuable information concerningthe way cities
grow andchange,andmoreimportantly,theway theymight
be plannedandmanaged.Suchinformation includes~but is
not limited to! the following: ~i! the size distributions of
towns,in termsof their populationsandareas;~ii ! the fractal
dimensionsassociatedwith individual cities and entire sys-
temsof cities;~iii ! interactionsor correlationsbetweencities
which provide insights into their interdependence;and ~iv!
the relevanceand effectivenessof local planning policies,
particularlythosewhich aim to manageandcontaingrowth.

The size distribution of cities has been a fundamental
questionin thetheoryof urbanlocationsinceits inceptionin
the late 19th century. In the introduction to his pioneering
bookpublishedover60 yearsago,Christaller@1#poseda key
question:̀ `Are therelawswhich determinethenumber,size,
anddistributionof towns?'' This questionhasnot beenprop-
erly answeredsince the publication of Christaller's book,
notwithstandingthe fact that Christaller's theory of central
places @1#, and its elaborationthrough theories such the
rank-sizerule for cities @2±4# embodyone of the corner-
stonesof humangeography.

Our approachproducesscaling laws that quantify such
distributions.Theselawsarisenaturallyfrom our model,and
they areconsistentwith the observedmorphologiesof indi-
vidual citiesandsystemsof citieswhich canbecharacterized
by a number of fractal dimensionsand percolationexpo-
nents.In turn, thesedimensionsareconsistentwith the den-
sity of location aroundthe core of any city, and thus the
theorywe proposesucceedsin tying togetherbothintraurban
and interurbanlocation theorieswhich have developedin
parallelover the last 50 years.Furthermore,the striking fact
that cities developa powerlaw distributionwithout the tun-
ing of any externalparametermight be associatedwith the
ability of systemsof cities to ``self-organize''@5#.

II. DLA MODEL

Cities grow in a way that might be expectedto resemble
the growth of two-dimensionalaggregatesof particles,and
this hasled recentattempts@6,11,12#to modelurbangrowth
usingideasfrom thestatisticalphysicsof clusters.In particu-
lar, the model of diffusion limited aggregation~DLA!
@13,14# hasbeenappliedto describeurbangrowth @6#, and
resultsin treelike dendritic structureswhich havea core or
``central businessdistrict'' ~CBD!. The DLA model is a
physicalmodelusedto describeaggregationphenomena,and
is relatedto problemsfrom the®eldof oil recoveryin which
``viscous ®ngering'' occurs when a low viscosity ¯uid is
pushedunderpressureinto a ¯uid with a largerviscosity~as
occurswhenan oil ®eldis ¯ooded with water in an attempt
to ``pushout the oil'' !.
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The DLA modelpredictsthat thereexistsonly one large
fractal clusterthat is almostperfectlyscreenedfrom incom-
ing ``developmentunits'' ~people,capital,resources,etc.!, so
that almostall the clustergrowth occursin the extremepe-
ripheral tips. However,quantitativedatado not supportall
the propertiesof the DLA model. For instance,the DLA
model predicts that the urban populationdensity r (r ) de-
creasesfrom the city centerasa power law

r ~r ! ; r D2 2, ~1!

wherer is the radial distancefrom the core,and D. 1.7 is
the fractal dimensionof DLA. However, urban data have
beenmorecommonly®tto anexponentialdecay@15#. In the
DLA modelonly onelargecentralplaceor clusteris gener-
ated,while a realurbanareais formedby a systemof central
placesthat are spatially distributedin a hierarchyof cities.
Still anotherconcernregardingthe morphologyof the DLA
modelis thatDLA is a simply connectedcluster.Citiesgrow
in a morecompactway, with a well-de®nedurbanboundary
or externalperimeternot accountedfor by thedendriticfrac-
tal growth of DLA.

Herewe showthat an alternativemodel, in which devel-
opmentunits are correlatedrather than being addedto the
clusterat random,is betterable to reproducethe observed
morphologyof cities andthe areadistributionof subclusters
~̀`towns''! in an urbansystem,andcanalsodescribeurban
growth dynamics.Our ``physical'' model@10#, which corre-
spondsto the correlatedpercolationmodel @16±20# in the
presenceof a densitygradient@21±23#, is motivatedby the
fact that in urbanareasdevelopmentattractsfurtherdevelop-
ment.The modeloffers the possibility of predictingthe glo-
bal properties~suchasscalingbehavior! of urbanmorpholo-
gies.

