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ABSTRACT

We thoroughly study the robustness of partially interdependent networks when suffering attack combinations of random, tar-
geted, and localized attacks. We compare analytically and numerically the robustness of partially interdependent networks with a
broad range of parameters including coupling strength, attack strength, and network type. We observe the first and second order
phase transition and accurately characterize the critical points for each combined attack. Generally, combined attacks showmore
efficient damage to interdependent networks. Besides, we find that, when robustness is measured by the critical removing ratio
and the critical coupling strength, the conclusion drawn for a combined attack is not always consistent.
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Many real systems such as power grid networks and their
communication networks are coupled together to function,
where each layer being a single network and coupled with
other layers forms interdependent networks. The robust-
ness of interdependent networks against cascading fail-
ures caused by different attacks has long been the focus
of research. However, previous studies mainly focused on
the robustness of networks under one single attack type.
In a real scene, interdependent networks suffering multi-
ple attacks simultaneously are more common. In this paper,
we develop a framework to study the robustness of partially
interdependent networks under combined attacks. Richness
phase transition behaviors are observed and critical points
with a broad range of parameters are characterized accu-
rately. Our work sheds light on designing robust networks
against risks and how to better protect vulnerable networks.

I. INTRODUCTION

Network robustness has always been a significant
role in complex networks.1–5 From the perspective of
connectivity,6 scholars study the vulnerability of the structure

exploiting the percolation theory. By percolation, nodes are
assigned into two states: occupied and unoccupied. A frac-
tion of nodes is occupied initially, and the final size of
the giant component is observed to measure the con-
nectivity of networks. A fundamental assumption is that
nodes are functional if and only if they belong to the
giant component. This simple but efficient model exploit-
ing from statistical physics has produced many profound
results and provides us deep insight into designing robust
networks.7–9

Nowadays, components of the modern system are cou-
pled with each other.10 This has been observed in many social,
economic, Internet of things,11 and industrial systems.12 For
instance, in the power grid, the communication control com-
puters and power stations are coupled with one-to-one cor-
respondence. A node in one failed network will cause its
dependent node to fail, and the recursive process may lead
to the abrupt fragmentation of the whole system. An initial
investigation13 was made on fully interdependent networks
and developed a theoretical framework based on percolation
theory. Later, releasing the restriction of a dependency rela-
tion, a more realistic model of partially interdependent net-
works was established.14 Then, the generalization to the NON

Chaos 29, 021101 (2019); doi: 10.1063/1.5085850 29, 021101-1

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5085850
https://doi.org/10.1063/1.5085850
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5085850
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5085850&domain=aip.scitation.org&date_stamp=2019-02-05
mailto:chenglizhao@nudt.edu.cn
https://doi.org/10.1063/1.5085850


Chaos BRIEF COMMUNICATION scitation.org/journal/cha

system composed of coupled interdependent networks was
proposed.15

In terms of the robustness of interdependent networks,
initial attack type and dependency pattern16–20 are the focus
of research. Studies have mainly considered three attack
types: random attack (RA),21 targeted attack (TA),22 and local-
ized attack (LA).23 Random attack is the direct application of
percolation theory on the robustness of networks. Targeted
attack was first studied on fully interdependent networks
with Erdös-Rényi (ER) and scale-free (SF) random networks.24

Then, it was studied on partially interdependent networks.25

More recently, a new scenario of attack type, namely, local-
ized attack, was proposed to model the effects of earthquakes,
floods, or military attacks on industrial networks.23 This kind
of attack has been studied on fully interdependent networks
and spatial networks.26,27 Studies on the robustness of inter-
dependent networks have also been successfully applied to
many empirical networks such as power grids28 and traf-
fic networks.29 However, previous studies on interdependent
networks mainly focused on a single attack type, neglect-
ing the fact that components of systems may suffer multiple
attack types due to their individual properties. For instance,
on interdependent networks formed by power stations and
communication computers, the failure of the power station
layer is prone to be random caused by overloading while the
communication control computers layer is prone to suffer
targeted attack caused by a malicious computer virus.

