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We proposeandtesta modelthat describeghe morphologyof cities, the scalingof the urbanperimeterof
individual cities, and the areadistribution of systemsof cities. The modelis also consistentwith observable
urbangrowth dynamics,our resultsagreeingboth qualitatively and quantitativelywith urbandata.The result-
ing growth morphologycan be understoodrom interactionsamongthe constituentunits forming an urban
region,and canbe modeledusing a correlatedpercolationmodelin the presenceof a gradient.
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I. INTRODUCTION

Traditionalapproache$o urbanscienceasexempli®edn
thework of Christaller@# Zipf @4 StewartandWarntz @#
Beckmann@4 and Krugman @# are basedon the assump-
tion that cities grow homogeneouslyn a mannerthat sug-
geststhat their morphologycan be describedusing conven-
tional Euclidean geometry. However, recent studies have
proposed®that the complexspatialphenomenassociated
with actual urban systemsis rather better describedusing
fractal geometryconsistentwith growth dynamicsin disor-
deredmedia @+ %

Predictingurban growth dynamicsalso presentsa chal-
lengeto theoreticalframeworksfor clusterdynamics,in that
different mechanismglearly drive urbangrowth from those
which have beenembodiedin existing physicalmodels.In
this paper,we developa mathematicamodelthatrelatesthe
physicalform of a city andthe systemwithin which it exists,
to the locationaldecisionsof its population,thusillustrating
how paradigmsrom physicalandchemicalsciencecanhelp
explain a uniguely different set of naturalphenomenabthe
physicalarrangementcon®gurationand size distribution of
towns and cities. Speci®callywe arguethat the basicideas
of percolationtheorywhenmodi®edto includethe fact that
the elementsforming clustersare not statistically indepen-
dentof oneanotherbut are correlated cangive rise to mor-
phologiesthat bearboth qualitative and quantitativeresem-
blanceto the form of individual cities and systemsof cities.
Someof theseresultswerebrie'y describedn Ref. @0#

We considerthe applicationof statisticalphysicsto urban
growth phenomenao be extremely promising, yielding a
variety of valuableinformation concerningthe way cities
grow andchange andmoreimportantly,the way they might
be plannedand managed Suchinformationincludes-but is
not limited to! the following: ~! the size distributions of
towns,in termsof their populationsandareasi! thefractal
dimensionsassociatedwith individual cities and entire sys-
temsof cities; Hii! interactionsor correlationsbetweercities
which provide insightsinto their interdependencegnd ~v!
the relevanceand effectivenessof local planning policies,
particularlythosewhich aim to manageand containgrowth.
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The size distribution of cities has beena fundamental
questionin thetheoryof urbanlocationsinceits inceptionin
the late 19th century.In the introductionto his pioneering
bookpublishedover 60 yearsago,Christaller@#poseda key
guestion:"Are therelawswhich determinghe number size,
anddistributionof towns?" This questionhasnot beenprop-
erly answeredsince the publication of Christaller's book,
notwithstandingthe fact that Christaller'stheory of central
places @% and its elaborationthrough theories such the
rank-sizerule for cities @+4# embody one of the corner-
stonesof humangeography.

Our approachproducesscaling laws that quantify such
distributions.Theselaws arisenaturallyfrom our model,and
they are consistenwith the observedmorphologiesof indi-
vidual citiesandsystemsof citieswhich canbe characterized
by a number of fractal dimensionsand percolationexpo-
nents.In turn, thesedimensionsare consistentvith the den-
sity of location aroundthe core of any city, and thus the
theorywe proposesucceedsn tying togetherbothintraurban
and interurbanlocation theorieswhich have developedin
paralleloverthe last50 years.Furthermorethe striking fact
that cities developa powerlaw distributionwithout the tun-
ing of any externalparametemight be associatedvith the
ability of systemsof citiesto ““self-organize" @#