III. CORRELATED PERCOLATION MODEL

In the modelwe now develop,we take into accounttwo
points.

~i! First, dataon populationdensityr (r ) of actualurban
systemsareknown to conformto the relation@15#

r ~r !5 r 0e2 l r , ~2!

wherer is the radial distancefrom the CBD situatedat the
core, and l is the density gradient.The density gradient
quanti®esthe extentof the urbanspreadaroundthe central
core. The probability that a unit occupiesa given spot de-
creasesgradually as the distancefrom a central, compact
core increases.

~ii ! Second,in actual urban systems,the development
unitsarenot positionedat random. Rather,thereexistcorre-
lationsarisingfrom the fact thatwhena developmentunit is
locatedin a givenplace,theprobabilityof adjacentdevelop-
mentunits increasesnaturally;eachsite is not independently
occupiedby a developmentunit, but is occupiedwith a prob-
ability that dependson the occupancyof the neighborhood.
In urban settings,developmentunits do not attach them-
selvesrandomly to an existing cluster. Their placementis
strongly in¯uenced by the presenceof other units. When a
unit occupiesa certainlocation,the probability of additional
developmentis highest in its vicinity, and this probability

decreasesat a certainrate as the distancefrom the unit in-
creases.Thus the rules of placementare affectedby long-
range``interactions'' that in¯uence how clustersform and
grow. What happensat a given site dependson the stateof
many other sites.Thesecorrelationsre¯ect the tendencyof
peopleto locatenext to oneanother,asarticulatedin tradi-
tional urbanscienceaseconomiesof urbanagglomeration.

In order to quantify theseideas,we considerthe corre-
latedpercolationmodel@16±20#in thepresenceof a concen-
tration gradient@21±23#. We start by describingthe uncor-
relatedsite percolationproblem, which correspondsto the
limit wherecorrelationsareso small asto be negligible@7±
9#. We ®rstde®nea randomnumberu(r), called the occu-
pancyvariable,at everysiter5 (i , j ) in a squarelatticeof L2

sites. The numbersu(r) are uncorrelatednumberswith a
uniform probability distributionbetween@0,1#. A site in the
lattice is occupiedif the occupancyvariableu(r) is smaller
than the occupationprobability p, which is a quantity ®xed
for every site in the lattice. A cluster is a set of sitescon-
nectedvia nearestneighborsites.Whenp is small only iso-
lated clustersexist. At a critical value of the concentration
called pc an ``incipient in®nitecluster'' forms which, for a
®nitesystem,connectstwo sidesof the system.

Our basicmodelis a percolationmodelmodi®edto intro-
ducecorrelationsamongthe units,andthe fact that the con-
centrationp is not constantfor all thepointsin thelatticebut
presentsthe gradient shown in Eq. ~2!. In our model we
consider ``development units'' representing buildings,
people,andresourceswhich areaddedto theclusterin simi-
lar fashionasin percolation.Sincetheseunitsareaddedin a
correlatedfashion,we next considera modi®cationof the
percolationproblem to incorporatecorrelationsamongthe
occupancyvariablesu(r).

To introducecorrelationsamongthe variableswe usea
methodproposedin Ref. @20#which is a modi®cationof the
Fourier®lteringmethod~Ffm! @24±26,18#suitablefor large
systems.Considera stationarysequenceof L2 uncorrelated
randomnumbers$u(r )%, r 5 (i , j ),i , j 5 1, . . . ,L. The corre-
lation function is ^u(r ) u(r8)&; dr ,r8, with dr ,r8 the Kro-
neckerdelta,andthebracketsdenoteanaveragewith respect
to a Gaussiandistribution. We use the sequence$u(r )%to
generatea new sequence$h (r )%, with a long-rangepower-
law correlationfunction C( l ) of the form @20#

C~l ! [ ^u~r ! u~r8!&5 ~11 l 2! 2 a /2, ~3!

where l 5 ur 2 r8u, a is the correlationexponent,and the
long-rangecorrelationsare relevantfor 0, a , d5 2, where
d is thedimensionof thesubstrateÐa> 2 correspondsto the
uncorrelatedproblem,and a ! 0 to the strongly correlated
problem.