In this paper, we study the robustness of a pair of partially
interdependent networks within each layer suffering a certain
attack type. We classify attacks into two categories: single-
mode andmixed-mode. For a single-mode attack, it is initiated
by the same attack type for each layer, while the mixed-mode
attack is the combination of random, targeted, and localized
attacks. We then develop a generalized theoretical framework
exploiting percolation theory to study a pair of partially inter-
dependent networks when suffering single-mode and mixed-
mode attacks. Furthermore, using the framework we obtained,
the effect of both attack type and coupling strength on par-
tially interdependent networks is comprehensively studied.
Finally, we obtain critical lines and phase transition conditions
for each attack mode on interdependent networks formed by
ER and SF random networks.

II. MODEL

Our model is assumed in a pair of interdependent net-
works formed by layers A and Bwith degree distributions PA(k)
and PB(k), respectively. An interdependent network with more
than two layers is beyond our consideration. The number of
nodes in each layer is NA and NB. The qA(qB) fraction of nodes
in layer A(B) depends on nodes of network B(A), meaning that
if the node in layer B fails, the corresponding depending node
in layer A also fails. For simplicity, we assume two constraint
conditions: one node depends on one node of the other lay-
ers at most; if node i of layer A depends on node j of layer B
and node j of layer B depends on node k of layer A, then k = i
(non-feedback condition). SA(x)[SB(x)] denotes the fraction of

FIG. 1. Partially Interdependent Network illustration. Nodes are connected
through connectivity links (solid black line) in the same layer and dependency
links (dashed black line) between layers.

the giant connect component when remaining x fraction of
nodes is in layer A(B). It is supposed that initially 1 − pA(1 − pB)

fraction of nodes in layer A(B) is removed by different attacks.
First, nodes that lose connection with the giant component
will lose functionality due to the removed nodes of the same
layer (connectivity failure). Next, the dependency nodes of the
counterpart layer fail due to dependency relations (depen-
dency failure). Then, the connectivity and dependency failures
spread on intra-layer and inter-layer cause a global cascading
failure (Fig. 1).

Mathematically, the procedure of cascade failure on
interdependent networks can be described through an iter-
ative system as follows:13,14

!
′

t = pA{1 − qA[1 − SB("
′

t−1)pB]},!t = !
′

tSA(!
′

t),

"
′

t = pB{1 − qB[1 − SA(!
′

t)pA]},"t = "
′

tSB("
′

t).
(1)

Here, !
′

t and "
′

t represent the fraction of nodes remaining in
layer A and layer B at time t, respectively. The remaining func-
tional part of layers A and B out of all original nodes at time t
is !t and "t.

When t = ∞, the system reaches its steady state. Let
x = !

′

∞, y = "
′

∞. We have

x = pA{1 − qA[1 − SB(y)pB]},

y = pB{1 − qB[1 − SA(x)pA]}.
(2)

For random removing, SA(x) = 1 − GA,0[1 − x(1 − f)], where
f = GA,1[1 − x(1 − f)], GA,0(x) =

∑
k PA(k)xk, GA,1(x) = G

′

A,0(x)/

G
′

A,0(1).
In simulation, the iteration number varies with the initial

attack fraction and reaches its summit at the critical point.
This can be numerical evidence to identify the critical point
of the first order transition, and the peak of the second giant
component can be used to characterize the critical point of
the second order transition.30
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FIG. 2. The giant components of layer B as a function of initial attack size 1 − pB for three single-mode attacks. Results are obtained with NA = NB = 100 000,< kA >=<
kB >= 4, pA = 0.8, qB = 0.8. Lines and symbols are results of theory and simulation, respectively. They agree well with each other.

In this paper, attacks are divided into two categories
depending on the way the nodes are removed from each layer.

A. Single-mode attack

Random attack (RA). The randomized attack on net-
works is assumed that 1 − pA and 1 − pB fractions of nodes are
removed uniformly at random.

FIG. 3. The critical lines on the parameter space (1 − pB, qA) for three single--
mode attacks on ER-ER networks. From left to right, they are targeted attack
with α = 2, targeted attack with α = 1, and random attack (localized attack),
respectively. Circles characterize the junction of first and second order phase
transition. The dashed part above the circle suggests that the system under-
goes a first order transition when crosses over the line. The solid part under
the red circle indicates the system undergoes a second order transition. We fix
pA = 0.8, qB = 0.8, λA = λB = 4.