Il. DLA MODEL

Cities grow in a way that might be expectedo resemble
the growth of two-dimensionalaggregate®f particles,and
this hasled recentattempts@®,11,12tto modelurbangrowth
usingideasfrom the statisticalphysicsof clustersin particu-
lar, the model of diffusion limited aggregation-DLA!
@3,14thasbeenappliedto describeurbangrowth @4 and
resultsin treelike dendritic structureswhich havea core or
““central businessdistrict” ~CBD!. The DLA model is a
physicalmodelusedto describeaggregatiophenomenaand
is relatedto problemsfrom the ®eldof oil recoveryin which
“viscous ®ngering" occurswhen a low viscosity uid is
pushedunderpressurdnto a uid with alargerviscosity-as
occurswhenan oil ®eldis “ooded with waterin an attempt
to “pushout the oil" !.
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The DLA model predictsthat thereexistsonly onelarge
fractal clusterthatis almostperfectly screenedrom incom-
ing “developmentinits" ~people capital,resourcesetc!, o
that almostall the clustergrowth occursin the extremepe-
ripheral tips. However, quantitativedatado not supportall
the propertiesof the DLA model. For instance,the DLA
model predictsthat the urban populationdensity r (r) de-
creasesrom the city centerasa powerlaw

r~1; rb22, !

wherer is the radial distancefrom the core,andD. 1.7 is

the fractal dimensionof DLA. However, urban data have
beenmorecommonly®tto an exponentiadecay@5# In the

DLA modelonly onelargecentralplaceor clusteris gener-
ated,while arealurbanareais formedby a systemof central
placesthat are spatially distributedin a hierarchyof cities.
Still anotherconcernregardingthe morphologyof the DLA

modelis thatDLA is a simply connectectluster.Cities grow
in a more compactway, with a well-de®nedirbanboundary
or externalperimetemot accountedor by the dendriticfrac-

tal growth of DLA.

Here we showthat an alternativemodel,in which devel-
opmentunits are correlatedratherthan being addedto the
clusterat random,is betterable to reproducethe observed
morphologyof cities andthe areadistribution of subclusters
~"towns"! in an urbansystem,and canalsodescribeurban
growth dynamics.Our ““physical" model @0# which corre-
spondsto the correlatedpercolationmodel @6+ 23# in the
presenceof a densitygradient@1+23# is motivatedby the
factthatin urbanareasdevelopmenattractsfurther develop-
ment. The model offers the possibility of predictingthe glo-
bal propertiessuchasscalingbehaviot of urbanmorpholo-
gies.

. CORRELATED PERCOLATION MODEL

In the modelwe now develop,we take into accounttwo
points.

! First, dataon populationdensityr (r) of actualurban
systemsare known to conformto the relation @5#

r~15rge?'’, 2!

wherer is the radial distancefrom the CBD situatedat the
core, and | is the density gradient. The density gradient
guanti®eghe extentof the urbanspreadaroundthe central
core. The probability that a unit occupiesa given spot de-
creasesgradually as the distancefrom a central, compact
coreincreases.

+i! Second,in actual urban systems,the development
units arenot positionedat random Rather thereexistcorre-
lations arisingfrom the fact thatwhena developmentinit is
locatedin a given place,the probability of adjacendevelop-
mentunitsincreasesaturally; eachsite is notindependently
occupiedby adevelopmentinit, butis occupiedwith a prob-
ability that dependson the occupancyof the neighborhood.
In urban settings, developmentunits do not attach them-
selvesrandomly to an existing cluster. Their placementis
strongly in"uenced by the presenceof other units. Whena
unit occupiesa certainlocation, the probability of additional
developmentis highestin its vicinity, and this probability
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decreasest a certainrate as the distancefrom the unit in-
creasesThus the rules of placementare affectedby long-
range “interactions" that in"uence how clustersform and
grow. What happensat a given site dependsn the stateof
many other sites. Thesecorrelationsre ect the tendencyof
peopleto locatenextto one another,as articulatedin tradi-
tional urbanscienceas economief urbanagglomeration.

In orderto quantify theseideas,we considerthe corre-
lated percolationmodel @6+ 2#in the presencef a concen-
tration gradient@1 + 23# We startby describingthe uncor-
related site percolationproblem, which correspondgo the
limit wherecorrelationsare so small asto be negligible @+
9% We ®rstde®nea randomnumberu(r), calledthe occu-
pancyvariable at everysiter5 (i,j) in asquardattice of L?
sites. The numbersu(r) are uncorrelatednumberswith a
uniform probability distributionbetween@®, 1# A sitein the
lattice is occupiedif the occupancyariableu(r) is smaller
than the occupationprobability p, which is a quantity ®xed
for everysite in the lattice. A clusteris a set of sitescon-
nectedvia nearesineighborsites.Whenp is small only iso-
lated clustersexist. At a critical value of the concentration
called p. an “incipient in®nitecluster" forms which, for a
®nitesystem,connectswo sidesof the system.

