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Abstract – The transfer of football players is an important part in football games. Most studies
on the transfer of football players focus on the transfer system and transfer fees but not on the
transfer behavior itself. Based on the 470792 transfer records from 1990 to 2016 among 23765
football clubs in 206 countries and regions, we construct a directed footballer transfer network
(FTN), where the nodes are the football clubs and the links correspond to the footballer transfers.
A systemic analysis is conduced on the topological properties of the FTN. We find that the
in-degrees, out-degrees, in-strengths and out-strengths of nodes follow bimodal distributions (a
power law with exponential decay), while the distribution of link weights has a power-law tail.
We further figure out the correlations between node degrees, node strengths and link weights.
We also investigate the general characteristics of different measures of network centrality. Our
network analysis of the global footballer transfer market sheds new lights into the investigation of
the characteristics of transfer activities.

Copyright c⃝ EPLA, 2019

Introduction. – Football matches are the most influ-
ential sport in the world. According to a survey of FIFA
in 2006, 4% of the world’s population are actively involved
in football. The transfer of football players became part
of the football game after 1893. Up till now, the transfer
records were updated again and again, and the news of
footballer transfers was listed on the headlines of sports
news numerous times. The active football market needs
to be constantly stirred, and the continually sensational
transfer is one of the driving forces.

From the birth of the world’s first million transfer to the
free transfer of European football, the beautiful sport has
become a booming industry. However, research on the
transfer of football players focuses mostly on the trans-
fer system and transfer fees and there is less research on
the transfer behavior itself. It is found that the transfer
fee is different in various segments in English professional
football sports [1], and the determination of the transfer
fee is similar in both professional and nonleague football
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sports [2]. Usually football players benefit from the trans-
fer system [3]. However the transfer system might also
obstruct the free movement of football players between
Member States in Europe and may restrict the ability of
most clubs to compete for elite players [4]. It is also found
that in the English Football League there is no racial dif-
ference in footballers’ transfer prices [5].

In the era of big data, social science researchers consider
social network analysis as an important tool to under-
stand and excavate empirical laws of social behavior [6–8].
With the rapid development of information transmission
and storage technology, lots of human daily activities have
been recorded. In the face of massive log data of human
behavior, computational social science has attracted wide
attention of researchers in recent years [9–12]. Barabási
pointed out that the ideas and methods of complex net-
works in the process of understanding complex social
phenomena will be indispensable tools. The network links
between the two bodies follow different dynamic laws dur-
ing the construction process, such as assortative, correla-
tion, and proximity laws [9,12,13].
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In recent years, network analysis has been applied
to study different networks constructed from vari-
ant attributes of the football market, such as the
bipartite network of players and clubs [14], football
passing networks among players [15–19], zone-specified
passing networks [20–23], footballer transfer networks
(FTNs) [24,25], and mutual footballer transfer networks
(MFTNs) [26]. In this letter, we construct a direct
transfer network to investigate the features of the transfer
events of football players between different football club.
Other than the study of Liu et al. [25], we mainly focus
on the topological properties of the FTN.

The footballer transfer network. – The football
player transfer records from 1990 to 2016 were retrieved
from http://www.transfermarkt.com, which is a foot-
ball fan site founded by some Germans. It contains dozens
of German leagues and only a few Asian clubs. Transfer
records are missing for certain leagues in certain years.
Football player transfer takes the form of permanent trans-
fers and temporary loans. Totally, there are 470792 trans-
fers among 23765 worldwide football clubs.

We construct a footballer transfer network (FTN),
in which the nodes refer to the clubs and a directed
link i → j forms when a player is transferred from
club i toclub j. The FTN is composed of 23765 nodes
and 243770 directed links. It is possible that there are
multiple transfers from one club to another club. In this
case, only one directed link is drawn and its weight is the
number of transfers. In contrast, the FTN analyzed by
Liu et al. contains 410 nodes and 6316 directed links and
the time period is from 2011 to 2015 [25].

There are 39 connected components or sub-networks in
the FTN. The largest component contains 23669 nodes
(99.6% of all nodes). Each smaller component has no
more than 11 nodes. The components are dominated
by trees and the largest network is very sparse. Hence
the density of the whole network is very small (close to
0.0004) and the average clustering coefficient is not large
(about 0.20). A sample FTN constructed from about
4000 transfer records on 1 January 2007 is illustrated in
fig. 1.

