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The following rigorous relations are established for the Ising model with interaction strengths J in some lattice

directions and R/ in other directions: v, = 2y, v, ® 3v,and V32 4+, where Xn

O = @ 10RM g~ € Y and v =y

is the susceptibility exponent for the lattice when R=0. These results disagree with recently-reported numerical esti-

mates of certain of the v,

There has recently been considerable interest |1--10]
in systems with “lattice anisotropy™ (different cou-
pling strengths in different lattice directions). Consid-
er, e.g., the d-dimensional nearest-neighbor (nn) Ising
system

nn nn
J('=f~JZ> 5;:8; —~RJ E $;S;

y.=v. u.-=u.
L) o

EJCO+RJ(‘1 , (hH

where r;=(x1,x,, ... x7)= (4, v)where u; =(x,,
cooxgland v = (X gy, ..., xg). For example, very

recently there have been extensive calculations |1, 2] con-

cerning the case d=3, d=2, corresponding to a “square
to simple cubic crossover”. Henceforth we shall consid-
er this system for the purpose of specificity and clari-
ty; thus r, = (x;,p;,2)=(u;,zyand R=J,/J ... Our ap-
proach is, however, more general.

According to the generalized scaling hypothesis,
for which the parameter R is scaled (as well as €, A,
...), the “crossover” exponent ¢ is the only exponent
that one needs to describe the crossover behavior [8].
In particular,

Y, =rtnég, (2)
where the new exponent vy, is defined by
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: B
X, (R=0)=(3"X10R" )y, ~ T T (O] . (3

Here x is the reduced zero-field magnetic susceptibil-
ity and vy, =7 is the susceptibility exponent of the
d-dimensional system.

The exponents vy, cannot be calculated exactly but
they can be estimated by extrapolations based upon
high-temperature series expansions. There presently
exists a dispute |1,3--5} in the literature concerning
numerical values of y,,, and the most recent work
claims that for sq - sc Ising model,

Y =35 v, =50%0.1,

‘)'32(7.5t0.2, y428.0t().3 . 4)

In this note we shall report the tfollowing rigorous
results:

v =2y {5a)
Y, 23y (5b)
73247 (5¢)

Since y=1.75 for a sq Ising model, the numerical esti-
mates of (4) violate (5). Our results also lend support
for the predictions (2)and v, =(n+1)~.

As a demonstration, we shall here outline the proof
of (5b). Details of the analysis will be published else-
where.
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Fig. 1. Conformations of lattice sites which correspond to non-

zero contributions to (s;s; J(?) at R=0. Sites in the same plane
are joined by a horizonta{ line. A heavy vertical line indicates
that the sites are coupled with strength RJ.

For a lattice of N + 1 layers with M2 spins in each
layer, we have:

B2+ )M 3, =20 [ssHD
ri,r].

—(ss)(J(’ MNg=g - (6)

At R=0, we observe that spins on different layers (with
different z;'s) are not coupled. Since ¥(; consists only
of products of sis; with z; #z,, there are in fact only
four possible topological conformations (cf. fig.1) of
the lattice-sites i,7, k,I, m,n which make a non-zero
contribution to the six-spin thermal average
(58;5kS1SmSn JR=0- The contribution of conformations
(i) — (iv) of fig. 1 are respectively,

(5852 0 {81 0 (8800 > (7a)
(s;8; )0 St 0 852 0 (7b)
(s, ssks 058520 (7¢)
8565, 0§85 slsn 0 (7d)
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where (... .. ) denotes a thermal average for R=0.
The expressions (7a) — (7d) are weighted by factors
4(N-1), N(N-1), 2N, and 2N respectively, arising
from the fact that we can make interchanges of the
form i « jetc. in fig. 1.
The second term in (6) has two factors,

20 (559 peg= (V+ )M X 0) (8)
i

and

@2y=J2 Nm? ? ORDYS ©)
Thus (6) becomes

B2 N +1)M?x, (0)= 4N-1)M? [x, (0)]°
—2NM2 Xy M2 23 (sys,) 2
u
2
+ 2NM Z’P <(§l> sl.)
2
2o 2 (2

Sou)o 0% 0

) (10)

The Griffiths inequality [11],

(s s sOs )><s s )(suisui),

permits us to ““cancel” the second and third terms on
the right-hand side of eq. (10), and noting that the
fourth term is positive, we have

X, (0)=4(B))? {x, (0} (1)

where we have neglected 0 (1/N) with respect to unity,
inequality (5b) follows from (11).

In conclusion, we have shown rigorously that
Y1 =27,7, 237, and v3 =4y. If the scaling hypothe-
sis is valid (so that v, =7 +n¢), our work furnishes a
simple but rigorous proof of ¢=vy. Moreover, our re-
sults (Sb)and (5c) indicate that reported values of v,
and 3 are unreliable [1-3]. A detailed study of these
(and other [12]) high-temperature series for the lattice
anisotropy problem is now underway, and preliminary
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numerical results indicate that y, = (n+1)y forn=
1,2,3,4.
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