Our basicmodelis a percolationmodelmodi®edo intro-
ducecorrelationsamongthe units, andthe fact that the con-
centrationp is not constanffor all the pointsin thelattice but
presentsthe gradientshownin Eq. 2!. In our model we
consider ““development units" representing buildings,
people,andresourcesvhich areaddedto the clusterin simi-
lar fashionasin percolation.Sincetheseunitsareaddedin a
correlatedfashion, we next considera modi®cationof the
percolationproblemto incorporatecorrelationsamong the
occupancyvariablesu(r).

To introducecorrelationsamongthe variableswe use a
methodproposedn Ref. @0#which is a modi®catiorof the
Fourier ®lteringmethod~Ffm! @4+26,18¢suitablefor large
systems Considera stationarysequencef L? uncorrelated
randomnumbers®u(r)%r5 (i,j),i,j5 1,... L. Thecorre-
lation functionis *u(r) u(r8& df g, with g g the Kro-
neckerdelta,andthe bracketsdenotean averagewith respect
to a Gaussiandistribution. We use the sequencefu(r)%to
generatea new sequencey?(r)% with a long-rangepower-
law correlationfunction C(l ) of the form @0#

CH [ Nu~! ur86& ~11 1 21282 -3l

wherel 5 u2 r8y a is the correlationexponent,and the
long-rangecorrelationsare relevantfor 0, a, d5 2, where
d is thedimensionof the substratebBa> 2 correspondso the
uncorrelatedproblem,and a! 0 to the strongly correlated
problem.

The spectraldensity S(q), de®nedas the Fourier trans-
form of C(l ), hasthe form

| 2'0 3D2 | |
Sq!5 m sz*q., ~4

whereq5 W q;5 2pm;/L, 2 L/2< mi< L/2,i5 1 and 2,
and b,5 (a2 2)/2. $1(q)%arethe Fouriertransformcoef®-
cientsof $1(r)% and satisfy
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h~q!5 ,S-q!.Y2u-q!, -5l

where Qu(q)%are the Fourier transform coef®cientsof
Qu(r)%

The actual numericalalgorithm for Ffm consistsof the
following steps:~! Generatea two-dimensionalsequence
u(r)%of uncorrelatedandomnumberswith a Gaussiardis-
tribution, and calculate the Fourier transform coef®cients
Qu(q)%-i! Obtain$#(q)%using Egs.~4! and-5!. ii! Cal-
culate the inverse Fourier transform of $7(q)%to obtain
$4(r)% the sequencen real spacewith the desiredpower-
law correlationfunction which asymptoticallybehavesas

cd1;l2a 6!

The assumptionof power-law interactionsis motivated by
the fact that the “decision” for a developmentunit to be
placedin a givenlocationdecaysgraduallywith the distance
from an occupiedneighborhood.

Finally we considerthat the developmenunits are posi-
tionedwith a probability which behavesn the samefashion
as known for cities @q. 2'# Therefore,we relax the as-
sumption that the concentrationp is constantfor all the
pointsin the lattice, and we considerthat the development
units are positionedwith an occupancyprobability

p~![ r~lrg, ~!

thatbehavesn the samefashionasis knownin observations
of real cities. This last modi®cationcorresponddo the per-

colationproblemin the presencef a concentratiorgradient
proposedn Refs. @1+ 23#

In orderto apply the aboveprocedureto the percolation
problem,we study the probability distribution P(/) of the
correlatedsequence/(r). We ®ndthat when the uncorre-
lated variablesu(r) aretakenfrom a Gaussiardistribution,
h(r) alsohasa Gaussiardistribution.We nextdiscretizethe
variables generating a sequence m(i,j), according to
m(i,j)5 Q,u2 A(r)...where u is chosento satisfy p(r)
5 *5. P(h)dA, with p(r) the occupancyprobability and Q
is the Heavisidestepfunction.

Notice that we have de®nedwo different propertiesof
the system. First we introduced long range correlations
amongthe variablesby modifying the occupancyvariables
A(r). Thesecorrelationsare isotropic, i.e., all the pointsin
spaceare connectedby interactionsquanti®edby a power
law. The fact that we considera slowly decayingpower-law
scale-freefunction is dueto the fact that any other correla-
tion function will display a cutoff after which correlations
are negligible. Since we are looking at propertiesof actual
cities at large length scales,a coarsegrain will transforma
®nite range correlatedsysteminto an uncorrelatedsystem,
i.e., a systemwith a ®nitecutoff in the correlationsbecomes
uncorrelatedat large scales.This situation doesnot occur
when we considerpower law correlationsof the form -6!,
sinceit is a scale-freefunction. Thus correlationsare ex-
pectedto be relevantat all length scales.One must distin-
guishthe type of correlationintroducedby Eg. 6! from the
correlationsarising at the critical concentrationp... In this
case,the connectedneskength of the systemis said to be
in®nite, since two occupiedsites separatecy an arbitrary
distancemay be connectedby the in®nite cluster,and thus
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theyarecorrelatedn space However,the correlationsntro-

ducedby Eq. ~6! go beyondthis type of connectiorbetween
sites.Dueto correlationof type ~6!, evensiteswhich belong
to different clustersare correlated.