Targeted attack (TA). The targeted attack is regarded to
remove 1 − pA and 1 − pB fractions of nodes according to their
degree. A value Wα(ki) is assigned to each node, which means
the probability that a node iwith ki links is initially attacked as
follows:22

Wα(qi) =
qα
i∑N

i=1 q
α
i

, −∞ < α < +∞, (3)

when α > 0, nodes with higher degree are prone to be
removed.

Localized attack (LA). The localized attack is started with
a randomly chosen seed node in layers A and B. Then, the seed
and its nearest neighbors, next nearest neighbors, next-next-
nearest neighbors, and so on are removed until 1 − pA and 1 −
pB fractions of nodes have been removed from the network.

B. Mixed-mode attack

Random attack and localized attack (RALA). 1 − pA frac-
tion of nodes in network A is removed randomly, and 1 − pB

fraction of nodes in network B is removed by localized attack.
Random attack and targeted attack (RATA). 1 − pA frac-

tion of nodes in network A is removed randomly, and 1 − pB

fraction of nodes in network B is removed by targeted attack.
Localized attack and targeted attack (LATA). 1 − pA frac-

tion of nodes on network A is removed by localized attack,
while 1 − pB fraction of nodes on network B is removed by
targeted attack.

III. ER-ER PARTIALLY INTERDEPENDENT NETWORKS

In this section, we consider the interdependent networks
formed by two ER networks with Poisson degree distribution

P(k) = λke−λ

k! , where λA = λB = λ are average degrees. Simply
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FIG. 4. The giant components of layer B under three mixed-mode attacks over weak and strong coupling strength on ER-ER networks. Symbols are results of simulation
with NA = NB = 100 000, qB = 0.8, pA = 0.8, < kA >=< kB >= 4. Lines are results of analytical calculation. All simulation results agree well with theory.

we can write the generating function of each layer: GA0(x) =
GA1(x) = eλA(x−1) and GB0(x) = GB1(x) = eλB(x−1).

It has been proved that localized attacks cause the same
effect as random attacks in ER networks.23 Besides, as random
attack is the special case of targeted attack when α = 0, we
can write the unified formula of the cascading procedure for
these three attacks by considering only targeted attack.

When it comes to targeted attack, the basic idea is seek-
ing an equivalent network Ã such that after a random removal
of 1 − p fraction of nodes, the remaining network has the
same distribution as that obtained by targeted attack on
original network A.24 With the equivalence described above,

FIG. 5. The critical lines for three mixed-mode attacks on ER-ER partially
interdependent networks with qB = 0.8, < kA >=< kB >= 4.

the generating function of network Ã satisfies GÃ,0(1 − p + px)

= Gp
A,0(x), where Gp

A,0(x) is the degree distribution of the gen-
erating function after removing 1 − p fraction of nodes by
targeted attack. Hence, we have

GÃ,0(x) = Gp
A,0

[
1 +

1
p

(x − 1)
]

=
1
p

∑

k

λke−λ

k!
tk

α

[
1 +

p̃

p
(x − 1)

]k
,

(4)

FIG. 6. The critical lines of RATA over different parameter α on ER-ER partially
interdependent network with pB = 0.8, qB = 0.8,< kA >=< kB >= 4 from left
to right, lines are α = 5, 2, 1,−1,−2, respectively.
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FIG. 7. The giant component of layer B on SF-SF networks with weak and strong coupling strength. The number of nodes in simulation is 106, and we fix pA = 0.9, qA = qB.
Note that simulation results agree well with theory results.

where t = G−1
α (p),Gα(x) =

∑
p(k)xkα

, p̃ =
∑

P(k)ktk
α

∑
P(k)k . α = 0 is the

case for random attack and localized attack in ER-ER net-
works.

