4 TWO-MAGNON BOUND STATE IN fcc FERROMAGNETS

This is in sharp contrast to the sc and bcce ferro-
magnets where no such state exists. It would be
interesting to investigate the behavior of this bound
state for an arbitrary wave vector.

It is interesting to compare the present calcula-
tion of the two-magnon optical spectrum with a
similar calculation in a Heisenberg antiferromag-
net.!* In that case, the attractive interactions
caused a resonant peak to develop just below the
top of the band. The position of this peak was
rather insensitive to the crystal structure and de-
termined by a square-root divergence in the density
of states at the zone boundary. This divergence
occured as a result of the form of the antiferromag-
netic spin waves rather than the structure of the
lattice. By contrast, in the present case, we find
that the repulsive force may lead to a bound state,
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but the geometry of the lattice is a very important
aspect.
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APPENDIX

The Green’s function I,.(¢) is calculated near to
the zone boundary. The imaginary part is obtained
from (5. 2) and the real part from the Kramers-
Kronig relation (5. 3) using the computations of
Frikkee® for ImI,.(¢) for —0.96< ¢ <3 and the
asymptotic form (5.2) for —1<e<~-0.96. We esti-
mate that, due to the difficulties of the numerical
integration, the real part is correct to about 5%.
See Table 1.
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The high-temperature series expansions for the spin-4 Heisenberg ferromagnetic model on
cubic lattices are analyzed by a transformation method. Evidence is presented suggesting
that the susceptibility critical exponent (y) and the gap parameter (2A) are both smaller than
the original estimates obtained by Padé approximant techniques. Specifically, we find that
v=1.36+0.04 and 2A=3.50+0.20. The error limits are to be taken as a reasonable confidence

level rather than as a strict bound.

I. INTRODUCTION

Critical properties of all realistic three-dimen-
sional models of magnetism are determined by the
method of exact series expansions. It is generally
accepted that critical values of the Ising model are,
on the whole, reliably established.! Critical values
of other models, such as the spin-4 XY model? and

the spin- Heisenberg model, ® have been deter-
mined only recently and with an uncertainty general-
ly greater than in the Ising counterparts. In these
extreme quantum models, the noncommutativity of
spin operators complicates the evaluation of expan-
sion coefficients enormously; moreover, there is
an irregularity in the resulting series, apparently
related to the noncommutativity in some way not yet
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understood, making the job of analysis difficult (and
consequently the estimated values not entirely reli-
able).

For the spin-3 Heisenberg ferromagnet on regular
cubic lattices, which is our main concern, there are
now known a sufficient number of high-temperature
expansion coefficients for several functions, from
which one can make estimates of relevant critical
values. However, the generally irregular nature
of the coefficients (i.e., the magnitudes of these
coefficients change in an irregular fashion) has
taxed the capacity of the existing techniques of anal-
ysis. Although some critical values (notably the
critical points, susceptibility exponent, gap param-
eter) have been estimated, they are in all probabil-
ity not immune from some small but significant
changes as either higher-order expansion coeffi-
cients become known or techniques of analysis be-
come more refined.

Estimates for the critical point and exponent are
usually made from a high-temperature series ex-
pansion by ratio and Padé approximant methods.
Although the two methods are not directly related
and employ different standards of reliability, esti-
mates made by them are often comparable and consis-
tent. When the two methods yield inconsistent values
as they are in some cases known todo, itbecomes dif-
ficult to decide which values are more reliable. If
a series behaves very irregularly, the ratio method
is essentially useless. In such a situation one has
only the Padé approximant method to rely on. Since
any result of series extrapolations (from a finite
number of terms) is not rigorous, it is desirable to
analyze a series by as many different methods as
available to guard against some possible systematic
errors.

The series for the S=4 Heisenberg ferromagnet
are of the irregular kind and have been analyzed
largely by the Padé approximant method. We pro-
vide here an analysis of these series by a transfor-
mation method. While this method is not new, we
believe that it has not been hitherto applied with
advantage to high-temperature series expansions.

A series whose coefficients of expansion change in
an irregular fashion indicates the presence of more
than one singularity. The transformation method
seeks to isolate the physical singularity, so that the
series represents essentially an expansion of the
physical singularity.

II. HEISENBERG MODEL

The Heisenberg model is defined by the Hamil-
tonian

¥o=—2J2,8;+S; - wHY S, 1)
ij i

where S; is the spin operator at site ¢ of a given
cubic lattice, S§is the z component of S; which is
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the same as the direction of the external magnetic
field H, i is the magnetic moment, and J is the ex-
change coupling constant (J> 0 for ferromagnetic
coupling). The first sum in (1) is over pairs of
nearest-neighbor sites only.