The spectraldensityS(q), de®nedas the Fourier trans-
form of C( l ), hasthe form

S~q!5
2p

G~b 21 1! Sq

2Db 2

Kb 2
~q! , ~4!

where q5 uqWu, qi5 2p mi /L, 2 L/2< mi< L/2, i 5 1 and 2,
andb 25 (a2 2)/2. $h (q)%arethe Fourier transformcoef®-
cientsof $h (r )%, andsatisfy
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h~q!5 „S~q!…1/2u~q! , ~5!

where $u(q)% are the Fourier transform coef®cientsof
$u(r )%.

The actualnumericalalgorithm for F f m consistsof the
following steps:~i! Generatea two-dimensionalsequence
$u(r )%of uncorrelatedrandomnumberswith a Gaussiandis-
tribution, and calculate the Fourier transform coef®cients
$u(q)%. ~ii ! Obtain$h (q)%usingEqs.~4! and~5!. ~iii ! Cal-
culate the inverse Fourier transform of $h (q)%to obtain
$h (r )%, the sequencein real spacewith the desiredpower-
law correlationfunction which asymptoticallybehavesas

C~l ! ; l 2 a . ~6!

The assumptionof power-law interactionsis motivatedby
the fact that the ``decision'' for a developmentunit to be
placedin a given locationdecaysgraduallywith thedistance
from an occupiedneighborhood.

Finally we considerthat the developmentunits are posi-
tionedwith a probability which behavesin the samefashion
as known for cities @Eq. ~2!#. Therefore,we relax the as-
sumption that the concentrationp is constantfor all the
points in the lattice, and we considerthat the development
units arepositionedwith an occupancyprobability

p~r ! [ r ~r ! /r 0 , ~7!

thatbehavesin thesamefashionasis knownin observations
of real cities. This last modi®cationcorrespondsto the per-
colationproblemin the presenceof a concentrationgradient
proposedin Refs.@21±23#.

In order to apply the aboveprocedureto the percolation
problem,we study the probability distribution P(h ) of the
correlatedsequenceh (r ). We ®nd that when the uncorre-
latedvariablesu(r ) are takenfrom a Gaussiandistribution,
h (r ) alsohasa Gaussiandistribution.We nextdiscretizethe
variables generating a sequence m(i , j ), according to
m(i , j )5 Q„u2 h (r )…where u is chosen to satisfy p(r )
5 * 2 `

u P(h )dh , with p(r ) the occupancyprobability andQ
is the Heavisidestepfunction.

Notice that we have de®nedtwo different propertiesof
the system. First we introduced long range correlations
amongthe variablesby modifying the occupancyvariables
h (r ). Thesecorrelationsare isotropic, i.e., all the points in
spaceare connectedby interactionsquanti®edby a power
law. The fact that we considera slowly decayingpower-law
scale-freefunction is due to the fact that any other correla-
tion function will display a cutoff after which correlations
are negligible.Sincewe are looking at propertiesof actual
cities at large length scales,a coarsegrain will transforma
®nite rangecorrelatedsysteminto an uncorrelatedsystem,
i.e., a systemwith a ®nitecutoff in thecorrelationsbecomes
uncorrelatedat large scales.This situation doesnot occur
when we considerpower law correlationsof the form ~6!,
since it is a scale-freefunction. Thus correlationsare ex-
pectedto be relevantat all length scales.One must distin-
guishthe type of correlationintroducedby Eq. ~6! from the
correlationsarising at the critical concentrationpc . In this
case,the connectednesslength of the systemis said to be
in®nite,since two occupiedsites separatedby an arbitrary
distancemay be connectedby the in®nitecluster,and thus

theyarecorrelatedin space.However,thecorrelationsintro-
ducedby Eq. ~6! go beyondthis typeof connectionbetween
sites.Due to correlationof type~6!, evensiteswhich belong
to different clustersarecorrelated.

Second,we considerthat the probability of occupancyof
the sitesdecaysexponentially,with the centerpoint always
occupied.This propertyof the systemis independentof the
type of correlationchosen.The correlationexponenta and
the densitygradientl are the only parametersof the model
to be determinedby empiricalobservations.