Results. –

Distributions. In the FTN, a club’s out-degree kout
i

is the number of clubs that received its football players,
and a club’s in-degree kin is the number of clubs which
transferred football players to it. We find that the av-
erage node degrees, ⟨kout⟩ and ⟨kin⟩, are close to 10.26.
The maximum out-degree and in-degree are, respectively,
kout
max = 235 and kin

max = 177, corresponding to the same
football club, “Parma (Italy)”, which currently competes
in Series A.

We find that there are no nodes with kin = 0 and
kout = 0, meaning that no club is isolated from other
clubs in the transfer market. The number of nodes with
(kin = 0 and kout > 0) is 4746. These nodes usually

Fig. 1: A sample of the daily FTN construct from about 4000
transfer records on 1 January 2007. Each node refers to a
football club in the world, and a direct link corresponds to the
transfer events occurred from the original club to the target
club on 1 January 2007.

correspond to football training clubs. For example, club
“Yonsei Univ (Korea, South)”, a squad of Yonsei Uni-
versity, has an in-degree of 0 and an out-degree of 24.
A rookie football player goes to these clubs for training
because professional clubs do not welcome inexperienced
players. They need to improve their skills and show their
abilities on football pitches. The number of nodes with
kin > 0 and kout = 0 is 1779. These nodes most probably
correspond to professional football clubs. For example,
club “Reno FC (United States)”, a second tier in United
Soccer League, has an in-degree of 18 and an out-degree
of 0. These clubs may have good rankings and provide
good salaries. Most football players want to enter those
clubs and will scarcely transfer out.

In the FTN, the weight wij of a directed link i→j repre-
sents the number of football players transferred from club i
to club j. The average weight of all the links in the FTN is
⟨w⟩ = 1.67, indicating that the average number of football
players transferred from one club to another is less than 2.
It implies that most football clubs have transferred only
one football player. The link with the maximum weight
connects two football clubs, “Akademia FCSM (Russia)”
and “Spartak Moskow II (Russia)”. The reason is that the
former club is the academy of the next one.
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Fig. 2: Probability density distribution. (a) Distributions of the out-degrees kout and the in-degrees kin. The green solid line
and the magenta dashed line are the fits to the bimodal distributions. (b) Distribution of link weights w. The red dashed line is
the fitted power law. (c) Distributions of the out-strengths sout and the in-strengths sin. The green solid line and the magenta
dashed line are the corresponding fits to the bimodal distributions.

The in-strength and out-strength of a node i can be
calculated as follows:

sout
i =

∑

j∈N
wij and sin

i =
∑

j∈N
wji. (1)

We find the average node strengths are ⟨sout⟩ = ⟨sin⟩ =
17.17. The maximum node strengths are, respectively,
sout
max = 724 and sin

max = 371, which correspond again to
club “Parma (Italy)”.

Figure 2 shows the distributions of node degrees k, link
weights w and node strengths s. One can observe similar
distribution shapes for node degrees and node strengths
in fig. 2(a) and in fig. 2(c), which can be fitted well by a
bimodal distribution [27],

p(x) =
{

x−γ−1 , x < x0 ,
e−βx, x > x0 ,

(2)

where x0 is the separate point of the bimodal distribution.
The fitted parameters are listed in table 1, in which we
also present the results for the MFTN [26]. It shows that
although the FTN and the MFTN have the same degree
and strength distributions qualitatively, they have quan-
titative differences. For the degree distribution, the ex-
ponential tail for the FTN decays faster than the MFTN.
For the strength distribution, the power-law part for the
FTN decays faster than the MFTN. Low-degree clubs are
inclined to transfer with high-degree clubs in order to gain
more income and this preferential attachment mechanism
leads to the power law part of the degree distribution [28].
In contrast, high-degree clubs usually do not have such
an evident tendency and this random transfer mechanism
results in the exponential part of the degree distribution.

The distribution of link weights in fig. 2(b) can be ap-
proximated by a power-law distribution:

p(w) = w−α, for w > wmin. (3)

Using the method of Clauset et al. [29], we obtain that
α = 2.76 and wmin = 2. The link weight distribution for
the MFTN also follows a power-law tailed distribution, in
which α = 2.40 and wmin = 8 [26]. Again, the distribution
for the FTN decays faster than the MFTN.