The Heisenberg model, which is a natural gen-
eralization of the Ising model, may be realized in
many realistic magnetic systems. Recently, much
effort has been expended in obtaining critical prop-
erties of this model by the method of exact series
expansions as in the three-dimensional Ising model !
For the case of S=3 on the fce, bee, and simple
cubic (sc) lattices, Baker ef al.® have considerably
extended the evaluation of the expansion coefficients
for the susceptibility, specific heat, and some
higher field derivatives of the free energy, all of
which should diverge as the critical point is ap-
proached. The susceptibility series, usually the
best behaved and hence used to determine the criti-
cal point, are markedly less regular than the sus-
ceptibility series of the Ising model. The other
series are even less regular. A thorough analysis
of these series is given by Baker et al. using the
Padé approximant techniques almost exclusively.

Among these estimated critical values, the sus-
ceptibility exponent (y) and the gap parameter (24)
are of special interest to us. The susceptibility ex-
ponentis estimated® to be y=1.43+0.01for all three
cubic lattices, and the gap parameter, less reli-
ably, 2A=3.63x+0.03 for the fcc lattice (evidence
for the other lattices is not satisfactory).

If this estimated value for the susceptibility expo-
nent, ¥~ 1.43, by Baker ef al. is correct (as indeed
their extensive evidence tends to support it), it
raises certain difficult questions. First, the sus-
ceptibility exponent for the S= Heisenberg model
on the same cubic lattice is estimated to be
y=~1.38.* As the series for S=« are on the whole
regular, this value can be accepted with reasonable
confidence. Then the small difference between the
values of ¥ for S=% and S=<, if it really exists,
would suggest that ¥ might be, at least, weakly spin
dependent. However, this sort of spin dependence
is inconsistent with the basic assumptions of scaling
laws.® Second, quite independently, Bowers and
Woolf® have advanced, based on somewhat indirect
but reasonable evidence, thaty =1, 38 for all cubic
lattices and for all spin values.

In order to resolve this apparent discrepancy, it
seemed to us that a reexamination of the series for
S =1 by some other methods of analysis, other than
the Padé approximant method, might be in order.
Baker et al. have made abundantly clear that their
estimates are necessarily subject to the basic pro-
cedural assumption of Padé analysis being tenable.
There are two well-known important shortcomings
inherent in the Padé approximant method. First,
Padé analysis seeks convergence and mutual consis-
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tency rather than trend. This kind of criterion has
an obvious built-in danger. Second, the Padé ap-
proximant method unfortunately places too heavy an
emphasis on initial coefficients of a series. Clearly
the asymptotic behavior of a series should not signifi-
cantly depend on initial coefficients.

It is for these reasons that any analysis of a fin-
ite-termed series by the Padé approximant method
ought to be complemented, if possible, by the ratio
method. The ratio method uses only ratios of suc-
cessive coefficients and incorporates a final extrap-
olation.” It works best when the physical singularity
unambiguously determines the radius of conver-
gence. That is, when the physical singularity is the
only singularity or when it is by far the nearest sin-
gularity (to the origin of the K=J/kT plane). In
such cases, extrapolations by the ratio method can
be exceedingly accurate and reliable. If nonphysical
singularities exist near the circle of convergence,
as in the case of S=3, the analysis of a series by
the ratio method becomes nontrivial.

III. TRANSFORMATION METHOD

A thermodynamic function f(X), such as the sus-
ceptibility, is generally assumed to obey, near its
critical point, a power law

fK)~ (K, - K)°, K-K; ()

where g is the critical exponent. The function f(K)
being analytic can be given a power series expansion
about the origin in the form of f(K)=%. , @, K", con-
vergent up to the circle of convergence determined
by K,. If K, is the only singularity or the nearest
singularity of f(K), the values of K, and ¢ may be
determined if a sufficient number of the expansion
coefficients a, are known (usually about 10 for
three-dimensional lattices).

If nonphysical singularities K; with strengths ¢,
exist near the circle of convergence, the power
series expansion may be useful if and only if N— «,
where N is the total number of exactly determined
expansion coefficients. For a finite N (~10), the
existence of these singularities is manifested
through an irregular variation in the values of @, .
In extreme cases, the behavior of @, may seem ran-
domly changing in both sign and magnitude. In
others the behavior, while irregular, may still be
comparatively smooth, indicating that the strengths
(g;) of nonphysical singularities are weak compared
with the critical strength of the physical singularity
(i.e., lg;l<gq). But if they are not sufficiently
weak (i.e., |g;15q), their influence may very well
persist asymptotically. For these cases, obtaining
one or two additional higher-order coefficients
(always a laborious task) is not expected to be of
much direct benefit. This sort of irregular behav-
ior makes it difficult to determine K, and ¢ unam-
biguously.
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Suppose by some means the locations of all the
principal singularities of f(K) are known and g >lq;!.
Consider a conformal transformation, say, K*
=G(K). I, by the transformation, nonphysical singu-
laritief K; are mapped onto Kf in such a way that
now K; are farther removed from the transformed
circle of convergence (determined by K: ). Then
since the transformed series, say, f(K*)=YY,
Xb,K*" is dominated by the nearest and strongest
singularity, KJ, it should be possible to apply the
ratio method for the analysis of the series. It will
be seen that the transformation can also improve
the analysis by the Padé approximant method.

