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We investigate the navigation problem in lattices with long-range connections and subject to a cost

constraint. Our network is built from a regular two-dimensional (d ¼ 2) square lattice to be improved by

adding long-range connections (shortcuts) with probability Pij " r#!
ij , where rij is the Manhattan distance

between sites i and j, and ! is a variable exponent. We introduce a cost constraint on the total length of the

additional links and find optimal transport in the system for ! ¼ dþ 1 established here for d ¼ 1 and

d ¼ 2. Remarkably, this condition remains optimal, regardless of the strategy used for navigation, being

based on local or global knowledge of the network structure, in sharp contrast with the results obtained for

unconstrained navigation using global or local information, where the optimal conditions are ! ¼ 0 and

! ¼ d, respectively. The validity of our results is supported by data on the U.S. airport network.
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The interplay between topology and dynamics in com-
plex systems represents the focus of many studies in differ-
ent fields of research with important scientific and
technological applications. Because of their enormous po-
tential to represent the intricate topology of numerous
systems in nature, complex networks [1,2] have recently
been used as substrates in combination with a plethora of
dynamical models to describe the behavior of biological,
social, chemical, physical, and technological networks [3].
Much attention has been dedicated to the problem of
navigation in complex network geometries [4–14]. In
most cases, the influence of the underlying network ge-
ography on the performance of the transport process is
investigated assuming that only local information is avail-
able for navigation [4,5,7,8,15].

For many navigation problems of interest in science and
technology, global rather than local information is re-
quired, i.e., any source node s possesses the knowledge
of the entire network topology. In this situation, the aver-
age shortest path h‘i from source to target becomes the
relevant navigation variable to be optimized. For example,
in a subway network, such as in Manhattan, the travel
routes should be planned or changed in such a way as to
minimize the travel time for a given limited reconstruction
cost. This task is performed by considering the whole
structure of the network in terms of its nodes and links,
namely, by knowing the location of all subway stations,
their connections, and the shortest path between any two
stations. If we now consider an underlying network of
streets and avenues over which one has to plan or improve
an existing subway network, and if the aim is to minimize
the average travel time between its stations, the search for
an optimal strategy to add new connections in the network
for a given budget should therefore play a key role. Here
we show that the imposition of a cost constraint, which to

the best of our knowledge has not been considered for
optimal navigation, represents a crucial ingredient in the
design and development of efficient navigation networks.
Consider the case of an existing transport network which

needs improvements [16]. The financial cost to build up a
large number of new direct connections between distant
stops (i.e., non-neighboring sites) can make it prohibitive,
since only limited resources are normally available for this
task. These types of problems can be modeled in the
following way, which is similar to the formulation pre-
sented in Ref. [4]. In a two-dimensional regular square
lattice, with all N ¼ L2 sites present, each site i is con-
nected with its four nearest neighbors. The sites represent
the stops and the bonds represent the routes of the transport
system (see Fig. 1). In our model, pairs of sites ij are then
randomly chosen to receive long-range connections with

FIG. 1 (color online). Connections of a single node i. Each
node i has four short-range connections to its nearest neighbors
(a, b, c, and d). A long-range directed connection may be placed
to a random chosen node j.
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probability proportional to r#!
ij , where rij is the Manhattan

distance between sites i and j, namely, the distance mea-
sured as the number of connections separating the nodes in
the underlying regular lattice. Finally, and distinct from
Ref. [4], the addition of long-range connections to the
system stops when their total length (cost),

P
rij, reaches

a given value !. Since ! controls the average length of the
long-range connections, we obtain that, for a fixed value of
!, and small values of !, longer connections, but fewer in
number can be added due to the imposed total length limit.
We therefore expect that an optimal navigation condition
must be revealed as a tradeoff between the length and the
number of connections added to the system.

Optimal navigation with local knowledge and the pres-
ence of long-range links in a lattice network without con-
straints was recently studied by Kleinberg [4]. Here we
show for the first time that a rather different behavior can
be observed when realistic constraints on total length are
imposed on the process of adding long-range connections,
regardless if navigation is based on local or global knowl-
edge of the network structure. To better demonstrate the
competition between total length and number of links, we
generate a single network realization (L ¼ 256) for a given
value of ! and compute the shortest-path length ‘ from
each node in the network to its central node. This calcu-
lation is performed as follows: once we choose the root
node (e.g., the central one), we visit all its neighbors,
including the neighboring nodes connected by long-range
connections. These visited nodes are classified as shell one
nodes, meaning that they are only one time step away from
the root node. After that, we visit all the neighbors of these
nodes not visited before and classify them as shell two
nodes. Following this procedure for all network nodes, we
obtain the ‘ values (time) for each node to be reached from
the root node. Figure 2 shows the contour plots represen-
tation of the ‘ values performed for four different values of
the parameter !. For ! ¼ 1 and 2 the number of long-
range connections is small. As a result, only a few little
islands sparsely dispersed in these networks are really
close to their central nodes (only a few short and/or long-
range connections away). For ! ¼ 3 the added long-range
links are shorter, but more numerous, thus substantially
decreasing the shortest path over the whole network. For
! ¼ 4, due to the very short length size of the added
connections, only a limited region surrounding the central
node displays a reduced shortest path. Sites which are
further away from the origin have significantly larger
path length ‘ to the origin.