Let fA(fB) be the probability that layer A(B) does not have
a giant component. Using Eq. (2), we can obtain fA and fB in the
final state by solving the following equations:

x = pA[1 − qA(1 − pB{1 − GÃ,0[1 − y(1 − fA)]})],

y = pB[1 − qB(1 − pA{1 − GB̃,0[1 − x(1 − fB)]})],
(5)

where fÃ(̃B) = GÃ(̃B),1{1 − pA(B)[1 − fÃ(̃B)]}. And the first and second
order phase transition conditions are14

dfA(fB)

fB

∣∣∣∣
p=pI

dfB(fA)

fA

∣∣∣∣
p=pI

= 1,

fA(pII) = 1[fB(pII) = 1].

(6)

Submitting these conditions to Eq. (5), the critical phase tran-
sition point of the first order pI and the second order pII can
be solved for a given coupling strength q.

When α = 1, there exists a more succinct formula. Sub-
mitting eλ(t−1) = p and p̃ = pt into Eq. (4), we have GÃ0(x) =

GÃ1(x) = eλt2(x−1). Note that for random and localized attacks,

the generating function of an equivalent network is exactly
the same as the original network. Hence, we write the unified
analytical formula for random, localized, and targeted attacks
(α = 1) on ER-ER networks in the following way:

GÃ0(x) = GÃ1(x) = eλt2%A (x−1), (7)

where %A(%B) ∈ {0, 1}. The combined attack on interdependent
networks can be coded in a binary tuple:

• (%A,%B) = (0, 0): random attack, localized attack, or RALA.
• (%A,%B) = (1, 1): targeted attack with α = 1.
• (%A,%B) = (0, 1): RATA or LATA.

Accordingly, the giant component function becomes SÃ(x) =

1 − fÃ, where fÃ = eλAh
2%A
A (x−1). Solving the system equation (5),

fA and fB satisfy

fÃ =
1
qB

(
1 + qB(pA − 1)

pA
−

ln fB̃
λBpApBh

2%B
B (fB̃ − 1)

)

(fB̃ ̸= 1),

fB̃ =
1
qA

(
1 + qA(pB − 1)

pB
−

ln fÃ
λApBpAh

2%A
A (fÃ − 1)

)

(fÃ ̸= 1).

(8)

There are no restrictions on fÃ(fB̃) when fB̃ = 1(fÃ = 1).
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FIG. 8. The critical lines of network B on parameter space (1 − pB, q) for three single-mode attacks. In panel (a), (b), and (d), symbols (triangle-random, square-localized,
circle-targeted) are the critical coupling strength qc. Here, qA = qB = q, pB = 0.9, and pc1 = 0.0684, pc2 = 0.8682, pc3 = 0.8961. In panel (c), we plot the simulation and

numerical results of the cascading process on SF-SF networks with qA = qB = 0.8, pA = 0.9, N = 106.

A. Single-mode attack

In Fig. 2, we compare the three single-mode attacks
on ER-ER partially interdependent networks with weak and
strong coupling strength. The simulation results all agree
well with the theory calculation obtained from Eq. (5). For a
given coupling strength, the targeted attack with α = 1 causes
more serious damage than random and localized attacks.
Besides, the random attack on ER-ER networks has the same
effect as the localized attack, which validates our theory.
Compared with the results shown in Figs. 2(a) and 2(b), the
coupling strength is significantly correlated with the vul-
nerability of interdependent networks. The phase transition
order changes from second to first when increasing the cou-
pling strength. Consequently, strong coupling strength causes

interdependent networks to be highly vulnerable even for the
same attack type.

For the phase transition diagram, as shown in Fig. 3,
each specific line divides the whole parameter space (1 −
pB, qA) into two regions. On the right side of the specific
line, the giant component approaches zeros at the given val-
ues of qA and pB. While on the left side of the line, there
exists a giant component on networks after cascading fail-
ure. Besides, the first order critical line (dashed) merges
with the second order critical line (solid) at the critical
point (pc, qc). Interestingly, in regions I and II, the networks
behave in different phase transition orders with a given cou-
pling strength for different attack types. The parameter α, as
defined in targeted attack, has a clear effect on the attack
strength.
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FIG. 9. The giant component of layer B of SF-SF networks for three mixed-mode attacks. In each simulation, the parameters are N = 106, kmin = 2, kmax = 1000, qA =
qB, pA = 0.9.