Secondwe considerthat the probability of occupancyof
the sitesdecaysexponentially,with the centerpoint always
occupied.This propertyof the systemis independenbf the
type of correlationchosen.The correlationexponenta and
the densitygradientl arethe only parameter®sf the model
to be determinedby empirical observations.

IV. STATICS

We ®rstdiscussthe in"uence of the correlationson the
morphologyof a systemof cities generatedn the present
model. Thereforewe ®x the value of the concentratiorgra-
dientl in Eq.~/!, andin Fig. 1 we showour simulationsof
urban systemsfor different degreesof correlation.We see
that the larger the degreeof correlationsthe more compact
the clustersare. The correlationshavethe effect of agglom-
eratingthe units aroundan urbanarea.In the simulatedsys-
temsthelargestcity is situatedin the core~which actsasthe
Tattractive" centerof the city!, and this is surroundedby
small clustersor ““towns." The correlatedclustersare fairly
compactneartheir respectivecentersand becomelesscom-
pactneartheir boundariesin qualitativeagreementvith em-
pirical dataon actuallarge cities suchas Berlin, Paris,and
London.-see,i.e., Refs.@,27! The stronglycorrelatedcase
of Fig. 1-a (a! 0) resultsin a systemof cities looking
morerealisticthanthe uncorrelateccase@®ig. 1-c!# The un-
correlatedcaseresultsin a systemof very small cities spread
arounda centralcity, while the citiesin the correlatedcase
look more compactand morerealistic.

The urbanboundaryof thelargestcity is de®nedo bethe
external perimeter of the cluster connectedto the CBD.
Sincep(r) decreaseasone movesaway from the core,the
probability that the largest cluster remains connectedde-
creasesvith r. The meandistanceof the perimeterfrom the
centerr; is determinedby the value of r for which p(r)
equalsthe percolationthresholdbi.e., p(r;)5 p;, 0 @1+
234

re5 12 n~1/p,!. 8!

For distancessmallerthanr;, thereis a high concentra-
tion of sitessincep(r). p., andthe clusterthus generated
playsthe role of the in®nitecluster.For distancelargerthan
ry, we havep(r), p., so thatonly isolatedclustersexist,
which form the systemof small cities surroundingthe large
city situatedin the core.

The geometricalpropertiesof the external perimeterof
the largestcity correspondo the propertiesof the external
perimeterof thein®niteclusterof the percolationproblemin
the absenceof a gradient@1# The critical propertiesof the
clusterscan be analyzedin termsof the percolationproper-
ties. Percolationclustersformed below p. are characterized
by a ®niteconnectednedsngthwhich s thetypical distance
at which two sitesare expectedo be connectedvia nearest
neighborsites,,do not confusewith the correlationsintro-
ducedvia Eq.-6!...This connectednedsngthdivergeswhen
the in®niteclusterformsat p, i.e.,j; w2 pf ", wheren
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FIG. 1. Simulationsof urbansystemsfor different degreesof
correlation.Herethe urbanareasareblack. In all the ®guresyve ®x
the value of the densitygradientto bel 5 0.009.~a and-b! Two
different examplesof interactive systemsof cities for correlation
exponentsa5 0.6 and 1.4, respectively The developmentnits are
positionedwith a probability that decaysexponentiallywith the
distancefrom the core. The units are locatednot randomly as in
percolation,but ratherin a correlatedfashion dependingon the
neighboringoccupiedareas.The correlationsare parametrizedoy
the exponenta. The strongly correlatedcasecorrespondso small
a (a! 0). Whena. d, whered is the spatial dimensionof the
substratelattice (d5 2 in our casé, we recoverthe uncorrelated
case.Notice the tendencyto more compactclustersaswe increase
the degreeof correlations(a! 0). ~€! As a zerothorder approxi-
mation,onemightimaginethe morphologypredictedn theextreme
limit wherebydevelopmenunits are positionedat random rather
thanin the correlatedway of ~a and-b!. The resultsfor this crude
approximationof a noninteractive-uncorrelatet systemof cities
clearly display a drasticallydifferent morphologythan found from
dataon real cities @uchas shownin Fig. 2-al# The noninteractive
limit looks unrealisticin comparisorwith real cities, for the lack of
interactionscreatesan urban area characterizedby many small
towns spreadoosely aroundthe core.
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is the connectednedengthexponentln the caseof gradient
percolationthe clustersformedbelow p.. for r. r; arechar-
acterizedby this length,which is now a function of the dis-
tancer:

Jl pr12 pof . 9l

Moreover, due to the existenceof long range correlation
among the variablesthe exponentn is not universal, but
changegontinuouslywith the degreeof correlationgiven by
a @8# We will seethat severalcritical propertiesof the
percolationclusterschangewith the correlations.

The width s; of the externalperimeterof the largestcity
is de®nedas

s¢[ M2 12872 ~0!
wherer¢[ "r& andr belongsto the externalperimeterof the
centralcluster.Thewidth of the externalperimeteris a func-
tion of the concentratiorgradientl andit is knownto scale
as @1#

2 n/-11 n!_ 41

Sf;l
The value of n correspondingo the uncorrelatecberco-
lation problemis n5 %. Howeverthe presencef long range
correlationsof type ~6! drastically affectsthe value of the
connectednessxponentwhich is now a functionof a,n(a)
asobservedn previousstudiesof long rangecorrelatedper-
colation @7,18 We havesimulatedthe correlatedpercola-
tion problemwith a gradient,and using Eq. 11! we ®nda
drasticincreaseof n(a) with the increaseof the long range
correlationg a! 0) @igs.3-a and3-b'# In particularn(a)
seemsto increasevery drastically for a systemof strong
correlationsa! 0. In fact for sucha system,we expecta
mean ®eld situation where all sitesin the lattice are con-
nectedto the restof the sites.In this casethe percolation
threshold for the site percolation problem should be p,
5 0.5,andthe connectednedengthshouldbe zerobelow p.
andin®niteabovep..
The scaling of the length of the urbanboundaryof the
largestcity within a regionof sizel ,
L~ 15 | De, 12!
de®neshefractaldimensionD ., which we calculateto have
valuesD,.. 1.33for the uncorrelateccase,andD,. 1.4 for
strong correlations(a! 0) @ig. 3~€!# The small variation
of the fractal dimensionof the externalperimeterdoesnot
rule out the fact that it may be independenbf the correla-
tions. Thesevaluesare consistenwith actualurbandata,for
which valuesof D, betweenl.2 and 1.4 are measured@#
Near the frontier and on length scalessmaller than the
width of the frontier s;, the largestcluster has fractal di-
mensiond;. 1.89,asde®nedy the “mass-radius'relation

M~r1; rdr, 3!

where M(r) is the massof the clusterinside a region of
radiusr. The value d;. 1.89 correspondgo the fractal di-
mensionof the uncorrelategercolationclusters andwe ®nd
thatit is valid independentf the correlations@84% However,
as a! 0 we expecta compactcluster with dimensiond;



FIG. 2. Qualitative comparisonbetweenthe actual urbandata
andthe proposednodel.~a Threestepsof the growthwith time of
Berlin and surroundingtowns. Dataare shownfor the years1875,
1920,and 1945~rom top to botton. ~b! Dynamicalurbansimula-
tions of the proposedmodel. We ®x the value of the correlation
exponentto be a5 0.05 ~strongly correlatedcasé, and choosethe
occupancyprobability p(r) to correspondto the density pro®les
shownin Fig. 7. We usethe sameseedfor the randomnumber
generatolin all ®gures.

5 2. Thefactthatwe areunableto seethis limit might bedue
to numericallimitations nearthe mean®eldpoint a5 0.

The numberof sitesof thefrontier N; alsoscaleswith the
concentratiorgradient@1#

Nf,l 2 ndg2 11/-11 n!. 44

This relation providesanotherway of calculatingthe fractal
dimensiond; andthe exponentn, which we usedto verify
our calculations.