IV. STATICS

We ®rstdiscussthe in¯uence of the correlationson the
morphologyof a systemof cities generatedin the present
model.Thereforewe ®x the valueof the concentrationgra-
dient l in Eq. ~7!, andin Fig. 1 we showour simulationsof
urban systemsfor different degreesof correlation.We see
that the larger the degreeof correlationsthe more compact
the clustersare.The correlationshavethe effect of agglom-
eratingthe units aroundan urbanarea.In the simulatedsys-
temsthe largestcity is situatedin thecore~which actsasthe
``attractive'' centerof the city!, and this is surroundedby
small clustersor ``towns.'' The correlatedclustersarefairly
compactneartheir respectivecentersandbecomelesscom-
pactneartheir boundaries,in qualitativeagreementwith em-
pirical dataon actual large cities suchas Berlin, Paris,and
London.~see,i.e., Refs.@6,27#!. Thestronglycorrelatedcase
of Fig. 1~a! (a ! 0) results in a systemof cities looking
morerealisticthantheuncorrelatedcase@Fig. 1~c!#. Theun-
correlatedcaseresultsin a systemof very smallcitiesspread
arounda centralcity, while the cities in the correlatedcase
look morecompactandmorerealistic.

Theurbanboundaryof thelargestcity is de®nedto bethe
external perimeter of the cluster connectedto the CBD.
Sincep(r ) decreasesasonemovesawayfrom the core,the
probability that the largest cluster remainsconnectedde-
creaseswith r. The meandistanceof the perimeterfrom the
center r f is determinedby the value of r for which p(r )
equalsthe percolationthresholdÐi.e., p(r f)5 pc , so @21±
23#

r f5 l 2 1ln~1/pc! . ~8!

For distancessmallerthan r f , thereis a high concentra-
tion of sitessincep(r ). pc , and the clusterthusgenerated
playsthe role of the in®nitecluster.For distancelargerthan
r f , we havep(r ), pc , so that only isolatedclustersexist,
which form the systemof small cities surroundingthe large
city situatedin the core.

The geometricalpropertiesof the externalperimeterof
the largestcity correspondto the propertiesof the external
perimeterof the in®niteclusterof thepercolationproblemin
the absenceof a gradient@21#. The critical propertiesof the
clusterscanbe analyzedin termsof the percolationproper-
ties. Percolationclustersformedbelow pc arecharacterized
by a ®niteconnectednesslengthwhich is thetypical distance
at which two sitesareexpectedto be connectedvia nearest
neighborsites „do not confusewith the correlationsintro-
ducedvia Eq. ~6!…. This connectednesslengthdivergeswhen
the in®niteclusterforms at pc , i.e., j ; up2 pcu

2 n, wheren
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is theconnectednesslengthexponent.In thecaseof gradient
percolationthe clustersformedbelow pc for r . r f arechar-
acterizedby this length,which is now a function of the dis-
tancer:

j ~r ! ; up~r !2 pcu
2 n. ~9!

Moreover, due to the existenceof long range correlation
among the variablesthe exponentn is not universal,but
changescontinuouslywith thedegreeof correlationgivenby
a @18#. We will see that severalcritical propertiesof the
percolationclusterschangewith the correlations.

The width s f of the externalperimeterof the largestcity
is de®nedas

s f [ ^~r 2 r f !
2&1/2, ~10!

wherer f [ r̂&, andr belongsto theexternalperimeterof the
centralcluster.Thewidth of theexternalperimeteris a func-
tion of the concentrationgradientl andit is known to scale
as@21#

s f ; l
2 n/~11 n!. ~11!

The value of n correspondingto the uncorrelatedperco-
lation problemis n5 4

3 . Howeverthepresenceof long range
correlationsof type ~6! drastically affects the value of the
connectednessexponent,which is now a functionof a ,n(a )
asobservedin previousstudiesof long rangecorrelatedper-
colation @17,18#. We havesimulatedthe correlatedpercola-
tion problemwith a gradient,and using Eq. ~11! we ®nda
drasticincreaseof n(a ) with the increaseof the long range
correlations(a ! 0) @Figs.3~a! and3~b!#. In particularn(a )
seemsto increasevery drastically for a systemof strong
correlationsa ! 0. In fact for such a system,we expecta
mean®eld situation where all sites in the lattice are con-
nectedto the rest of the sites. In this casethe percolation
threshold for the site percolation problem should be pc
5 0.5,andtheconnectednesslengthshouldbezerobelowpc
andin®niteabovepc .