We extract more quantitative information about this
navigation problem by performing extensive simulations
for different values of ! and different system sizes. In each
case, the average shortest path h‘i is calculated over all
realizations, considering all the shortest distances between
each pair of nodes. We assume that the total length (cost) is
proportional to the total length of the links in the under-
lying network, i.e., ! ¼ AL2, where A is a constant. That

is, the budget to improve the system is a fraction of the cost
of the current network (without long-range connections)
[17].
The results presented in Fig. 3 clearly indicate the

presence of a minimum h‘i for different system sizes at
the same value of the exponent ! ¼ 3, where optimal

FIG. 2 (color online). Shortest-path length ‘ from each node to
the central node in the network for different values of !. In this
case we impose a constraint in the length of the long-range
connections. The sum of the length of these connections is
limited, ! ¼ P

rij ¼ N, where N is the number of nodes in
the underlying lattice. The network model is constructed from a
square lattice with L2 nodes, with L ¼ 256. We can clearly
observe that the best condition for shortest-path length is ob-
tained for ! ¼ 3.

FIG. 3 (color online). Average shortest-path length h‘i as a
function of !. There is a constraint in the total length of the long-
range connections, ! ¼ P

rij ¼ L2, where L is the size of the
underlying square lattice. We find that the optimal shortest path
is achieved for ! ¼ 3. With the restriction on total length, the
number of long-range connections is not fixed (e.g., with ! ¼ 0,
large long-range connections become frequent, which reduces
the total number of long-range connections.) To obtain these
results, we simulated 10 000 realizations for L ¼ 512, 3500
realizations for L ¼ 1024 and 2048, and 25 realizations for L ¼
4096.
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navigation is achieved with (global) knowledge of the
shortest paths and cost limitations. The way in which h‘i
scales with system size L, however, seems to follow rather
different behaviors, depending on the value of !. We tested
two possible forms for h‘i vs N, a power law and a power
of log10N. As shown in the main plot of Fig. 4(a), our
results for ! ! 3 suggest that the shortest path h‘i follows
a power law with system size L. This is supported by the
plot of successive slopes "S obtained from log10h‘i versus
log10L, which are almost invariant, as shown in the inset of
Fig. 4(a). In contrast, in the case of ! ¼ 3, the increase
with L of h‘i appears to be less rapid than a power law.
Interestingly, the successive slopes #S obtained from
log10h‘i versus log10ðlog10LÞ, as presented in Fig. 4(b),
indicate that h‘i increases as a power of the logarithm of
L, h‘i" log#S

10L, rather than a power of L, only for ! ¼ 3.
This provides clear support for the fact that in the optimal
condition, ! ¼ 3, the transport will improve even further
as L increases, as suggested by Fig. 3.

We also studied our model for a one-dimensional lattice
and observed similar behavior. The optimal condition we
obtained in this case at ! ¼ 2 (data not shown) leads us to
conjecture that the optimal value is obtained at ! ¼ dþ 1,
where d is the dimension of the underlying lattice. Note
that the Kleinberg result was extended to fractals [5],
where the optimal exponent is found to be ! ¼ df, namely,
the fractal dimension of the substrate. The h‘i dependence
on L for different ! for the Kleinberg model was recently
derived analytically [7].

In the following, we present analytical arguments show-
ing that ! ¼ 3 is indeed the only case where logarithmic
scaling of h‘i with L can occur, while for ! ! 3 a power-

law with L should exist. By arbitrarily fixing the cost
parameter to ! ¼ AL2, we obtain that $" hri#1 [18],
where $ is the expected density and hri is the average
length of the added long-range connections. Since hri"R
L
2 r

2#!dr [19], it follows that for 2 ' !< 3, $" L!#3

and for !< 2, hri is limited by the network size leading to
$" L#1. Thus, for all values of !< 3 the density of the
long-range links added, due to the constraint, decreases as
a power law with L. As a consequence of this power-law
decrease in density, h‘i must increase as a power of L. To
see this we argue that h‘i is bounded by the relation h‘i>
$#1=d. The right-hand side $#1=d appears for the case of
the small world model, where ! ¼ 0, with a fixed concen-
tration of links h‘i" $#1=d lnL [2]. Since for the case 0<
!< 3, h‘i decreases with increasing !, the bound h‘i>
Lð3#!Þ=d is rigorous and h‘i in this range must scale as a
power of L. For !> 3 and sufficiently large networks, hri
is finite and the density becomes independent of the system
size, i.e., $" L0. Thus, the effect of the constraint ! on
navigation should become negligible. However, the finite
value of hri suggests that long-range links can be neglected
and therefore h‘i should scale as a power of L. Thus, it
follows that only for ! ¼ 3, h‘i can scale logarithmically
with L, as suggested by our numerical simulations (see
Fig. 4).
It is important to note that our global navigation scheme