It is importantto stressthat underthe presentpercolation
picture cities are fractal structuresonly nearthe externalpe-
rimeter of the largestcity, and on lengthscalessmallerthan
the width of the frontier de®nedy Eq. ~10!. The width is a
function of the concentrationgradientl @Eq. 411#% so that
the largerthe spreadof the city the largerthe regionwhere
thecity is fractal. However,at distancesloseto the centerof
the largestcity, the clusteris clearly nonfractalsince p(r)
. Pc, andtheclusterbecomegompactOn the othersidefor
largerdistance9(r), p., only smallisolatedclustersexist
with a de®niteconnectedneskength associatedvith them
@&Jq. 9% so thatthey are not fractal either.

V. AREA DISTRIBUTION OF URBAN SETTLEMENTS

So far, we have arguedhow correlationsbetweenoccu-
pancyprobabilitiescanaccountfor theirregularmorphology
of townsin a urbansystem.As canbe seenin Fig. 2-al, the
towns surroundinga large city like Berlin are characterized
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FIG. 3. ~a Width of the externalperimeterasa function of the
density gradient, s¢(I ), for severaldegreesof correlations.-b!
Connectednestength exponentn(a) as a function of the correla-
tion exponenta calculatedfrom ~al using Eq. ~11!. The value n
5 % correspondgo the uncorrelatedpercolationproblem (a5 2).
~¢! Fractaldimensionof the externalperimeterof the largestcluster
asa function of the degreeof correlation,D (&).

by a wide rangeof sizes.We areinterestedn the laws that
quantifythetown sizedistributionN(A), whereA is thearea
occupiedby a giventown or ““mass" of the agglomeration.
We haveanalyzedhe distributionof areasof actualcities,
suchasthe systemof cities surroundingLondon and Berlin
for differentyears@ig. 2-al# andwe alsoanalyzedthe area
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FIG. 4. Urban settlementsf all of GreatBritain for the year
1981. Every point correspondsto an occupied area of 200
3 200 m?. Clustersof occupiedareasare de®nedas the points
connectedsia nearesheighbors.

distribution of urban systemsat larger scalesby using the
dataof all settlement®f GreatBritain for theyears1981and
1991 Fig. 4! @84 In the caseof the towns aroundBerlin

andLondon,we ®rstdigitize the empiricaldataof Fig. 4.1 of

Ref. @7# @erlin 1920and 1945, shownin the lasttwo pan-
els of Fig. 2-al# and Fig. 10.8 of Ref. @* correspondingo

London 1981. Thenwe countthe numberof townsthat are
covered by A sites, putting the result in logarithmically
spacedbins -of size 1.2, with k5 1,2, .. .), and averaging
over the size of the bin.

We calculatethe actual distribution of the areasof the
urbansettlementsaroundBerlin and London, and ®nd @ig.
6-al#that for both cities, N(A) follows a powerlaw with an
exponentcloseto 2:
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FIG. 5. Log-log plot of the areadistributionfunctionN(A) cal-
culatedfor the presentmodel for different degreesof correlation.
From top to bottom, a5 0.2, a5 0.8, a5 1.4, andthe uncorrelated
case.Thelinear ®tscorrespondo the predictionsof Eq. ~18! using
the valuesof n(a) from Fig. 3!, andd;5 1.89.

AZ 1.98

N-~Al; ~Berlin, 1920,19419, ~15

A2 1.96

N-A!; ~_ondon,1981!. ~16

Figure6-b! showsthe distributionof all urbanareasn Great
Britain for the years1981 and 1991. We ®nda power law
with an exponentconsistentwith the data of London and
Berlin at smallerscales

N-A!" A2 2.03

~Great Britain, 1981, 1991. A7
Otherstudiesrecentlycon®rmedhe validity of theseresults
for largerlengthscalesandalsofor the populationdistribu-
tions which is known to scaleasthe occupiedarea@9%#

Theseresults can be understoodin the context of our
model.Insightinto this distributioncanbe developedy ®rst
noting that the small clusterssurroundingthe largestcluster
are all situatedat distances from the CBD suchthat p(r)
, pcorr. r;. Thereforewe ®ndN(A), thecumulativearea
distributionof clustersof areaA, to be

N-A!5 En~A, pldp; A2Ldm -8
0

Here

n~A,pl; A21g~A/A,! ~19
is de®nedo be the averagenumberof clusterscontainingA
sitesfor a given p at a ®xeddistancer, and ¢t5 11 2/d;.
Here

Agr!; j~r19 pri12 pf 9" 20!
correspondso the maximumtypical areaoccupiedby a clus-
ter situatedat a distancer from the CBD, while g(A/Ay) isa
scaling function that decaysrapidly ~exponentially for A
. Ag.