The scaling of the length of the urban boundaryof the
largestcity within a regionof size l ,

L~l ! ; l De, ~12!

de®nesthefractaldimensionDe , which we calculateto have
valuesDe. 1.33 for the uncorrelatedcase,and De. 1.4 for
strongcorrelations(a ! 0) @Fig. 3~c!#. The small variation
of the fractal dimensionof the externalperimeterdoesnot
rule out the fact that it may be independentof the correla-
tions.Thesevaluesareconsistentwith actualurbandata,for
which valuesof De between1.2 and1.4 aremeasured@6#.

Near the frontier and on length scalessmaller than the
width of the frontier s f , the largestcluster has fractal di-
mensiond f . 1.89,asde®nedby the ``mass-radius''relation

M~r ! ; r d f , ~13!

where M(r ) is the massof the cluster inside a region of
radius r. The value d f . 1.89 correspondsto the fractal di-
mensionof theuncorrelatedpercolationclusters,andwe ®nd
thatit is valid independentof thecorrelations@18#. However,
as a ! 0 we expect a compactcluster with dimensiond f

FIG. 1. Simulationsof urbansystemsfor different degreesof
correlation.Heretheurbanareasareblack.In all the®gures,we ®x
the value of the densitygradientto be l 5 0.009.~a! and ~b! Two
different examplesof interactivesystemsof cities for correlation
exponentsa5 0.6 and1.4, respectively.The developmentunits are
positionedwith a probability that decaysexponentiallywith the
distancefrom the core. The units are locatednot randomlyas in
percolation,but rather in a correlatedfashion dependingon the
neighboringoccupiedareas.The correlationsare parametrizedby
the exponenta . The stronglycorrelatedcasecorrespondsto small
a (a ! 0). When a . d, whered is the spatial dimensionof the
substratelattice (d5 2 in our case!, we recover the uncorrelated
case.Notice the tendencyto morecompactclustersaswe increase
the degreeof correlations(a ! 0). ~c! As a zerothorder approxi-
mation,onemight imaginethemorphologypredictedin theextreme
limit wherebydevelopmentunits are positionedat random, rather
thanin the correlatedway of ~a! and~b!. The resultsfor this crude
approximationof a noninteractive~uncorrelated! systemof cities
clearly displaya drasticallydifferent morphologythan found from
dataon real cities @suchasshownin Fig. 2~a!#. The noninteractive
limit looksunrealisticin comparisonwith realcities,for the lack of
interactionscreatesan urban area characterizedby many small
townsspreadlooselyaroundthe core.
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5 2. Thefact thatwe areunableto seethis limit might bedue
to numericallimitations nearthe mean®eldpoint a5 0.

Thenumberof sitesof thefrontier N f alsoscaleswith the
concentrationgradient@21#

N f ; l
2 n~d f2 1! /~11 n!. ~14!

This relationprovidesanotherway of calculatingthe fractal
dimensiond f and the exponentn, which we usedto verify
our calculations.

It is importantto stressthat underthe presentpercolation
picturecities arefractal structuresonly nearthe externalpe-
rimeterof the largestcity, andon lengthscalessmallerthan
the width of the frontier de®nedby Eq. ~10!. The width is a
function of the concentrationgradientl @Eq. ~11!#, so that
the larger the spreadof the city the larger the regionwhere
thecity is fractal.However,at distancescloseto thecenterof
the largestcity, the cluster is clearly nonfractalsince p(r )
. pc , andtheclusterbecomescompact.On theothersidefor
largerdistancesp(r ), pc , only small isolatedclustersexist
with a de®niteconnectednesslength associatedwith them
@Eq. ~9!#, so that they arenot fractal either.

V. AREA DISTRIBUTION OF URBAN SETTLEMENTS

So far, we havearguedhow correlationsbetweenoccu-
pancyprobabilitiescanaccountfor the irregularmorphology
of townsin a urbansystem.As canbe seenin Fig. 2~a!, the
townssurroundinga largecity like Berlin arecharacterized

by a wide rangeof sizes.We are interestedin the laws that
quantifythetown sizedistributionN(A), whereA is thearea
occupiedby a given town or ``mass'' of the agglomeration.

We haveanalyzedthedistributionof areasof actualcities,
suchas the systemof cities surroundingLondonandBerlin
for different years@Fig. 2~a!#, andwe alsoanalyzedthe area

FIG. 2. Qualitativecomparisonbetweenthe actualurbandata
andtheproposedmodel.~a! Threestepsof thegrowthwith time of
Berlin andsurroundingtowns.Dataareshownfor the years1875,
1920,and1945~from top to bottom!. ~b! Dynamicalurbansimula-
tions of the proposedmodel. We ®x the value of the correlation
exponentto be a5 0.05 ~stronglycorrelatedcase!, andchoosethe
occupancyprobability p(r ) to correspondto the density pro®les
shown in Fig. 7. We use the sameseedfor the randomnumber
generatorin all ®gures.

