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We present a numerical analysis for SiO2 of the fraction of diffusive direction fdiff for temperatures
T on both sides of the fragile-to-strong crossover. The T dependence of fdiff clearly reveals this change
in dynamical behavior. We find that for T above the crossover (fragile region) the system is always close
to ridges of the potential energy surface (PES), while below the crossover (strong region), the system
mostly explores the PES local minima. Despite this difference, the power law dependence of fdiff on the
diffusion constant, as well as the power law dependence of fdiff on the configurational entropy, shows
no change at the fragile-to-strong crossover.
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A useful approach for relating dynamics and thermo-
dynamics of glass-forming liquids in their supercooled
states is offered by the study of the liquid’s potential en-
ergy surface (PES) [1]. The PES is the multidimensional
surface generated by the system’s potential energy as a
function of all atomic coordinates. Numerical and theo-
retical studies [2–10] are providing evidence that several
aspects of the liquid dynamics have a clear signature in
the properties of the explored regions of the PES. For ex-
ample, correlation functions display stretching in time in
the same temperature � T� range in which the system ex-
plores regions of the PES associated with local minima
of deeper and deeper energy [11]. Similarly, the rapid
slowing down of the dynamics which takes place in the
weakly supercooled region is associated with the explo-
ration of regions of the PES close to saddles of lower
and lower order [12–17]. Recent numerical studies for
fragile liquids [18] have suggested the possibility that a
crossover T , T3, marks a change in the geometrical prop-
erties of the PES explored. In this picture, above T3 the
system trajectories are mostly located close to the ridges
between different PES basins (“border dynamics”), while
below T3 the system only rarely samples the regions con-
necting different PES basins (“minimum-to-minimum dy-
namics”). T3 has been associated [13,14,19,20] with the
critical temperature predicted by the ideal mode-coupling
theory (MCT) [21].

Instantaneous normal mode (INM) analysis [12] is a
powerful technique to investigate the connectivity prop-
erties of the PES explored at different temperatures. The
curvature of the PES along each of the 3N 2 3 indepen-
dent directions (the eigenvectors of the Hessian matrix) is
calculated and analyzed to estimate the fraction of diffu-
sive directions fdiff [22].

If the representative configuration is crossing a ridge
separating different PES basins, some of the local cur-
vatures are negative. A computationally expensive but
well-defined screening procedure to sort out the negative-

curvature directions contributing to diffusion [7] has been
developed [14,23,24]. For all model potentials for which
such analysis has been performed, it has been shown that
the T and density r variation of fdiff controls the be-
havior of the long-time dynamics, supporting the hypoth-
esis that information about the local properties of the
PES may be sufficient to describe long-time dynamical
processes.

The analysis of the PES connectivity has been limited
to models for fragile glass-forming liquids and to tempera-
tures above T3, due to the difficulty in generating equilib-
rium configurations at low T . In all studied cases, it was
consistently found that T3 locates the T at which fdiff ap-
pears to extrapolate to zero [13,14,24].

Here, we present an evaluation of the fraction of
diffusive directions (using the INM analysis) for the well-
studied Beest, Kramer, and van Santen (BKS) model
for silica [25], for which we generate equilibrium con-
figurations for temperatures both above and below T3.
The INM spectrum of BKS silica has been previously
calculated by Bembenek and Laird [26] for equilibrium
states above T3 but no evaluation of fdiff was reported.
For the BKS model, the high T dynamics has been shown
to be consistent with the predictions of MCT at both a
qualitative [27] and a quantitative [28] level. At lower T ,
the T dependence of the characteristic times [27] shows
a crossover toward an Arrhenius T dependence which
has been interpreted as a clear case of fragile-to-strong
transition [29]. In the Arrhenius region, the activation
energy is 54 000 K and 60 000 K, for oxygen and silicon,
respectively. The crossover temperature T3, about 3330 K
at r � 2.36 g�cm3, has been interpreted by Horbach
et al. as the MCT critical temperature [27]. It is interest-
ing to note that, in silica, the T region, where correlation
functions start to show the two-step relaxation character-
istic of glassy dynamics, is well above the silica melting
temperature (about 2000 K). In this respect, silica is not
supercooled from a thermodynamics point of view [30].
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We find that the T dependence of both the diffusion
constant D and the fdiff shows a clear signature of the two
different dynamical behaviors — fragile above and strong
below T3. Despite these differences, the relation between
D and fdiff is not sensitive to the presence of dynamical
changes. Moreover, we find that fdiff does not vanish
around T3 but changes to an Arrhenius T dependence,
similar to the T dependence of D. Finally, we show that
the number of diffusive directions is related to the number
of basins of the PES, providing a possible explanation for
the recently observed validity [4,29,31] of the Adam-Gibbs
(AG) equation [32] in the T region where border dynamics
dominates.

Our results are based on extensive simulations of a sys-
tem of 999 atoms, for r � 2.36 g�cm3, close to the den-
sity of ambient pressure silica. We investigate eleven T ,
in the range from T � 2650 K to T � 7000 K. We
carry out simulations in the constant volume, energy, and
number of particles ensemble, using a 1 fs integration
time step. We evaluate the long range interaction by im-
plementing the Ewald summation. To guarantee proper
equilibrium conditions all simulations lasted longer than
several times the slowest collective structural relaxation
time; low T runs lasted longer than 50 ns. We also per-
formed averages over eight different realizations. For each
studied state point we calculated eigenvalues and eigen-
vectors for 96 configurations. For each of the eleven T

studied, we performed approximately 2600 minimizations,
using a total of about 50 000 CPU hours.