B. Mixed-mode attack

In this section, results for the three mixed-mode attacks
on ER-ER interdependent networks are discussed. Here,
we show results with qA = 0.54 (weak coupling) and qA =
0.70 (strong coupling) for verifying our theory. As shown in
Fig. 4, the size of the giant component of networks abruptly
approaches zero when the attack fraction is larger than the
critical value for RATA and LATA. Likewise, a mixed-mode
with targeted attack, which has prior degree information
about both layers of networks, is more efficient in destroy-
ing networks than random and localized attacks. However,
more information generally means consuming higher costs.
Compared with the single-mode targeted attack, the RATA,
with only one layer information on networks structure, is
considerably efficient.

For ER-ER networks, solving Eq. (8) with (%A,%B) =
(0, 1), (0, 0), we can find the critical line of the three mixed-
mode attacks over different initial attack fractions on network
B. As shown in Fig. 5, with the totally distinct behavior of the
critical line for RATA and RALA, the critical points (marked
by red circle), however, are very close in value over each set
of parameters. Besides, according to the slope of the curve,

reducing the coupling strength is more conductive to improve
the robustness of interdependent networks against RALA. As
for RATA, it would be better to protect hub nodes to suppress
the effect of targeted attack.

In Fig. 6, we plot more results of the phase transition
diagram about RATA with α ∈ {−2,−1, 1, 2, 5}. Clearly, the dam-
age effect of RATA increases monotonically with α. Specially,
when α tends to positive infinity, nodes are almost removed
strictly in a descending order of degree. While α is nega-
tive, nodes with a lower degree are preferred to be removed.
As shown, RATA with bigger α breakdowns networks dra-
matically even when the coupling strength is small. Besides,
larger α significantly reduces the critical removing ratio of
B. The critical coupling strength qc, however, receives less
impact.

IV. SF-SF PARTIALLY INTERDEPENDENT NETWORKS

In this section, we investigate the robustness of SF-SF
partially interdependent networks. SF networks are random
networks with a power law degree distribution, which is
observed on many real world networks. Here, we choose the
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FIG. 10. The coupling strength q varies with phase transition point pc of layer B for three mixed-mode attacks. In panel (d), we give results of the cascading procedure
on SF-SF networks with N = 106, q = 0.5, qA = qB, pA = 0.9. Note that our equations accurately predict the critical point pc on panel (b), where pc1 = 0.5281, pc2 =
0.7189, pc3 = 0.7695.

ideal power law with discrete formalism

pk =
k−λ

∑∞
k=1 k

−λ
=

k−λ

ζ(λ)
, (9)

where ζ(λ) is the Riemann-zeta function.
Similar to the ER network, we can write the generat-

ing function for SF networks: G0(x) =
∑∞

k=1
k−λ

ζ(λ)
xk,G1(x) =

G
′

0(x)

G
′
0(1)

.

Submitting these to the cascading equations of the system,
Eqs. (5) and (6), we can obtain the phase transition point pc

and the critical point of coupling strength qc. For SF networks,
G1(x) does not have the same form as G0(x), causing that
random and localized attacks have different damage effects.
Similarly, we also need the degree generating function of the

equivalent network (denoting Â) to solve equations for TA
and LA.

For targeted attack, the generating function of the equiv-
alent network Â is

GÂ,0(x) =
1
pA

∑

k

k−λA

ζ(λA)
tk

α

[
1 +

p̃

p
(x − 1)

]k
, (10)

where t = G−1
α (pA),Gα(x) =

∑
k

k−λ

ζ(λ)
xkα

.
For localized attack, similarly, it is

GÂ,0(x) =
1

GA,0(r)
GA,0

[

r +
G

′

A,0(r)

pAG
′

A,0(1)
(x − 1)

]

, (11)

where r = G−1
B,0(pA), GA,0(x) =

∑
k

k−λ

ζ(λ)
xk.
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A. Single-mode attack

In Fig. 7, we fix the removing ratio of layer A with 1 − pA =
0.1 and vary the removing ratio pB of network B. Each col-
umn corresponds to the power law exponent of λA = λB = 2.5,
λA = 2.5, λB = 3.5, and λA = λB = 3.5. The first row is results
of strong coupling strength. In all network configurations,
damage caused by localized attack is between targeted and
random attacks, where targeted attack performs the maxi-
mum damage effect among them. Besides, scale-free networks
with larger λ are close to ER networks losing their SF proper-
ties. Consequently, with the increase of exponent λ, localized
attack tends to be consistent with random attack except the
region near the critical point. Clearly, strong coupling strength
does make SF-SF interdependent networks more vulnerable.
However, SF-SF interdependent networks are much robust to
random attack even in a strong coupling strength compared
with ER-ER networks.