FIG. 3. ~a! Width of the externalperimeterasa function of the
density gradient, s f(l ), for severaldegreesof correlations.~b!
Connectednesslength exponentn(a ) as a function of the correla-
tion exponenta calculatedfrom ~a! using Eq. ~11!. The value n
5 4

3 correspondsto the uncorrelatedpercolationproblem(a5 2).
~c! Fractaldimensionof theexternalperimeterof the largestcluster
asa function of the degreeof correlation,De(a ).
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distribution of urban systemsat larger scalesby using the
dataof all settlementsof GreatBritain for theyears1981and
1991 ~Fig. 4! @28#. In the caseof the towns aroundBerlin
andLondon,we ®rstdigitize theempiricaldataof Fig. 4.1of
Ref. @27# @Berlin 1920and1945,shownin the last two pan-
els of Fig. 2~a!#, andFig. 10.8 of Ref. @6#correspondingto
London1981.Thenwe count the numberof towns that are
covered by A sites, putting the result in logarithmically
spacedbins ~of size 1.2k, with k5 1,2, . . . ), and averaging
over the sizeof the bin.

We calculatethe actual distribution of the areasof the
urbansettlementsaroundBerlin andLondon,and®nd@Fig.
6~a!# that for both cities,N(A) follows a powerlaw with an
exponentcloseto 2:

N~A! ; A2 1.98 ~Berlin, 1920,1945! , ~15!

N~A! ; A2 1.96 ~London,1981! . ~16!

Figure6~b! showsthedistributionof all urbanareasin Great
Britain for the years1981 and 1991. We ®nda power law
with an exponentconsistentwith the data of London and
Berlin at smallerscales

N~A! ; A2 2.03 ~Great Britain, 1981, 1991! . ~17!

Otherstudiesrecentlycon®rmedthe validity of theseresults
for largerlengthscales,andalsofor the populationdistribu-
tions which is known to scaleasthe occupiedarea@29#.

Theseresults can be understoodin the context of our
model.Insight into this distributioncanbedevelopedby ®rst
noting that the small clusterssurroundingthe largestcluster
are all situatedat distancesr from the CBD suchthat p(r )
, pc or r . r f . Therefore,we ®ndN(A), thecumulativearea
distributionof clustersof areaA, to be

N~A!5 E
0

pc
n~A,p!dp; A2 ~t 1 1/d fn!. ~18!

Here

n~A,p! ; A2 t g~A/A0! ~19!

is de®nedto be the averagenumberof clusterscontainingA
sites for a given p at a ®xeddistancer, and t 5 11 2/d f .
Here

A0~r ! ; j ~r ! d f ; up~r !2 pcu
2 d fn ~20!

correspondsto themaximumtypical areaoccupiedby a clus-
ter situatedat a distancer from theCBD, while g(A/A0) is a
scaling function that decaysrapidly ~exponentially! for A
. A0 .

In our numericalsimulationswe ®nd a drastic increase
of n(a ) with the increaseof the long-rangecorrelations
(a ! 0) @Fig. 3~b!#. The connectednessexponentn(a ) af-

FIG. 4. Urban settlementsof all of GreatBritain for the year
1981. Every point correspondsto an occupied area of 200
3 200 m2. Clustersof occupiedareasare de®nedas the points
connectedvia nearestneighbors.

FIG. 5. Log-log plot of the areadistributionfunctionN(A) cal-
culatedfor the presentmodel for different degreesof correlation.
From top to bottom,a5 0.2, a5 0.8, a5 1.4, andthe uncorrelated
case.The linear ®tscorrespondto the predictionsof Eq. ~18! using
the valuesof n(a ) from Fig. 3~b!, andd f5 1.89.
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fects the areadistribution of the small clustersaroundthe
CBD ~Fig. 5!, as speci®edby Eq. ~18!, and can be usedto
quantify the degreeof interactionbetweenthe CBD andthe
small surroundingtowns.For instance,for a stronglycorre-
lated systemof cities characterizedby small a , n(a ) is
largeso that theareaA0(r ), andthe linearextensionj (r ) of
the towns will be large evenfor towns situatedaway from
theCBD. This effect is observedin thecorrelatedsystemsof
cities of Fig. 1.