Table 1: Estimated parameters of the bimodal distributions of
the directed footballer transfer network (first two rows) with a
comparison to the mutual transfer network (third row) [26].

γ β γ β
kout 0.23 0.04 sout 0.18 0.02
kin 0.23 0.03 sin 0.23 0.02
k 0.24 0.07 s 0.04 0.02

Correlations. In social networks, an interesting re-
sult is that nodes with similar characteristics will prefer
to connect with each other, which is called assortative mix-
ing [30]. In some case of social networks, it is also known
as the homophily [31–34]. One way to detect such feature
in FTN is to investigate the average neighbor node degree:

knn,i =
1
ki

∑

j∈Ni

kj , (4)

where Ni is the set of nearest-neighbor nodes of i which
are directly connected to node i. By averaging knn over all
the nodes with degree k, we can observe the correlation
between knn and k, as shown in fig. 3(a). Since a node
has an out-degree and an in-degree, we obtain four corre-
lations between node degree k and average neighbor-node
degree knn. All the four lines have an increasing trend
with the increase of the node degree. It indicates that
the FTN exhibits an assortative mixing pattern, just like
many other social networks [30,35–37]. The direction of
links in the FTN does not have great impact on this fea-
ture [26]. Besides that, each curve can be approximated
by two power laws.

The average neighbor edge weight wne,ij of link i→j
for the MFTN has been studied [26]. We can calculate
wne,ij for the FTN similarly. We create a new undirected
subordinate network FTN∗, where the nodes are mapped
from the links in the FTN and a link is created if two links
i→j (or j→i) and i→k in the FTN have a common node i.
For simplicity, we do not consider the bi-directed links as a
pair of neighbor links, that is, we require that j ̸= k. Thus,
the neighbors of a link in the FTN is converted to the
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Fig. 3: Assortative mixing. (a) Average neighbor node degree ⟨knn|k⟩ as a function of degree k. Four curves correspond to
four correlations between node out-degree kout and node in-degree kin. For example, kout vs. kin is the average neighbor node
in-degree ⟨kin

nn|kout⟩ as a function of out-degree kout. (b) Average neighbor link weight ⟨wne|w⟩ as a function of weight w.
(c) Average neighbor node strength ⟨snn|s⟩ as a function of strength s.

neighbors of a node in the FTN∗. The average neighbor
link weight wne,ij of a link is calculated as follows:

wne,ij =

∑
a≠i,b≠j

(waj + wib + wja + wbi)

kout
i + kin

i + kout
j + kin

j − 4

=
sout

i + sin
i + sout

j + sin
j − 2wij − 2wji

kout
i + kin

i + kout
j + kin

j − 4
.

(5)

The average neighbor link weight ⟨wne|w⟩ for the edges of
weight w is calculated by averaging wne,ij over those edges
of weight w. Figure 3(b) shows the average neighbor link
weight ⟨wne|w⟩ as a function of weight w. ⟨wne|w⟩ moves
within [1.7, 2] when w < 30. When w > 30, the fluctuation
of ⟨wne|w⟩ becomes drastic. It indicates that the number
of transfers (w) between two clubs in the FTN distributes
more randomly than the number of transfers (k) of a club.

The average nearest-neighbor strength snn of node i is
the average strength of i’s nearest neighbors:

snn,i =
1
ki

∑

j∈Ni

sj . (6)

Like the similarity between the distributions of node de-
grees and node strengths (see fig. 2), the correlation be-
tween snn and s is quite similar to the correlation between
knn and k.

Since the distributions of node degrees and node
strengths are similar to each other, one may expect that
the average node strength has a linear correlation with the
node degree [38,39],

⟨s|k⟩ ∼ kαks1 (7)

with αks1 = 1, if there is no correlation between the node
degree and the weights of the edges linked to the node.
We also check the correlation between the product of node
strength and node degree,

⟨sisj |kikj⟩ ∼ (kikj)αks2 , (8)

where nodes i and j belong to link i→j.
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Fig. 4: Correlations between node degrees and node strengths.
(a) The average strength ⟨si⟩ of the nodes with degree k.
(b) The average strength product ⟨sisj⟩ of the directed links
from node i to node j whose degrees are ki and kj .