The INM analysis requires the evaluation of the
eigenvectors and associated eigenvalues of the potential
energy, second derivative matrix, the Hessian. Ac-
cording to the procedure described in Refs. [23,33],
all eigenvectors associated with negative eigenvalues
are inspected in order to eliminate those associated
with intrabasin anharmonicities (“shoulder” and “false
barrier” modes). Figure 1 shows (i) the T dependence
of the fraction of directions with negative eigenmodes
fu, (ii) the fraction of directions whose one-dimensional
profile is double-well shaped fdw, and (iii) the number
of diffusive directions fdiff, calculated by eliminating
from the double-well set all false barrier modes [23,34].
Above T � 3330 K, all three quantities show a fast
decrease with T . While fu and fdw assume nonzero
values, fdiff appears to approach zero on cooling. A
clear change of concavity in the T dependence of fdiff

takes place above T � 3330 K. As found previously
for fragile liquids for T . T3, the fast decrease of fdiff

confirms that, above T � 3330 K, �i� the slowing down
of dynamics is associated with a progressive decrease of
the number of possible directions that lead to a different
basin, �ii� the system trajectories are located close to
PES ridges (border dynamics), �iii� even for BKS silica,
the dynamics properly described by the ideal MCT are
border dynamics, supporting the identification of T3

with the MCT critical temperature.
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FIG. 1. Temperature dependence for the BKS model of the
fraction of modes with negative curvature fu, the fraction of
modes with double-well-shaped one-dimensional profile fdw,
and the fraction of diffusive directions fdiff. The arrow marks
T3 for the isochore studied [27].

For T below 3330 K, the system spends most of the
time far from the PES ridges. To support this statement,
Fig. 2 shows the probability P�fdiff� of finding a config-
uration with a specific fdiff value for T � 2800 K �,T3�
and T � 4000 K �.T3�. Above T3 all examined config-
urations have a nonzero fdiff, while below T3 the distribu-
tion is peaked at about zero and most of the configurations
are characterized by the absence of diffusive directions.

We next investigate the functional relation between fdiff

and D. The T dependence of both quantities, shown in
an Arrhenius plot in Figs. 3(a) and 3(b), shows a change
in the T dependence above and below T3. Despite this
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FIG. 2. Probability P�fdiff� of finding a configuration with a
given fdiff value above T3 (T � 4000 K) and below T3 �T �

2800 K�. While for T . T3 all examined configurations have
a nonzero fdiff, below T3 the distribution is peaked around
the origin.
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FIG. 3. Arrhenius plot of (a) the diffusion constant D for Si
atoms; (b) fdiff. The short-dashed lines have slope 54 000 K in
(a) and 41 000 K in (b). The long-dashed line in (a) indicates
the MCT fit of D � �T 2 T3�g . Part (c) shows the parametric
relation D�T vs fdiff in a log-log scale. The data are perfectly
smooth through the transition at T3.

different dynamical behavior, the quantity fdiff is related
to D by the same power law relation both for T . T3 and
for T , T3 [Fig. 3(c)]. In the entire studied T region, D

follows the law

D�T � �fdiff�
a , (1)

with a � 1.3 6 0.2 over more than two decades in fdiff

and more then three decades in D�T . The same functional
form describes the relationship between D and fdiff both
above and below T3 showing that, while the T dependence
of both D and fdiff is sensitive to the microscopic mecha-
nisms controlling the dynamics, the fragile-to-strong tran-
sition does not affect the relation between D and fdiff. We
also stress that the same functional form has been found

to describe the relation between D and fdiff in the case of
the extended simple point charge (SPC/E) model for water
[14], for which calculations were limited to T . T3.

The interpretation of the dynamics in terms of the frac-
tion of diffusive directions is complementary to the analy-
sis which attributes the slowing down of the dynamics to
the decrease of the liquid configurational entropy Sconf

[32]. In the case of BKS silica, Sconf has been recently
calculated and shown to describe, via the Adam-Gibbs re-
lation, the slowing down of the dynamics both above and
below T3 [29]. Since Sconf is a measure of the number
of distinct PES basins explored by the system— if the de-
scription in terms of Sconf and the description in terms of
fdiff are both valid —a relation must exist between the
number of basins and the number of directions connecting
them. Figure 4 shows the relation between Sconf and fdiff

for the case of BKS silica. Within the numerical uncer-
tainty, the fraction of diffusive directions appears to be pro-
portional to the number of explored basins, V � eSconf�kB ,
irrespective of the strong or fragile character of the dy-
namics. Data in Fig. 4 are consistent with similar findings
which were limited to the SPC/E model for water to the
T region above T3. The present results suggest that the
linear relation between logfdiff and Sconf is not model de-
pendent; indeed it has been recently derived within the
random energy model [35]. We also note that the relation
between D and fdiff [Fig. 3(c)] and the relation between
fdiff and Sconf (Fig. 4) suggest a relation between D and
Sconf which would mathematically coincide with the AG
equation only for a specific T dependence of Sconf. The
limited range of values of D explored with the present
computation does not allow us to distinguish if the AG
equation and the relation between D and Sconf parametric
in fdiff are equivalent or which of the two has a larger va-
lidity range. This remains an important open problem to
be addressed in the future.
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FIG. 4. Parametric plot of the fraction of diffusive modes fdiff

as a function of the configurational entropy Sconf for the BKS
model of silica.
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The fact that the linear relation between logfdiff and
Sconf holds even above T3 is particularly interesting; since
above T3 the system dynamics is a dynamics of borders,
there is no clear reason why such border dynamics should
be well described by the Adam-Gibbs relation which fo-
cuses on the number of basins explored as a function of
T . The observed relation between logfdiff and Sconf

may offer a key for the resolution of this apparent para-
dox. It is a challenge for future studies to find out if fdiff

is a potentially richer quantity for describing dynamics in
deep supercooled states, as the results reported here seem
to suggest.
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