In Fig. 6~a! we plot thepowerlaw for theareadistribution
predictedby Eq. ~18! alongwith the realdatafor Berlin and
London and all Great Britain. In particular, the slope pre-
dictedfor the uncorrelatedsystemis

N~A! ; A2 2.45 ~uncorrelatedmodel! , ~21!

while for the stronglycorrelatedmodel it is

N~A! ; A2 2.06 ~stronglycorrelatedmodel,a ! 0! .
~22!

Therefore,we ®ndthat the power laws of the areadistribu-
tion of actualcitiesareconsistentwith theprediction@dashed
line, Fig. 6~a!# for the caseof highly correlatedsystems.
Theseresultsquantify thequalitativeagreementbetweenthe
morphologyof actualurbanareasandthestronglycorrelated
urbansystemsobtainedin our simulations.Clearly, the ex-
ponentof theareadistributionprovidesa strongertestof our
model againstobservationsthan doesthe fractal dimension
De of the perimeter.

VI. DYNAMICS

We now discussa generalizationof our static model to
describethe dynamicsof urban growth. Empirical studies
@15# of the populationdensity pro®leof cities show a re-
markablepatternof decentralization,which is quanti®edby
thedecreaseof l (t) with time ~seeTable4 in Ref. @30#, and
Fig. 7!. Thereforethe dynamicsin the modelarequanti®ed
by a decreasingl (t), asoccursin actualurbanareas.In the
contextof our model,this ¯attening patterncanbeexplained
as follows. The model of percolationin a gradientcan be
relatedto a dynamicalmodelof units ~analogousto the de-
velopmentunitsin actualcities! diffusing from a centralseed
or core@21±23#. In this dynamicalsystem,the units areal-
lowed to diffuse on a two-dimensionallattice by hoppingto
nearestneighborpositions.The densityof units at the core

FIG. 6. ~a! Log-log plot of the areadistribution N(A) of the
actualtowns aroundBerlin and London.We ®rstdigitize the em-
pirical dataof Fig. 4.1of Ref.@27# @Berlin 1920and1945,shownin
the last two panelsof Fig. 2~a!#, andFig. 10.8of Ref. @6# ~London
1981!. Thenwe count the numberof towns that arecoveredby A
sites,putting the result in logarithmicallyspacedbins ~of size1.2k,
with k5 1,2, . . . ), and averagingover the sizeof the bin. A power
law is observedfor the areadistributionsof both urban systems.
The dottedline showsthe predictionsof our model for the uncor-
relatedcase~the slopeis 2.45!, while the dashedline givesresults
for the strongly correlatedcase~the slope is 2.06!. Note that the
areadistributionsfor bothcitiesagreemuchbetterwith thestrongly
correlatedcase(a ! 0). ~b! Log-log plot of theareadistributionof
all theurbanareasin GreatBritain in 1981and1991.Thedata®tto
a power law of exponent2.03.Notice also the very small changes
of the urbanareasin a ten yearperiod.

FIG. 7. Semilog plot of the density of occupiedurban areas
r A(r )5 e2 l r for the threedifferent stagesin the growth of Berlin
shownin Fig. 2~a!. Leastsquare®tsyield the resultsl . 0.030,l
. 0.012, and l . 0.009, respectively,showing the decreaseof l
with time. We usethesedensitypro®lesin the dynamicalsimula-
tions of Fig. 2~b!.
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remainsconstant:whenevera unit diffuses away from the
core,it is replacedby a newunit. Thedensityof unitscanbe
mappedto the densityof occupiedurbanareas

r A~r !5 e2 l r , ~23!

which in turn is proportionalto the populationdensityr (r )
@6#. A well-de®neddiffusion front, de®nedas the boundary
of the cluster of units that is linked to the central core,
evolvesin time. Thediffusion front correspondsto theurban
boundaryof the centralcity. The staticpropertiesof the dif-
fusion front of this systemwere found to be the sameas
thosepredictedby the gradientpercolationmodel @21±23#.
Moreover,the dynamicalmodelcanexplain the decreaseof
l (t) with time observedempirically. As the diffusion front
situatedaroundr f movesawayfrom thecore,thecity grows
andthe densitygradientdecreasessincel (t)} 1/r f .