Figure 4 shows the correlations between node degrees
and node strengths. Very nice power-law dependence
is observed. The power-law exponents are estimated
as follows: αks1 (out) = 1.06, αks1 (in) = 1.10 in
fig. 4(a) and αks1 (out, out) = 1.08, αks1 (out, in) = 1.09,
αks1 (in, out) = 1.10, αks1 (in, in) = 1.07 in fig. 4(b). All
the values of αks1 and αks2 are greater than 1, which are
close to the case of MFTN [26].

As the correlation exists between node degrees and link
weights, we study the variation curve between link weights
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Fig. 5: Dependence of link weight w with respect to node
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⟨wij |kikj⟩ of the directed links from i to j whose degrees are ki

and kj . (b) The average link weight ⟨wij |sisj⟩ of the directed
links from node i to node j whose strengths are si and sj .

and the product of node degrees and the product of node
strengths. The results are shown in fig. 5. We observe a
significant upward trend in both of the two plots. Fur-
thermore, the upward trend can be simply separated into
two parts. The separated points here (kik0

j ≈ 5000,
sis0

j ≈ 20000) are close to the product of the separated
points of the bimodal distributions of node degrees and
node strengths.

Network centrality. Network centrality is a measure
of how centrally a node locates in the network. Obviously,
the node degree is one of the centrality measures. Be-
sides that, we also investigate other two commonly used
centrality measures, betweenness centrality and closeness
centrality. Betweenness centrality characterizes the im-
portance of a node in the network flow [40,41]:

bj =
∑

i≠j≠k

σik(j)
σik

, (9)

where σik is the number of shortest paths from node i to
node k and σik(j) is the number of those paths that pass
through node j. By dividing the number of pairs of nodes
that do not contain node j, we can obtain the normalized

betweenness centrality bn
j = bj/[(N − 1)(N − 2)]. If bn

j

is close to 1, all paths in the network will pass through
node j. In a connected network, a node’s closeness is
the average shortest path length between this node and
other nodes [42]. Since the FTN is not fully connected,
we use the harmonic centrality instead, which is another
definition of closeness centrality [43]:

Hout(i) =
∑

i≠j

1
d(i, j)

,H in(i) =
∑

i≠j

1
d(j, i)

, (10)

where d(i, j) is the shortest path length from node i to
node j. By dividing N − 1, we get the normalized harmonic
centrality Hn = H/(N − 1). The larger Hn

i is, the closer
node i is to other nodes. If Hn

i = 0, node i is disconnected
with all of the other nodes, which means node i is the
isolated node. If Hn

i = 1, node i is directly linked with
all the other nodes. The graph is a star-like network and
node i is the center of the network.

Figure 6 shows the distributions of betweenness central-
ity and closeness centrality of the nodes in the FTN. One
can observe that with the increase of bn, the probability
p becomes smaller. The average normalized betweenness
centrality ⟨bn⟩ is close to 0.00011. It implies that most
football clubs do not play an important role in the foot-
ball players transfer market. The football club with the
largest betweenness centrality (bn

max = 0.0063, about 600
times the average) is “Parma (Italy)”, which is not sur-
prising as “Parma (Italy)” has the largest in-degree and
out-degree. The distribution shape of the closeness cen-
trality in fig. 6(b) is quite different from the betweenness
centrality. One can find a peak is present in both curves.
The peak locates at Hn ≈ 0.16 for the closeness centrality
from outgoing links and Hn ≈ 0.20 for the closeness cen-
trality from incoming links. And the distribution of Hn,out

is on the left side of the distribution of Hn,in. Considering
the nodes with large closeness, we find that the closeness
from outgoing links is smaller than the closeness from in-
coming links on average. Moreover, the number of nodes
with small closeness Hn < 0.001 from incoming links is
larger than that from outgoing links. It indicates that
many leaf nodes only have outgoing links, corresponding
to football training clubs.