Likewise, the critical point pc and critical coupling
strength qc are calculated using the phase transition con-
ditions by submitting related equations of SF networks into
Eq. (6). In Figs. 8(a), 8(b), and 8(d), we plot critical lines of
the cascading failure procedure on the SF-SF network. As
shown, adjusting coupling strength q from low to high, the
system undergoes the phase transition from second order
(bold line, continuously) to first order (dashed line, discontin-
uously). And there exists a different critical point of (pc, qc)
for all three single-mode attacks. Generally speaking, tar-
geted attack causes the most serious damage on SF-SF net-
works independent of the degree exponent λ. As for the
same coupling strength q, targeted attack requires the min-
imum removing fraction 1 − pc of nodes to breakdown whole
networks. However, in terms of coupling strength, localized
attack always has the lowest critical coupling strength qc (sym-
bols), which characterizes the borderline of the system transi-
tion order. From this perspective, SF-SF networks are more
vulnerable to localized attack, since networks with a lower
coupling strength also suffer risks of breakdown abruptly. In
Fig. 8(c), we give results of giant component size S on network
B when qA = qB = 0.8. The corresponding theoretical predic-
tion of critical point pc is marked for the three single-mode
attacks in Fig. 8(a). Clearly, theory results accurately predict
the critical point 1 − pc where the giant component of network
B disappears on simulations.

B. Mixed-mode attack

In this section, SF-SF networks are studied under the fol-
lowing three mixed-mode attacks: RALA, RATA, and LATA. As
shown in Fig. 9, SF-SF networks are more vulnerable for LATA
(combined with localized and targeted attacks) than ER-ER
networks, especially when λ < 3. Besides, RATA and LATA
perform the analogous effect in the weak coupling case. In
Fig. 10, the phase diagram of mixed-mode attacks on SF-
SF networks is obtained by submitting the corresponding
equation to the system. Obviously, LATA is the most effective
way to breakdown SF-SF networks. And in terms of crit-
ical coupling strength qc, the distinction among the three

mixed-mode attacks is not significant where RATA is slightly
higher than others especially with a higher degree expo-
nent. However, when it comes to the relation between critical
removing ratio 1 − pc and degree exponent λ, different trends
are shown among the three mixed-mode attacks. Specifi-
cally, in the strong coupling case, critical removing ratio 1 − pc

decreases with larger degree exponent λ for a given coupling
strength, which holds for all three mixed-mode attacks; in the
weak coupling case, RALA behaves the opposite manner where
critical removing ratio 1 − pc increases with a larger degree
exponent.

V. CONCLUSIONS

Modern systems are designed in a coupling way and
challenged by natural and artificial risks. In this paper, we
comprehensively study cascading failures on partially inter-
dependent networks initialized by combined attacks. Ran-
domized, localized, and targeted attacks are considered the
fundamental types. Attacks are further divided into two cate-
gories: completely executed by one of the fundamental types
(single-mode) and combined by two of the fundamental types
(mixed-mode). We then quantitatively study networks’ robust-
ness with a broad range of parameters. The phase diagrams
are obtained by solving the transition condition equations cor-
responding to each combined attack. Simulation results verify
the effectiveness of our theory.

In general, SF-SF networks are more robust to cascading
failure compared with the ER-ER network even for combined
attacks. Besides, we find that reducing the coupling strength
is not an effective way to eradicate catastrophic collapse for
interdependent networks especially for ER-ER networks. And
targeted attacks contribute the most to the breakdown of
interdependent networks on combined attacks overall. Our
comprehensive numerical results can shed light on designing
robust interdependence of the network structure to control
cascading failure risks.
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