with h‘i can be considered as a lower bound to any other
transport navigation process. For example, a strategy based
on purely local knowledge of the network structure will
necessarily perform worse than any other with global infor-
mation. In Ref. [4], for example, the greedy algorithm is
introduced as a paradigm based on local information,
where the traveler, when leaving a node, chooses to
move to the one among its neighbors which has the small-
est Manhattan distance to the target. Kleinberg found that
! ¼ 2 is the optimal value in the navigation with the

FIG. 4 (color online). In (a) we show the average shortest-path
length h‘i as a function of the lattice size L for the square lattice.
The constraint in the total length of the long-range connections is
! ¼ L2. The curve with ! ¼ 3 increases slower with L com-
pared to any other value of !. In the inset, the plot of the
successive slopes "S obtained from log10h‘i versus log10L re-
inforces the display of power-law behavior of h‘i with L for ! !
3. The plot of the successive slopes #S obtained from log10h‘i
versus log10ðlog10LÞ shown in (b) indicates that h‘i increases as a
power of the logarithm of L for the optimal condition ! ¼ 3.

FIG. 5 (color online). The characteristic average delivery time
h‘gi=L as a function of ! for navigation with the greedy
algorithm. The cost ! involved to add long-range connections
changes the behavior of the density of long-range connections.
As a result of that, a minimum is observed at ! ( 3. Each data
point is a result of 4000 simulations and the cost ! is fixed at L2.
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greedy algorithm [4]. We next ask, what would be the
optimal ! for the greedy algorithm when cost restriction
! ¼ AL2 is imposed? We find also for the greedy algo-
rithm that the optimal value is ! ¼ 3. This is shown in
Fig. 5, where we plot the average delivery length h‘gi that a
message travels with only local information of the system
geometry. The message is sent from the source node s to
the target node t through a network generated with the
constraint ! ¼ L2. Remarkably, the presence of a mini-
mum also at ! ( 3 shows that the type of information
(local or global) used by the message holder to pass it
through the system during the navigation process becomes
unimportant if the network is constructed under length
(cost) limitations. However, the two mechanisms display
very different and distinct behaviors regarding the scaling
with system size. While we observe logarithmic growth for
the optimal condition ! ¼ 3, in the case of global infor-
mation, the time to reach the source, with the greedy
algorithm and with cost constraint, appears to increase
linearly with size for all values of !. The linearity of
h‘gi with L is observed in the scaling collapse (Fig. 5) of
the curves of h‘gi=L vs !.

In summary, our results suggest that, regardless of the
strategy used by the traveler, based on local or global
knowledge of the network structure, the best transportation
condition is obtained with an exponent ! ¼ dþ 1, where
d is the topological dimension of the underlying lattice.
Our results hold for d ¼ 1 and 2, but simulations in three
dimensions are still necessary to further support this con-
jecture. The results recently reported by Bianconi et al.
[20] on the U.S. airport network yield an exponent ! ¼ 3,
which is similar to our optimal exponent for d ¼ 2. The
fact that the probability of a flight connection within U.S.
decays as a power law with the distance between airports,
r#!, where ! ¼ 3:0) 0:2, seems to reveal the optimized
aspect of the network under the conditions of geographical
availability (for customer satisfaction) and cost limitations
(for airline company profit). The result ! ¼ 3 is in sharp
contrast with the results obtained for unconstrained sys-
tems with global and local information, where the optimal
conditions are ! ¼ 0 [9] and ! ¼ d [4,5], respectively.
The contrast between the optimal results is even more
dramatic. While in the unconstrained case the mean length
of a link diverges, we find that when cost is considered the
mean length is finite. In the case where the traveler has
global knowledge of the network, and is able to identify the
shortest path for navigation, we obtain a slow (logarithmic)
growth with size for the transit time at the optimal condi-
tion. A different picture is obtained if the traveler has only
local knowledge of the network. For example, in the case
where the transportation path is decided based on the
Manhattan distance to the target, we obtain a linear growth
of the transit time with system size, for all values of the
exponent !. Finally, our results suggest that the idea of
introducing a cost constraint in the navigation problem
offers a different theoretical framework to understand the

evolving topologies of other important complex network
structures in nature, such as subways, trains, or the
Internet. Of course, at this point we must emphasize that
our approach represents only one specific model within a
larger family of models where design principles can be
tested to improve the performance of the transport system.
In the case of airport networks, for example, other vari-
ables than the particular cost function that we adopted can
be used for realistic optimization purposes.
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