In social network analysis, the centralization of a net-
work is a measure of how equal the centralities of the nodes
are in the network [44], which is calculated as the differ-
ences between the centrality of the most central node and
all other nodes. For a directed network, one considers
centralization as the difference between the out-directional
centralization and the in-directional centralization [45,46],
which is defined as follows [44]:

Cy
x =

N∑

i=1

(xy
max − xy

i )
/

max
N∑

i=1

(xy
max − xy

i ), (11)

where x is a certain node centrality measure, N is the num-
ber of nodes, y stands for superscript “in” or “out”, and
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max
∑N

i=1 (x
y
max − xy

i ) is the maximal difference. Hence,
Cy

x ranges from 0 to 1 and the centralization of a directed
network Cx = C in

x − Cout
x ranges from − 1 to 1.

When considering an unweighted network, we can
use node degree as the centrality measure, Ck, where
max

∑N
i=1 (k

y
max − ky

i ) = (N − 1)2 . If Ck is close to − 1, all
the links in the network point from one node to the other
nodes. If Ck is close to 1, all of the links point from other
nodes to one node. When considering a weighted network,
we calculate the strength centralization Cs = C in

s − Cout
s ,

where max
∑N

i=1 (s
y
max − sy

i ) = (N − 1)
∑N

i=1 sy
i . The

weighted network centralization Cs has the same physi-
cal meaning as the unweighted network centralization Ck.
In the FTN, the degree centralizations are C in

k = 0.0070,
Cout

k = 0.0095, Ck = − 0.0024, and the strength central-
izations are C in

s = 0.0009, Cout
s = 0.0017, Cs = − 0.0008.

All the centralizations are close to 0. It implies that no ex-
treme dominating club exists in the global football player
transfer market.

If we use bn for x in eq. (11), we obtain the between-
ness centralization Cb, where max

∑N
i=1 (b

n
max − bn

i ) =
N − 1. When Cb is close to 1, some football clubs in

the network act as the transfer center. Otherwise, there
is no transfer center in the network. We obtain that
Cb = 0.0062 for the FTN. If we replace x in eq. (11)
with Hn, we obtain the closeness centralization CH , where
max

∑N
i=1 (H

n,Y
max − Hn,Y

i ) = N − 1. For the FTN, we
have Cout

H = 0.1027, C in
H = 0.1412 and CH = 0.0385. We

find that the closeness centralization from outgoing links
is smaller than that from incoming links, which is different
from the website network.

Summary and discussions. – In this letter, we con-
structed a directed football player transfer network by us-
ing more than 470000 transfer records of football players
around the world from 1990 to 2016. We investigated the
topological characteristics of the network.

We first investigated the distributions of in-degrees and
out-degrees of nodes, link weights, and in-strengths and
out-strengths of nodes. We found that the distributions of
node degrees and node strengths can be fitted to bimodal
distributions [27], which might result from the different
transfer paths of football players from different football
clubs. We also found that the link weight distribution has
a power-law tail. We further inspected the correlations
among node degrees, node strengths and link weights. It
is found that the neighbor node degree (strength) increases
with the increase of the node degree (strength), indicat-
ing that the FTN is an assortative mixing. We also found
that link weights correlate with node degrees, which is
similar to the results in mobile phone communication net-
works [37]. These properties have been studied for the
mutual footballer transfer network [26]. The correspond-
ing properties for the FTN and MFTN are qualitatively
similar, but they exhibit quantitative differences.

The centralities of a football club help us to find out
the transfer center in different definitions from the global
transfer market. A football club with higher betweenness
is usually an important tie connecting two groups of clubs.
For example, the transfer between Asian leagues and Euro-
pean leagues usually occur between two fixed clubs. Those
two clubs play as transfer centers and have high between-
ness in the transfer network. Closeness is another type
of centrality, which describes the average distance from a
club to all the other clubs. A football player in a club
with higher closeness is more likely to be transferred to
any other football clubs, due to the fact that the two clubs
have historical transfer records in most cases. However, we
unveiled that most nodes have a small centrality, suggest-
ing that no club acted as a transfer center. Investigation
of the difference between the centralities of the most cen-
tral node and all other nodes shows that all the football
clubs occupy similar positions in the transfer network, and
the closeness centralization from outgoing links is smaller
than that from incoming links. It suggests that further
studies on the FTN at meso-scales or micro-scales are re-
quired to uncover the different roles the clubs may play in
the golobal transfer market.
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