What kind of transformation can one apply? For
a completely convergent series, almost any con-
formal transformation may suffice. But for func-
tions, which are or can be given in terms of only a
finite number of expansion coefficients, it is essen-
tial to find the “right” transformation. The desired
transformation must be one which gives

FE*)~ (KY -K*)?, K*-K)". (3)

It must also determine the nth transformed coef-
ficient b, solely by the n exactly known coefficients
a,. Thatis, b,=f(a,,a,.1,0, 2, ...01,0a). Thus
transformations such as K* =G(0)+G(K), where
G(0) is a nonzero constant, are to be excluded.

As is well known, the critical point and exponent
can be obtained by approximating the series expan-
sion in the form of N zeros and D poles (the [N, D]
Padé approximants). The critical point is usually
given by one of real positive poles which appear
most consistently among the [N, D] Padé elements
and which converge to some apparent value. The
critical exponent is given by the residue at that
pole. Among the Padé elements the more impor-
tant or reliable elements are the main diagonal ones
(i.e., N=D) and the next diagonal ones (i.e.,
N=Dz+1).

If a transformation leaves the diagonal elements
of the Padé approximants to f(K) invariant, there is
little advantage to be gained by the transformation
in so far as Padé analysis is concerned. Among
Padé approximants, the most commonly used are
Padé approximants to the logarithmic derivative of
f(K), which converts the singularities into simple
poles. It can be shown that under a bilinear trans-
formation the invariant elements are the less im-
portant [N, D=N+2]. Thus this type of transforma-
tion may indeed hasten the convergence of the main
diagonal elements for the logarithmic derivative of
a function.

The transformation method has been used before.
The ideas and applications of this method are found
in Danielian and Stevens, ® Baker, Gammel, and
Willis,® Gaunt and Fisher,'® Baker,'' and Guttmann,?
among others. References to more recent work
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may be found in Lee and Stanley.!* The most nota-
ble results seem to be due to Gaunt and Fisher, who
have analyzed the activity and virial series by this
method for phase transitions in a hard-sphere lat-
tice gas model.

IV. EXTRAPOLATION PROCEDURES

We shall briefly describe two principal extrapola-
tion procedures used in this paper in connection
with the transformation method.

A. Ratio Method

The ratio method rests on the observation that
if f(K) obeys a power law near the critical point K,
ratios of successive coefficients p,=a,/a,., are
given by

lim p,=K;! {1+(q -ni +o(;11§>] . @)

ne «

Then, K;!represents the asymptotic limit (#~) and
(g - 1) the limiting slope of p,. Estimates for these
parameters can be made by extrapolations provided
that the true nature of asymptotic behavior is indi-
cated in the incomplete series.! The trend of suc-
cessive ratios may be obtained by constructing a
ratio plot or a Neville table. If ratios are smooth
or regular, estimates for K, and ¢ can be made with
a minimum uncertainty.

For the transformed series, ratios of successive
coefficients 7,=b,/b,., are given by

lim 7,=K;? [1+(q-— 1) %+O<—lg>] . (5)

oo n

Given the value for Kc*, we can then get the value

for K, by the inverse transformation equation
K=GY(K*).

B. Padé Approximant Method

The [N, D] Padé approximant!! to f(K) is an ap-
proximation by a rational function in the form of the
ratio of two polynomials of degrees N and D. Their
coefficients are chosen such that the coefficients of
the expansion of the rational function, in powers of
K, coincide with those of f(K) through order N +D.
Advantages of Padé approximants to the logarithmic
derivatives of f(K) are apparent since the singular-
ities are only simple poles, which are easier to ap-
proximate.

The general procedure of Padé analysis, given
the first » terms of a series, is to obtain all possi-
ble Padé approximants with N+D=1,2,...,n-1.

If the results of the last few orders are subtantially
unchanged, the Padé table is regarded as having
converged. This procedure may be further varied
to check self-consistency. '
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V. ZERO-FIELD SUSCEPTIBILITY

The zero-field initial susceptibility is defined in
the usual way:

82
x=kT 5z InZ| g, (6)
where
Z =tre /T, (M

The reduced susceptibility, X=x¢T/N u2 can be giv-
en a power series expansion in the form

¥K)=1+22 a,K", (8)

n=1

where K=J/kT. The exact values of the expansion
coefficients a, for 3 cubic lattices (fcc, bce, and

sc) have been analyzed up to n=6 by Domb and
Sykes, * Gammel et al., 'S and Baker.'® Subsequent-
ly, Baker et al.® have calculated a,;, ag, aq for the
fcc lattice and aq, ag, ag, a,o for the bee and sc
lattices. These values are reproduced in Table I.