Theseconsiderationsaretestedin Fig. 2~b!, which shows
our dynamical urban simulationsof a strongly interacting
systemof cities characterizedby a correlationexponenta
5 0.05for threedifferentvaluesof l obtainedfrom thedata
of Berlin from Fig. 7. Qualitativeagreementis observedbe-
tweenthe morphologyof the cities and towns of the actual
dataof Fig. 2~a! andthe simulationsof Fig. 2~b!.

VII. DISCUSSION: URBAN PLANNING

Throughoutthis century,the dominantplanningpolicy in
many westernnations has been the containmentof urban
growth. This has been effected using several instruments,
particularly through the siting of new settlementsor new
townsat locationsaroundthegrowingcity which areconsid-
eredto be beyondcommutingdistance,but alsothroughthe
imposition of local controlson urbangrowth, often coordi-
natedregionallyas ``greenbelts'' @31#. Oneof the key ele-
mentsin the growth modelswe haveproposedhere is the
characteristiclengthscaleover which growth takesplace.In
thecaseof thegradientpercolationmodel,correlationsoccur
overall lengthscales,andtheresultingdistributionsarefrac-
tal, at leastup to the percolationthreshold.

In examiningthe changingdevelopmentof Berlin in Fig.
2~a!, it appearsthat the fractal distribution remainedquite
stableover a period of 70 years,and this implies that any
controlson growth that theremight havebeendo not show
up in termsof thechangingsettlementpattern,implying that
the growth dynamicsof the city are not in¯uenced by such
control.A ratherdifferent testof suchpoliciesis providedin
the caseof London,wherea greenbelt policy was ®rstes-
tablished in the 1930s and rigorously enforced since the
1950s.The questionis whether this has beeneffective in
changingthe form of the settlementpattern.First, it is not
clearthat thesiting of newtownsbeyondLondon'scommut-

ing ®eldwaseverbeyondthepercolation®eld,andthusit is
entirely possible that the plannednew settlementsin the
1950sand 1960sbasedon existing village and town cores
simply reinforcedthe existingfractal pattern.

In the samemanner,the imposition of local controlson
growth in termsof preservinggreen®eldlandfrom develop-
ment seemsto havebeenbasedon reinforcing the kind of
spatial disorder consistent with morphologies generated
through correlated percolation. The regional green belt
policy wasbasedon policiesbeingde®nedlocally andthen
aggregatedinto the greenbelt itself, and this seemsto sug-
gest that the morphologyof nondevelopmentthat resulted
was fractal. This is borneout in a fractal analysisof devel-
opmentin the Londonregionwhich suggeststhat the policy
has little impact on the overall morphology of the area
@6,32#. Moreover,we note that the coincidencebetweenthe
settlementareadistribution for different cities and different
years~Berlin 1920 and 1945, and London 1981! suggests
that local planningpoliciessuchasthe greenbelt may have
a relatively low impact on the distribution of towns. Our
modelsuggeststhattheareadistributionis determinedby the
degreeof interactionsamongdevelopmentunits,andthat its
scalingpropertiesare independentof time. Currentdebates
on urban growth have now shifted to the developmentof
brown®eldsitesin cities,andit would beinterestingto quan-
tify the extentto which suchfuture developmentsmight re-
inforce or counterthe ``natural'' growth of the city as im-
plied in thesekinds of models.

To developmoredetailedandconclusiveinsightsinto the
impactof urbanpolicieson growth,it is necessaryto develop
the model further.This model implies that the areaandsize
distributions, the degreeof interaction among dependent
unitsof development,andfractal dimensionareindependent
of time. The only time dependentparameteris the gradient
l , and it appearsthat we might predict future urbanforms
simply by extrapolatingthevalueof l in time. However,we
haveyet to investigatethe in¯uenceof topographyandother
physicalconstraintson development,the in¯uence of trans-
port routesandthe presenceof several̀ `independent''cen-
tral coresor CBD's in the urbanregion.

Thesemodelscanalsobe further adaptedto predictbond
as well as site percolation,and in future work we will ex-
plore theextentto which suchinteractionsbetweensitesand
cities might be modeledexplicitly. Our interestin suchex-
amplesis in the universalityof the exponentsthat we have
demonstratedhere,andwhich we wish to relateto theimpact
of urbanplanningpolicies.
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