In our numerical simulationswe ®nd a drastic increase
of n(a) with the increaseof the long-rangecorrelations
(a! 0) @ig. 3-b'# The connectednessxponentn(a) af-
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FIG. 6. ~@ Log-log plot of the areadistribution N(A) of the
actualtowns aroundBerlin and London. We ®rstdigitize the em-
pirical dataof Fig. 4.1 of Ref. @7# @erlin 1920and1945,shownin
the lasttwo panelsof Fig. 2-al# andFig. 10.8 of Ref. @# ondon
1981. Thenwe countthe numberof townsthat are coveredby A
sites,putting the resultin logarithmically spacedins -of size 1.2,
with k5 1,2, .. .), and averagingover the size of the bin. A power
law is observedfor the areadistributionsof both urban systems.
The dottedline showsthe predictionsof our modelfor the uncor-
relatedcase-the slopeis 2.43, while the dashedine givesresults
for the strongly correlatedcase~the slopeis 2.08. Note that the
areadistributionsfor both cities agreemuchbetterwith the strongly
correlatedcase(a! 0). b! Log-log plot of the areadistribution of
all theurbanareasn GreatBritain in 1981and1991.Thedata®tto
a power law of exponent2.03. Notice alsothe very small changes
of the urbanarea# a tenyearperiod.

fects the areadistribution of the small clustersaroundthe
CBD Fig. 5!, as speci®edy Eqg. 18, and canbe usedto
guantify the degreeof interactionbetweenthe CBD andthe
small surroundingtowns. For instance for a strongly corre-
lated systemof cities characterizedoy small a, n(a) is
largesothatthe areaAy(r), andthelinearextensiory (r) of
the towns will be large evenfor towns situatedaway from
the CBD. This effectis observedn the correlatedsystemsof
cities of Fig. 1.
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FIG. 7. Semilog plot of the density of occupiedurban areas
ra(r)5 e?'" for the threedifferent stagesin the growth of Berlin
shownin Fig. 2-al. Leastsquare®tsyield the resultsl . 0.030,l
. 0.012,and | . 0.009, respectively,showing the decreaseof |
with time. We usethesedensity pro®lesin the dynamicalsimula-
tions of Fig. 2-b!.

In Fig. 6~ we plot the powerlaw for the areadistribution
predictedby Eq. 18 alongwith the real datafor Berlin and
London and all GreatBritain. In particular, the slope pre-
dictedfor the uncorrelatedsystemis

N-Al; A?24  —ncorrelatednodel, 21
while for the strongly correlatedmodelit is
N-Al: A?20  _stronglycorrelatedmodela! O!.
22

Therefore,we ®ndthat the power laws of the areadistribu-
tion of actualcitiesareconsistentvith the prediction@ashed
line, Fig. 6-al# for the caseof highly correlatedsystems.
Theseresultsquantify the qualitativeagreemenbetweerthe
morphologyof actualurbanareasandthe stronglycorrelated
urbansystemsobtainedin our simulations.Clearly, the ex-
ponentof the areadistributionprovidesa strongertestof our
model againstobservationghan doesthe fractal dimension
D, of the perimeter.

VI. DYNAMICS

We now discussa generalizationof our static model to
describethe dynamicsof urban growth. Empirical studies
@5# of the populationdensity pro®le of cities show a re-
markablepatternof decentralizationwhich is quanti®edoy
thedecreasef | (t) with time ~seeTable4 in Ref. @0# and
Fig. 7!. Thereforethe dynamicsin the model are quanti®ed
by a decreasind (t), asoccursin actualurbanareasin the
contextof our model, this "attening patterncanbe explained
as follows. The model of percolationin a gradientcan be
relatedto a dynamicalmodel of units ~-analogougo the de-
velopmentunitsin actualcitied diffusing from a centralseed
or core @L=23# In this dynamicalsystem,the units are al-
lowed to diffuse on a two-dimensionalattice by hoppingto
nearesmeighborpositions.The density of units at the core
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remainsconstant:whenevera unit diffuses away from the
core,it is replacedby a new unit. The densityof unitscanbe
mappedto the densityof occupiedurbanareas

21r 23

rat's5e

which in turn is proportionalto the populationdensityr (r)
@4 A well-de®nedliffusion front, de®nedas the boundary
of the cluster of units that is linked to the central core,
evolvesin time. The diffusion front correspondso the urban
boundaryof the centralcity. The static propertiesof the dif-
fusion front of this systemwere found to be the sameas
thosepredictedby the gradientpercolationmodel @1 + 23#
Moreover,the dynamicalmodel can explainthe decreasef
| (t) with time observedempirically. As the diffusion front
situatedaroundr ; movesawayfrom the core,the city grows
andthe densitygradientdecreasesincel (t)} 1/r;.