The critical points are normally determined from
the susceptibility since the series for the suscepti-
bility are found most regular (hence easiest to pin
down K, accurately). Earlier estimates'*'!® based
on 6 terms are K,=0.246, 0.392, and 0. 588 for the
fce, bee, and sc lattices, respectively, and y=~%
for all 3 lattices. Estimates given by Baker et al. 8
using the extended series are K,=0.2492, 0.3973,
and 0. 5962 for the fcc, bee, and sc lattices, res-
pectively, and y =1.43+0.01 for all 3 cubic lat-
tices.!” These estimates are obtained using Padé
analysis of the susceptibility series, by attaining a
high degree of mutual self-consistency between the
quoted values of K, and y =1. 43.

An examination of the susceptibility series re-
veals that unlike other susceptibility series (e.g.,
the Ising, ! XY, 2 or S=« Heisenberg susceptibility*)
these series are markedly irregular. The irregu-

TABLE I. Exact coefficients of the susceptibility
series expansions for the S =3 Heisenberg model on the
fce, bee, and sc lattices. After Baker et al. (Ref. 3).

n ayfec) aplbce) ay(sc)
0 1 1 1
1 6 4 3
2 30 12 6
3 138 34.666666 11
4 611. 25 95.833333 20,625
5 2658.55 262.7 39. 025
6 11432.5125 708.0416666 68.7770833
7 481726.72619 1893, 289683 119.4297619
8 206142,3674 5012.108631 216.162276 8
9 866895.5063 13 235,513 27 387.1938327
10 34737.965 23 658.3415398
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TABLE II. Singularities of the susceptibility series on the fcc lattice given by Padé approximants to the logarithmic
derivative of the series.

D/N 2 3 4 5 6
9 0.2411 0.2526 0. 2505
0.5362 -0.9387
3 0.2482 0.2495 0.2491
0.1300+0. 37577 0.2119+0.3605¢ 0.1899+ 0. 3389:
) 0. 2492
4 0.2483 0.2443 +0.0149¢ 0.1894 + 0. 3477
0.1335+0, 37567 0.1506 +0.4271: —~1.152
0.2498 0.2493
5 0.2205 +0, 3912¢ 0.1906 + 0. 35467
- 2,228 ~0.6903
0.8657 2.232
0. 2491
6 0.1959 +0, 3272¢
-1.480

larity is evidently due to the presence of nonphysi-
cal singularities. It will be seen that some of the
nonphysical singularities lie close to the circle of
convergence (in the case of the sc lattice, the phys-
ical singularity actually is not the nearest singular-
ity). Although it is not clear whether there is any
physical significance behind these extra singular-
ities, it is assumed that their removal will make
the series behave more regularly. The interference
by the nonphysical singularities may otherwise
make the results of Padé analysis less than totally
reliable, since this method of analysis at any rate
is significantly influenced by these early coeffi-
cients which are interfered most and are meaning-
less in so far as the asymptotic behavior of the ser-

ies is concerned.

Padé analysis can, nevertheless, be used to de-
termine the approximate locations of physical and
nonphysical singularities in the K plane. The re-
sults are given in Tables II, I, and IV for the fcc,
bce, and sc lattices, respectively. In these tables
are shown singularities which are given consistently
by Padé approximant analysis (these shall be called
the principal singularities).

A. Susceptibility for fcc Lattice

The principal singularities of the susceptibility on
the fcc lattice appear to be (i) a positive real pole at
K=K,=0.25, which is the physical singularity, (ii)
a pair of complex poles at K= Kp(K,)= 0.19:i0. 35,

TABLE III. Singularities of the susceptibility series on the bcc lattice given by Padé approximants to the logarithmic
derivative of the series.
D/N 2 3 4 5 6
9 0.3980 0.4020 0.3966
-0.5871 -0.4621 -0.3194
3 0.3922 0.4119 0.3995 0.3891
—-0.4212 -0.5167 -0.6744 -0.3638
0.3926 0.3960 0.3953 0.3971
4 —-0.4021 —0.4747 . —-0.4694 -0.4347
-~ 0.0937 £0. 3682 -0.0674+0,33142 -0.0575+0.4279%
0.5109 0.3953 0.3958
5 —~0.5055 ~0.4692 —-0.4766
0.0011 1,110z -0.0669 +0,3319¢ —-0.0796 +0. 37007
0.4003 0.3970
6 -0.5329 -0.4239
—0,0806+0.8320; —0.0359+0.4368¢
0.4074 [7, 2]
7 -0.5564 0.3931

- 0.0056 +0.79547

-0.3878











