Theseconsiderationsretestedin Fig. 2-b!, which shows
our dynamical urban simulationsof a strongly interacting
systemof cities characterizedy a correlationexponenta
5 0.05for threedifferentvaluesof | obtainedfrom the data
of Berlin from Fig. 7. Qualitativeagreemenis observedbe-
tweenthe morphologyof the cities and towns of the actual
dataof Fig. 2-al andthe simulationsof Fig. 2-h!.

VII. DISCUSSION: URBAN PLANNING

Throughoutthis century,the dominantplanningpolicy in
many westernnations has been the containmentof urban
growth. This has been effected using severalinstruments,
particularly through the siting of new settlementsor new
townsat locationsaroundthe growing city which areconsid-
eredto be beyondcommutingdistance put alsothroughthe
imposition of local controlson urbangrowth, often coordi-
natedregionally as “greenbelts" @1# One of the key ele-
mentsin the growth modelswe have proposedhereis the
characteristidength scaleover which growth takesplace.In
the caseof the gradientpercolationmodel,correlationsoccur
overall lengthscalesandtheresultingdistributionsarefrac-
tal, at leastup to the percolationthreshold.

In examiningthe changingdevelopmenof Berlin in Fig.
2-al, it appearsthat the fractal distribution remainedquite
stableover a period of 70 years,and this implies that any
controlson growth that theremight havebeendo not show
up in termsof the changingsettlemenpattern,implying that
the growth dynamicsof the city are not in uenced by such
control. A ratherdifferenttestof suchpoliciesis providedin
the caseof London, wherea greenbelt policy was ®rstes-
tablishedin the 1930s and rigorously enforced since the
1950s. The questionis whetherthis has been effective in
changingthe form of the settlementpattern.First, it is not
clearthatthe siting of newtownsbeyondLondon'scommut-
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ing ®eldwaseverbeyondthe percolation®eld,andthusit is
entirely possiblethat the planned new settlementsin the
1950sand 1960sbasedon existing village and town cores
simply reinforcedthe existing fractal pattern.

In the samemanner,the imposition of local controlson
growthin termsof preservinggreen®eldland from develop-
ment seemsto have beenbasedon reinforcing the kind of
spatial disorder consistent with morphologies generated
through correlated percolation. The regional green belt
policy was basedon policies being de®nedocally andthen
aggregatednto the greenbelt itself, and this seemsto sug-
gestthat the morphology of nondevelopmenthat resulted
was fractal. This is borneout in a fractal analysisof devel-
opmentin the Londonregionwhich suggestghatthe policy
has little impact on the overall morphology of the area
@,32¢ Moreover,we notethat the coincidencebetweenthe
settlementareadistribution for different cities and different
years-Berlin 1920 and 1945, and London 1981 suggests
thatlocal planningpolicies suchasthe greenbelt may have
a relatively low impact on the distribution of towns. Our
modelsuggestshatthe areadistributionis determinecy the
degreeof interactionsamongdevelopmentnits, andthatits
scaling propertiesare independenbf time. Currentdebates
on urban growth have now shifted to the developmentof
brown®eldsitesin cities,andit would be interestingto quan-
tify the extentto which suchfuture developmentsnight re-
inforce or counterthe ““natural" growth of the city asim-
plied in thesekinds of models.

To developmoredetailedandconclusiveinsightsinto the
impactof urbanpolicieson growth, it is necessaryo develop
the modelfurther. This modelimplies that the areaand size
distributions, the degreeof interaction among dependent
units of developmentandfractal dimensionareindependent
of time. The only time dependenparametelis the gradient
| , andit appearghat we might predict future urbanforms
simply by extrapolatinghe valueof | in time. However,we
haveyet to investigatethe in uence of topographyandother
physicalconstraintson developmentthe in uence of trans-
port routesandthe presenceof several independent"cen-
tral coresor CBD's in the urbanregion.

Thesemodelscanalsobe further adaptedo predictbond
aswell as site percolation,andin future work we will ex-
plore the extentto which suchinteractionsbetweersitesand
cities might be modeledexplicitly. Our interestin suchex-
amplesis in the universality of the exponentghat we have
demonstratetiere,andwhich we wish to relateto theimpact
of urbanplanningpolicies.
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